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Abstract: This paper presents a method to guarantee stability of linear stochastic systems.
The systems include both time-varying and time-invariant unknown stochastic parameters
simultaneously. For analyzing the stability, such a system is represented by an expanded system
that contains only the time-invariant stochastic parameter. This expansion excludes the time-
varying parameter from the system, which simplifies the stability analysis. Existing methods
on robust stability theory can be thus employed to ensure stability of the expanded system.
Guaranteeing stability of the expanded system is a necessary and/or sufficient condition for
that of the original system. Consequently, the stability of the original system is evaluated by
using linear matrix inequalities.
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1. INTRODUCTION

There are various types of uncertain systems in the real
world, which should be controlled. An example is an
automated vehicle that interacts with manually-operated
vehicles with uncertain dynamics (Nishi et al., 2019). A
semi-autonomous vehicle shares steering control with a
human driver (Saleh et al., 2013). It is important to
guarantee stability of such systems under the uncertainty.
This paper focuses on the stability of uncertain linear
systems for ensuring the safe control.

The uncertainty in systems is described as stochastic pa-
rameters that are efficient for stability analysis of the
systems. In the field of stochastic control theory, there
are two main types of such parameters: time-invariant
and time-varying stochastic parameters. Figure 1 shows
examples of state trajectories of systems with such param-
eters. The time-invariant stochastic parameters are given
as random variables that are constant in time (Fisher and
Bhattacharya, 2009; Ito et al., 2016). The time-invariant
property is applicable to represent variations in system
parameters such as manufacturing variations. Meanwhile,
time-varying stochastic parameters are randomly changed
with the time (Koning, 1982; Ito et al., 2019). Such pa-
rameters are suitable for representing the noise effect on
the system parameters rather than the static variation.

For describing linear systems including both time-varying
and time-invariant stochastic parameters simultaneously,
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it is promising to regard system matrices as random
polytopes (Hosoe et al., 2018). The random polytopes
consist of vertices that are random matrices (defined in
Section 2). However, there are limitations on stability
analysis of linear systems with the random polytopes while
they can represent various types of uncertain stochastic
dynamics. In the ground breaking work (Hosoe et al.,
2018), the stability of such systems is not guaranteed in
an exact sense due to approximations. The exact stability
has been analyzed if the set of the time-varying stochastic
parameter is restricted to be not infinite but finite (Hosoe
and Hagiwara, 2015). Various methods for the stability
have been developed using Kronecker products (Hibey,
1996; Ogura and Martin, 2013), linear matrix inequalities
(LMIs) (de Oliveira et al., 1999; Oliveira and Peres, 2005;

Zhang et al., 2010), and boundary mapping (İlhan Mutlu
et al., 2018; Voßwinkel et al., 2019). These methods focus
on systems with either the time-varying or time-invariant
parameter, but not both. To the best of our knowledge,
while stability of other systems with both the parameters
have been analyzed, e.g., (Tabarraie et al., 2016; Gershon
and Shaked, 2018), the random polytopes (that we focus
on) are different from such systems and/or less restrictive.

To overcome the limitations described above, this paper
proposes a method to guarantee stability of linear stochas-
tic systems. The proposed method satisfies the following
three requirements simultaneously. First, the target sys-
tems consist of the random polytopes representing both
the time-varying and time-invariant stochastic parameters.
Second, the stability is analyzed in an exact sense without
approximations. Third, the set of stochastic parameters
need not be finite. The stability of such a system is ensured
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(c) With time-invariant and time-varying parameters

Fig. 1. State trajectories of systems with time-invariant and/or time-varying stochastic parameters. Multiple lines in
(a) and (c) indicate the trajectories with different values of the time-invariant parameters. Non-smooth (noisy)
trajectories in (b) and (c) are invoked due to the time-varying parameters.

using an expanded system with only the time-invariant
stochastic parameter. It is shown that guaranteeing sta-
bility of the expanded system is a necessary and/or suffi-
cient condition for that of the original stochastic system.
Consequently, via this result, a stability condition of the
original system reduces to well-known LMIs.

The remainder of this paper is organized as follows.
Section 2 describes the problem setting in this paper.
Section 3 solves the main problem stated in Section
2. Section 4 demonstrates the proposed method in a
numerical simulation. Section 5 concludes this paper and
describes future work.

This paper uses the following notation.

• In: the n× n identity matrix
• [x]i: the i-th component of a vector x ∈ Rn

• [X]i,j : the component in the i-th row and j-th column
of a matrix X ∈ Rn×m

• vec(X) := [[X]1,1, . . . , [X]n,1, [X]1,2, . . . , [X]n,2, . . . ,
[X]1,m, . . . , [X]n,m]⊤: the vectorization of the com-
ponents of a matrix X ∈ Rn×m

• vech(Y ) := [[Y ]1,1, . . . , [Y ]n,1, [Y ]2,2, . . . , [Y ]n,2, . . . ,
[Y ]j,j , . . . , [Y ]n,j , . . . , [Y ]n,n]

⊤: the half-vectorization
of the lower triangular components of a square matrix
Y ∈ Rn×n

• Xa ⊗ Xb ∈ Rnanb×mamb : the Kronecker product of
matrices Xa ∈ Rna×ma and Xb ∈ Rnb×mb , given by

Xa ⊗Xb =

 [Xa]1,1Xb . . . [Xa]1,ma
Xb

...
. . .

...
[Xa]na,1Xb . . . [Xa]na,ma

Xb


• Eλ[Y (x,λ)]: the expectation

∫
Sλ Y (x,λ)p(λ)dλ of a

function Y (x,λ) with respect to a stochastic parame-
ter λ ∈ Sλ with a probability density function (PDF)
p(λ), where the above integral is replaced with a sum
when Sλ is a finite set.

• Eλ0,λ1,...,λt [Y (x,λ0,λ1, . . . )]: the expectation of a
function Y (x,λ0,λ1, . . . ) with respect to stochastic
parameters (λ0,λ1, . . . ,λt) for any t ∈ {0, 1, . . . },
where Eλ0,λ1,...,λt [Y (x,λ0,λ1, . . . )] for t < 0 denotes
Y (x,λ0,λ1, . . . ).

2. PROBLEM SETTING

Let us consider a discrete-time linear stochastic system
with the state variable xt ∈ Rn at the discrete time
t ∈ {0, 1, 2, . . . }:

xt+1 = A(ω,λt)xt, (1)

where x0 ∈ Rn is given as a deterministic vector. The
system matrix A(ω,λt) ∈ Rn×n depends on both the
time-invariant stochastic parameter ω ∈ Sω ⊂ RK and
time-varying stochastic parameter λt ∈ Sλ ⊆ RL. The
system matrix A(ω,λt) is defined as the following random
polytope in a manner similar to (Hosoe et al., 2018):

A(ω,λt) :=

K∑
k=1

[ω]kA
(k)(λt), (2)

where the vertex A(k)(λt) ∈ Rn×n is a continuous func-
tion of the time-varying stochastic parameter λt if Sλ
is not finite. Various types of stochastic systems can
be represented by the form of (1) with (2). Section 4.1
demonstrates such a representation and another example
is found in (Hosoe et al., 2018). Throughout this paper,
let us assume the following properties for the stochastic
parameters.

Assumption 1. (Stochastic parameters).

(i) The values of ω and λt for any t are unknown.
(ii) The set Sω of all possible ω is given by

Sω =

{
ω ∈ RK

∣∣∣∣∣∀k, [ω]k ≥ 0,

K∑
k=1

[ω]k = 1

}
, (3)

while the PDF of ω is unknown.
(iii) The time-varying λt is independent and identically

distributed (i.i.d.) from a PDF p(λ) on a set Sλ.
(iv) For any t, for any k and k′ in {1, 2, . . . ,K}, and

for any i, j, i′, and j′ in {1, 2, . . . , n}, the following
expectation with respect to λt is bounded and known:

Eλt

[
[A(k)(λt)]i,j [A

(k′)(λt)]i′,j′
]
, (4)

while it is admissible that p(λ) and Sλ are unknown.
(v) If Sλ is not finite, p(λ) is continuous on Sλ = RL.

Note that Assumption 1 (iv) is not strong because we need
not the full information of p(λ) but only the expectations.
To analyze stability of the system (1), this paper intro-
duces the following stability notions. Since Sω is assumed
to be a bounded set, we focus on stability for all ω ∈ Sω
robustly.

Definition 1. (Robust mean-square stability). The system
(1) is said to be robustly mean-square (MS) stable if the
following relation holds:

∀x0 ∈ Rn, ∀ω ∈ Sω, lim
t→∞

Eλ0,λ1,...,λt−1
[∥xt∥2] = 0. (5)

Definition 2. (Exponential robust mean-square stability).
The system (1) is said to be exponentially robustly MS
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stable if there exist ρ ∈ (0, 1) and α ∈ (0,∞) such that
the following relation holds:

∀x0 ∈ Rn, ∀ω ∈ Sω, ∀t ∈ {0, 1, . . . },√
Eλ0,λ1,...,λt−1

[∥xt∥2] ≤ α∥x0∥ρt. (6)

Remark 1. The system (1) is robustly MS stable if it is
exponentially robustly MS stable because the following
relation holds:

lim
t→∞

Eλ0,λ1,...,λt−1 [∥xt∥2] ≤ lim
t→∞

α2∥x0∥2ρ2t = 0. (7)

Under these assumptions and definitions, the main prob-
lem to be solved in this paper is stated as follows.

Main problem. Find necessary and/or sufficient conditions
that the system (1) is (exponentially) robustly MS stable.

3. PROPOSED METHOD

In this section, we solve the main problem stated in the
previous section. Section 3.1 gives an idea to solve it.
Section 3.2 presents the solutions, which are the main
results. To derive explicit conditions for guaranteeing the
stability of the system (1), the main results are applied to
existing stability analysis in Section 3.3.

3.1 Idea and overview

The key idea for solving the main problem is to expand
the system (1) such that the time-varying stochastic pa-
rameter λt is excluded from the system. Such an expanded
system involves only the time-invariant stochastic param-
eter ω while the original system (1) includes both the
time-invariant and time-varying parameters. This exclu-
sion simplifies the stability analysis for stochastic systems.

First, we introduce an important operator to derive the
expanded system.

Definition 3. (Compression operator C). For any square

matrix H ∈ Rn2×n2

, the compression operator C :

Rn2×n2 → R(n(n+1)/2)×(n(n+1)/2) is defined as follows:

C(H) := LHD, (8)

where the duplication matrix D ∈ Rn2×(n(n+1)/2) and

elimination matrix L ∈ R(n(n+1)/2)×n2

are defined such
that Dvech(S) = vec(S) holds for any symmetric matrix
S ∈ Rn×n and Lvec(M) = vech(M) holds for any square
matrix M ∈ Rn×n, respectively.

Remark 2. The duplication matrix D and elimination ma-
trix L are uniquely determined for each n (Magnus and
Neudecker, 1980). Their explicit definitions are found in
(Magnus and Neudecker, 1980). As an example, these
matrices with n = 2 are given as follows:

D =

1 0 0
0 1 0
0 1 0
0 0 1

 , (9)

L =

[
1 0 0 0
0 1 0 0
0 0 0 1

]
. (10)

Using the compression operator C, let us introduce the
expanded system:

x̃t+1 = C(Ã(Ω))x̃t, (11)

where x̃t ∈ R(n(n+1)/2) is the expanded state at the time

t. The matrix Ã(Ω) ∈ Rn2×n2

with an expanded time-
invariant stochastic parameter Ω ∈ RK×K is defined as
follows:

Ã(Ω) :=

K∑
k=1

K∑
k′=1

[Ω]k,k′Ã(k,k′), (12)

Ã(k,k′) := Eλ0 [A
(k)(λ0)⊗A(k′)(λ0)]

= Eλt
[A(k)(λt)⊗A(k′)(λt)]. (13)

Note that Ã(k,k′) ∈ Rn2×n2

is deterministic and known
because all its components are known by Assumption 1

(iv). In (13), Ã(k,k′) is constant in t because λt is i.i.d. by
Assumption 1 (iii). Based on these definitions, we obtain
a key connection between the expanded system (11) and
the original system (1).

Theorem 1. (Expanded system). For any initial state x0 ∈
Rn and any time-invariant stochastic parameter ω ∈ Sω,
suppose the following properties:

x̃0 = vech(x0x
⊤
0 ), (14)

Ω = ωω⊤. (15)

The following relation between the state and expanded
state holds for all t ∈ {0, 1, 2, . . . }:

x̃t = Eλ0,λ1,...,λt−1
[vech(xtx

⊤
t )]. (16)

Proof. The proof is described in Appendix A.

Remark 3. Theorem 1 indicates that the expanded state
x̃t in (11) is equivalent to the second moment of the state
xt in (1) with respect to (λ0,λ1, . . . ,λt−1). Therefore,
the expanded system (11) can be used to evaluate the
second moment with respect to the time-varying stochastic
parameters despite the fact that the expanded system is
the time-invariant stochastic system. Although expanded
systems similar to (11) have been used for stability analysis
of time-varying stochastic systems (Hibey, 1996; Ogura
and Martin, 2013), the time-invariant stochastic param-
eters ω are not involved.

Remark 4. The compression operator C plays an im-
portant role for developing the expanded system (11).
Although a straightforward representation of the sec-
ond moment of the state xt is Eλ0,λ1,...,λt−1

[vec(xtxt
⊤)]

(Hibey, 1996; Ogura and Martin, 2013), this includes
the duplicated components. Indeed, [vec(xtxt

⊤)]i,j =
[vec(xtxt

⊤)]j,i holds for any i and j. By virtue of the com-
pression operator C in (11), the second moment is given by
vech(xtxt

⊤) in (16) that omits the duplicated components.
The representation of vech(xtxt

⊤) is computationally effi-
cient because the dimension of vech(xtxt

⊤) ∈ R(n(n+1)/2)

is smaller than that of vec(xtxt
⊤) ∈ Rn2

for n ≥ 2.

3.2 Main results

This subsection presents the main results in this paper. We
derive necessary and/or sufficient conditions for guarantee-
ing the (exponential) robust MS stability of the original
system (1). The necessary/sufficient conditions are that
the expanded system (11) is (exponentially) robustly sta-
ble under some assumptions. It is notable that the ne-
cessity/sufficiency with respect to the stability conditions
depends on the set SΩ of the expanded time-invariant
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stochastic parameter Ω. In the following, we introduce
two candidates of SΩ associated with necessary/sufficient
conditions for ensuring the stability of the original system.

First, let us define the (exponential) robust stability of the
expanded system (11).

Definition 4. (Robust stability). The expanded system
(11) is said to be robustly stable if the following relation
holds:

∀x̃0 ∈ R(n(n+1)/2), ∀Ω ∈ SΩ, lim
t→∞

∥x̃t∥2 = 0. (17)

Definition 5. (Exponential robust stability). The
expanded system (11) is said to be exponentially robustly
stable if there exist ρ̃ ∈ (0, 1) and α̃ ∈ (0,∞) such that
the following relation holds:

∀x̃0 ∈ R(n(n+1)/2), ∀Ω ∈ SΩ, ∀t ∈ {0, 1, . . . },
∥x̃t∥ ≤ α̃∥x̃0∥ρ̃t. (18)

Next, let us define the two candidates of SΩ:
SΩ,a

:=

{
Ω ∈ RK×K

∣∣∣∣∣∀k, k′, [Ω]k,k′ ≥ 0,

K∑
k=1

K∑
k′=1

[Ω]k,k′ = 1

}
,

(19)

SΩ,b :=
{
Ω ∈ RK×K

∣∣∣Ω = ωω⊤, ω ∈ Sω
}
. (20)

Using these candidates, we derive two necessary/sufficient
conditions for the robust MS stability of the original
system (1) in the cases that SΩ = SΩ,a and SΩ = SΩ,b.

Theorem 2. (Sufficient condition). Suppose that SΩ =
SΩ,a. The original system (1) is robustly MS stable if the
expanded system (11) is robustly stable.

Proof. The proof is described in Appendix B.

Theorem 3. (Necessary and sufficient condition). Sup-
pose that SΩ = SΩ,b. The original system (1) is robustly
MS stable if and only if the expanded system (11) is
robustly stable.

Proof. The proof is described in Appendix C.

Remark 5. If SΩ = SΩ,a holds in Theorem 2, the expanded
system (11) reduces to a polytopic linear system. There are
existing methods analyzing the robust stability of such a
system, e.g., (de Oliveira et al., 1999; Oliveira and Peres,
2005). Section 3.3 demonstrates the combining of Theorem
2 with an existing method. This combination presents a
sufficient condition for the stability of the original system
(1) in an explicit form.

Remark 6. Theorem 3 derives the necessary and sufficient
condition for the stability of the original system (1).
The expanded system (11) reduces to a non-polytopic
uncertain system in the case of SΩ = SΩ,b. While it is
difficult to analyze stability of this non-polytopic system
without conservativeness, such an analysis may lead to
efficient results for the stability of the original system. This
problem is included in future work.

We now have derived the necessary/sufficient conditions
for the robust MS stability of the original system (1).
Finally, this subsection presents a sufficient condition for
the exponential robust MS stability of the original system.

Theorem 4. (Exponential robust MS stability). Suppose
that SΩ,b ⊆ SΩ ⊆ SΩ,a. If the expanded system (11) is

exponentially robustly stable with a given ρ̃ ∈ (0, 1) and
given α̃ ∈ (0,∞), the system (1) is exponentially robustly
MS stable with the following relations:

α ≥ n1/4
√
α̃, (21)

ρ ≥
√
ρ̃. (22)

Proof. The proof is described in Appendix D.

3.3 Applications of the main results to existing stability
analysis

As shown in Theorems 2 and 4 in the previous subsec-
tion, the (exponential) robust MS stability of the original
system (1) is reduced to the (exponential) robust sta-
bility of the expanded system (11). The stability of the
expanded system can be evaluated by the existing method
(de Oliveira et al., 1999) because the expanded system
includes only the time-invariant stochastic parameter. In
the following, we provide an explicit condition for the
stability of the original system by combining the results
in the previous subsection with the existing method.

Theorem 5. (Explicit sufficient condition for the stability).
The original system (1) is exponentially robustly MS stable
with a given ρ ∈ (0, 1) if there exist positive definite

symmetric matrices P̃ (k,k′) ≻ 0 ∈ R(n(n+1)/2)×(n(n+1)/2)

for k ∈ {1, . . . ,K} and k′ ∈ {1, . . . ,K} and a square

matrix G̃ ∈ R(n(n+1)/2)×(n(n+1)/2) such that

∀ k ∈ {1, . . . ,K}, k′ ∈ {1, . . . ,K},[
ρ4P̃ (k,k′) C(Ã(k,k′))⊤G̃⊤

G̃C(Ã(k,k′)) G̃+ G̃⊤ − P̃ (k,k′)

]
⪰ 0. (23)

Also, the original system (1) is robustly MS stable if there

exist P̃ (k,k′) ≻ 0 and G̃ such that the strict inequalities
(≻) of (23) hold for ρ = 1.

Proof. The proof is described in Appendix E.

The LMIs (23) can be solved for G̃ and P̃ (k,k′) using
numerical solvers (Boyd et al., 1994) (see an example in
Appendix F). Now, we have derived the solvable sufficient
conditions that the original system (1) is (exponentially)
robustly MS stable.

4. NUMERICAL EXAMPLE

In this section, we demonstrate the proposed method.
Section 4.1 describes a target system with the simulation
setting. Section 4.2 shows the simulation results regarding
the stability analysis of the target system.

4.1 Simulation setting

Let us consider the linear stochastic system:

xt+1 =

[
[q]1 [λt]1

[q]2[λt]2 0.9

]
xt, (24)

where λt and q are unknown two-dimensional time-varying
and time-invariant stochastic parameters, respectively.
The time-invariant parameter q is distributed on the set
[0.8 − r, 0.8 + r] × [1.0 − r, 1.0 + r], where r determines
the range of the set. The time-varying parameter λt obeys
the normal distribution with mean [0, 0]⊤ and covariance
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σ2I2, where σ indicates the size of the covariance. It is
notable that q can be replaced with a four-dimensional ω
by using the form of the polytopic stochastic system (1)
with (2). This system (24) is represented by (1) and (2)
with the following matrices:

A(1)(λt) :=

[
0.8− r [λt]1

(1.0− r)[λt]2 0.9

]
,

A(2)(λt) :=

[
0.8− r [λt]1

(1.0 + r)[λt]2 0.9

]
,

A(3)(λt) :=

[
0.8 + r [λt]1

(1.0− r)[λt]2 0.9

]
,

A(4)(λt) :=

[
0.8 + r [λt]1

(1.0 + r)[λt]2 0.9

]
.

(25)

The proposed stability analysis is used for the system
(1) with (2) and (25). If this system is (exponentially)
robustly MS stable, the stability of the system (24) is also
guaranteed.

For guaranteeing the system (24), we should clarify the
admissible values of the range r of the time-invariant
parameter and the standard deviation σ of the time-
varying parameter. In the next subsection, the proposed
method finds pairs of admissible r and σ such that the
system (24) is (exponentially) robustly MS stable.

4.2 Simulation results

We evaluated pairs of admissible r and σ for guaranteeing
the (exponential) robust MS stability of the system (24).
Recall that the pairs of r and σ are admissible if feasible
solutions to the LMIs (23) are found. A bisection method
estimated the maximum admissible value of r for each σ
such that the feasible solutions are obtained for ρ = 0.999.
Here, the LMIs (23) were solved by the MATLAB solver,
feasp (Gahinet et al., 1995), as shown in Appendix F.
The pairs of admissible r and σ were plotted in Fig. 2.
The green and blue markers indicate the results in the
cases that either the time-varying parameter or the time-
invariant parameter is deterministic, i.e., λt = [0, 0]⊤

or q = [0.8, 1.0]⊤, respectively. Meanwhile, the proposed
method can evaluate the stability of the system including
both types of stochastic parameters. Hence, the pairs of
such admissible values were obtained, denoted by the red
markers. Indeed, Fig. 3 shows that the states were stable
for various stochastic parameters included in the admis-
sible ranges. We confirmed that the proposed method is
successfully applied to guaranteeing the stability of linear
systems including both types of stochastic parameters.

5. CONCLUSION

This paper presented a method to guarantee stability of
linear systems with both time-varying and time-invariant
stochastic parameters. For analyzing the stability, an ex-
panded system was developed that excludes the time-
varying parameter from the system. Such exclusion sim-
plifies the stability analysis for the system. It was shown
that guaranteeing stability of the expanded system is a
necessary/sufficient condition for that of the original sys-
tem. Based on this result, a sufficient condition for the
stability of the original system was derived as LMIs. Future

•: With stochastic q and deterministic λt

•: With deterministic q and stochastic λt

•: With stochastic q and stochastic λt
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Fig. 2. Results for admissible limits on the time-invariant
and time-varying stochastic parameters.
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invariant and time-varying stochastic parameters. Dif-
ferent lines indicate various values of the parameters.

work will focus on design of controllers that stabilize linear
systems including both the parameters.
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Appendix A. PROOF OF THEOREM 1

The statement is shown using mathematical induction. For
any s ∈ {0, 1, 2, . . . }, supposing that (16) holds for t = s,
we obtain

vech(Eλ0,λ1,...,λs [xs+1xs+1
⊤])

= Lvec(Eλ0,λ1,...,λs [xs+1xs+1
⊤])

= LEλ0,λ1,...,λs
[vec(xs+1xs+1

⊤)]

= LEλ0,λ1,...,λs
[vec(A(ω,λs)xsxs

⊤A(ω,λs)
⊤
)]

= LEλ0,λ1,...,λs
[(A(ω,λs)⊗A(ω,λs))vec(xsxs

⊤)]

= LEλ0,λ1,...,λs [(A(ω,λs)⊗A(ω,λs))Dvech(xsxs
⊤)]

= C(Eλ0,λ1,...,λs
[(A(ω,λs)⊗A(ω,λs))])

× Eλ0,λ1,...,λs
[vech(xsxs

⊤)]

= C(Eλs [(A(ω,λs)⊗A(ω,λs))])x̃s. (A.1)

For any t, Ã(Ω) is represented as follows

Ã(Ω)

=

K∑
k=1

K∑
k′=1

[ωω⊤]k,k′Eλt [A
(k)(λt)⊗A(k′)(λt)]

= Eλt

[(
K∑

k=1

[ω]kA
(k)(λt)

)
⊗

(
K∑

k′=1

[ω]k′A(k′)(λt)

)]
= Eλt [(A(ω,λt)⊗A(ω,λt))]. (A.2)

Substituting this property into (A.1) yields

vech(Eλ0,λ1,...,λs [xs+1xs+1
⊤]) = C(Ã(Ω))x̃s. (A.3)

Substituting this equation into (11) with t = s leads to
(16) for t = s + 1. Since (16) was supposed for t = 0,
(16) holds for all t ∈ {0, 1, 2, . . . } by the mathematical
induction. This completes the proof.

Appendix B. PROOF OF THEOREM 2

For any ω ∈ Sω, the relation of ωω⊤ ∈ SΩ,a holds because

∀k, k′, [ωω⊤]k,k′ ≥ 0, (B.1)
K∑

k=1

K∑
k′=1

[ωω⊤]k,k′ = 1. (B.2)

holds. Thus, for any ω ∈ Sω and any x0, there exist x̃0

and Ω such that (14) and (15) hold. For such x̃0 and Ω,
Theorem 1 gives (16) for all t ∈ {0, 1, 2, . . . }. For any i,
there exists j such that

Eλ0,λ1,...,λt−1 [[xt]
2
i ] = [x̃t]j ≤ ∥x̃t∥, (B.3)

holds because of (16). If the expanded system (11) is
robustly stable, we obtain the following asymptotic con-
vergence for all i ∈ {1, . . . , n}:

lim
t→∞

Eλ0,λ1,...,λt−1
[[xt]

2
i ] ≤ lim

t→∞
∥x̃t∥ = 0. (B.4)

This convergence holds for any ω ∈ Sω and any x0.
Therefore, the system (1) is robustly MS stable. This
completes the proof.

Appendix C. PROOF OF THEOREM 3

The sufficiency is proved in a manner similar to the proof
of Theorem 2. Thus, the system (1) is robustly MS stable
if the expanded system (11) is robustly stable. We show
the necessity in the following.

For any ω ∈ Sω and any x0, let us suppose that (14) and
(15) hold to satisfy (16) for all t ∈ {0, 1, 2, . . . } in Theorem
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1. For any i and j, applying Cauchy-Schwarz inequality to
the expectations of xt yields

|Eλ0,λ1,...,λt−1
[[xt]i[xt]j ]|

≤ (Eλ0,λ1,...,λt−1
[[xt]i

2
]Eλ0,λ1,...,λt−1

[[[xt]j
2
])1/2. (C.1)

If the system (1) is robustly MS stable, this property
indicates

lim
t→∞

|Eλ0,λ1,...,λt−1
[[xt]i[xt]j ]| = 0. (C.2)

Combining this convergence with (16) gives

lim
t→∞

x̃t = 0. (C.3)

Here, for any Ω ∈ SΩ,b, there exists ω ∈ Sω such that
(15) holds. Also, for any x̃0, there exist initial states x0 of
the original system such that a linear combination of the
initial states x0 is equal to x̃0. Therefore, satisfying (C.3)
for any ω ∈ Sω and any x0 leads to the robust stability of
the expanded system (11) under the condition SΩ = SΩ,b.
This completes the proof.

Appendix D. PROOF OF THEOREM 4

Since SΩ,b ⊆ SΩ ⊆ SΩ,a, for any ω ∈ Sω and any x0, there
exist x̃0 and Ω such that (14) and (15) hold. For such x̃0

and Ω, Theorem 1 gives (16) for all t ∈ {0, 1, 2, . . . }. Using
Cauchy-Schwarz inequality:( n∑

i=1

[v]2i

)( n∑
i=1

[w]2i

)
≥
( n∑

i=1

[v]i[w]i

)2
, (D.1)

with the settings of [v]i = Eλ0,λ1,...,λt−1 [[xt]
2
i ] and [w]i =

1/
√
n, we obtain

∥x̃t∥2 =

(n(n+1)/2)∑
i=1

[x̃t]
2
i ≥

n∑
i=1

Eλ0,λ1,...,λt−1
[[xt]

2
i ]

2
n∑

i=1

1

n

≥ 1

n

(
n∑

i=1

Eλ0,λ1,...,λt−1
[[xt]

2
i ]

)2

=
1

n
Eλ0,λ1,...,λt−1 [∥xt∥2]2. (D.2)

Meanwhile,

∥x̃0∥2 =

(n(n+1)/2)∑
i=1

[x̃0]
2
i ≤

n∑
i=1

n∑
j=1

[x0]
2
i [x0]

2
j

=

(
n∑

i=1

[x0]
2
i

)(
n∑

j=1

[x0]
2
j

)
= ∥x0∥4. (D.3)

If the expanded system (11) is exponentially robustly
stable, substituting (D.2) and (D.3) into (18) yields

1√
n
Eλ0,λ1,...,λt−1

[∥xt∥2] ≤ α̃∥x0∥2ρ̃t. (D.4)

Taking the root of the above equation gives√
Eλ0,λ1,...,λt−1 [∥xt∥2] ≤ n1/4

√
α̃∥x0∥(

√
ρ̃)t. (D.5)

Therefore, substituting (21) and (22) yields (6). This
completes the proof.

Appendix E. PROOF OF THEOREM 5

If there exist G̃ and P̃ (k,k′) ≻ 0 satisfying (23), the
expanded system (11) with SΩ = SΩ,a is exponentially ro-
bust stable with ρ̃ = ρ2, based on the result in (de Oliveira

et al., 1999, Theorem 2) and a manner similar to (Hosoe
et al., 2018, Theorems 1 and 2). Therefore, using Theorem
4 shows that the system (1) is exponentially robustly MS
stable with the given ρ. The robust MS stability is also
ensured in a similar manner by combining Theorem 2 with
the result in (de Oliveira et al., 1999, Theorem 2). This
completes the proof.

Appendix F. NUMERICAL SOLUTION TO THE LMIS
(23)

To find solutions to the LMIs (23) in a numerical sense,
the following minimization problem can be employed by
the MATLAB solver, feasp (Gahinet et al., 1995):

min
η,G̃,P̃ (k,k′),∀k,k′

η

s.t. ∀ k ∈ {1, . . . ,K}, k′ ∈ {1, . . . ,K},

ηI(n(n+1)) +

[
ρ4P̃ (k,k′) C(Ã(k,k′))⊤G̃⊤

G̃C(Ã(k,k′)) G̃+ G̃⊤ − P̃ (k,k′)

]
⪰ 0,

ηI(n(n+1)/2) + P̃ (k,k′) ⪰ 0. (F.1)

If the minimal value of η in (F.1) is not positive, the

feasible solutions G̃ and P̃ (k,k′) ≻ 0 satisfying the LMIs
(23) are found.
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