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Abstract: Process complexities are characterized by strong nonlinearities, dynamics and uncertainties. 
Modeling such a complex process requires a flexible model with deep layers describing the corresponding 
strong nonlinear dynamic behavior. The proposed model is constructed by deep neural networks to represent 
the process of state transition and observation generation, both of which together constitute a stochastic 
nonlinear state space model. This model is evolved from the variational auto-encoder learned by the 
stochastic expectation-maximization algorithm. To solve the complexity of posteriors for dynamic processes, 
the posterior distributions with respect to state variables are constructed by a forward-backward recurrent 
neural network. One example is given to validate that the proposed method outperforms the comparative 
methods in modeling complex nonlinearities.    
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1. INTRODUCTION  

Nonlinear system identification has been developed for 
learning nonlinear mathematical models from process data. 
Consider the nonlinear state-space model   
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where n
k z  are unobserved state variables/latent variables 

(LVs) and m
k x  are observations.  1kf z  is an unknown 

nonlinear state transition function. Given the corresponding 

states,  kg z  is another unknown nonlinear function that 

outputs the true observations. kw  is unmeasured process noise 

while kv  represents the observation noise. For known or 

partly known model structures in  1kf z  and  kg z , the 

model identification is commonly reduced to the issue of 
parameter estimation with some optimization strategies 
(Schön 2011, Abdalmoaty 2019). However, it is often 
intractable for most chemical processes to summarize a good 
model structure. Instead, the linear combination of basis 
functions is often used to parameterize process nonlinearities, 
constructing a nominal nonlinear model for unknown 
nonlinear structures (Gopaluni 2010, Svensson 2017). 
Commonly used basis functions include polynomials, 
wavelets, the Fourier basis, the radial basis and Gaussian 
kernels. In this case, the task of model identifications is 
evolved into the estimation of the coefficients of linear 
combination and some undetermined parameters in basis 
functions.  

However, several intrinsic drawbacks in the basis function-
based strategies have blocked the progress in learning more 
complex nonlinear dynamic systems. Firstly, a simple linear 
combination of basis functions defines a model representation 

with a shallow layer. When treating complex nonlinear 
processes, the deep model can do it well while the model with 
a shallow layer may suffer from underfitting (Ge 2018, Yuan 
2018). On the other hand, the learning strategies often resorts 
to Markov Chain Monte Carlo (MCMC) sampling methods 
such as particle Metropolis-Hastings (Schön 2015) and 
particle Gibbs with ancestor sampling (Svensson and Schön 
2017) to approximate the filtering/smoothing posterior 
distribution representing data likelihoods with respect to states 
or the expectation to be maximized. However, sequential 
sampling makes a fairly high complexity of the algorithm so 
that learning for (1) is time-consuming and hard to cope with 
long time series and high-dimensional variables. The 
drawbacks from both the model structure and the model 
learning limit the extensions of the existing methods to more 
complex nonlinear cases with more data. For other model 
structures like nonlinear autoregressive (AR) models 
(Martínez-Ramón 2006), they often face the same problems 
mentioned above. 

Recently, deep learning models have become an effective tool 
with a flexible model structure to simultaneously deal with 
strong nonlinearities, large-scale data and high-dimensional 
variables (Goodfellow 2016). By stacking the neurons layer by 
layer, strong nonlinearities can be represented and high-
dimensional observations are condensed into low-dimensional 
abstract features (Wang 2018). Deep learning communities 
have developed a number of special models to deal with 
different applications, e.g. auto-encoders for unsupervised 
learning, convolutional neural networks for image recognition 
and recurrent neural networks (RNNs) for time series. 
Intrinsically, deep learning also uses the combination of basis 
functions to represent nonlinearities. The difference is that 
deep learning connects the basis functions with a hierarchical 
structure layer by layer instead of a simple linear combination. 
Thus, more flexible and extensible structures are achieved to 
represent more complex nonlinearities. Moreover, the gradient 
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backpropagation makes the network easy to train with an 
acceptable learning efficiency.   

One can imagine that it will be a powerful tool if the advantage 
of deep learning can be taken to overcome the drawbacks of 
the shallow model and time-consuming conventional model 
identification methods in the face of complex nonlinearities, 
dynamics and uncertainties. The challenge is how to construct 
a deep learning structure corresponding to the state-space 
model (1). Recently, auto-encoding variational Bayes, also 
known as variational autoencoders (VAE) (Doersch 2016) was 
proposed to learn a generative model from LVs to observations 
with an encoding-decoding deep learning structure. The 
encoder maps the observations to LVs by learning the posterior 
distribution  k kp |z x  while the decoder learns the generative 

distribution  k kp |x z . Even though VAE provides a 

paradigm of neural network models for learning latent variable 
models with uncertainties, most of the variations of VAE limit 
the static models without any consideration of Markov chain 
properties for dynamics. Rahul et al. (Krishnan 2015) 
proposed an effective method for the learning model (1) by 
integrating RNN with VAE, known as deep Kalman filters. 
And bidirectional RNN is also used to produce the smoothing 
posteriors of LVs given the observations not only in the past 
but also in the future (Krishnan 2017). However, the 
bidirectional RNN lacks a theoretical interpretation for the 
forward recursion in the filter and the backward recursion in 
the smoother.  

In this paper, a novel model structure is proposed based on 
deep learning to learn nonlinear state-space models. The deep 
smoother is designed by a forward-backward RNN structure 
for the state posteriors (encoders). And the time-consuming 
MCMC sampling is replaced by a simple sampling strategy in 
model learning. The parameter estimation of the deep learning 
model is based on the expectation-maximization (EM) 
algorithm, a learning approach to probabilistic LV models with 
numerical stability and theoretical convergence. The 
remaining part of this article is organized as follows. Section 
2 briefly introduces the basic ideas about recurrent neural 
networks (RNNs), the EM algorithm and the variational lower 
bound. In Section 3, the smoothing posteriors are realized by 
a structured RNN. Then the whole training strategy is 
constructed based on the optimized objective in Section 4. 
Section 5 provides a numerical case for model identification 
and observation reconstruction, and the final section draws 
conclusions. 

2. PRELIMINARIES 

2.1  Recurrent neural networks and filtered distribution 

The idea behind RNN makes use of sequential information and 
deals with complex process dynamics. Specifically, given 

observation sequences  1 2m
k ,k , , ,N  X x   , RNNs 

first nonlinearly map the past and current input information 

1:kx , which denotes the sequence from 1x  to kx , into an RNN 

cell state l
k h   by 

                                   1k :kh x                                       (2) 

where stands for a general designation for feature extraction 
with neurons. With a recurrent property, Eq.(2) can be further 
implemented by  

                                  1k k k,h h x                                  (3) 

Note that the filtering distribution 

     1 1f k k :k k k kq p | p | , z z x z z x  has the same structure 

as (2) and (3), i.e., the current states are generated under the 
condition of the previous states and the current measurements. 
Hence, the distribution of kz  can be generated using kh  . 

Specifically, the filters in nonlinear situations can be modeled 
by the RNN as shown in Fig. 1. Hence, the filters in nonlinear 
situations can be modeled with RNN (Fig. 1). Note that the 
colorful nodes in Fig. 1 can represent a deep neural network 
(DNN) with several hidden layers without any confusion. If 
local Gauss descriptors are chosen each time, the means and 
the covariance matrix will be the outputs of the RNN shown in 
Fig. 2, in which the covariance matrix is assumed to be 
diagonal. The mean is outputted through a linear function 
while the diagonal elements of the covariance matrix are 

outputted through the softplus function    1 xx ln e   , 

guaranteeing the values larger than zero.  
 

                       1 1 1f k k :k k :k k :kq p | ,  z z x μ x x     (4) 
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Fig. 1 The structure of RNNs 
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Fig. 2 The structure of the output of an RNN with a Gauss descriptor. 

2.2  Variational lower bound  

 Given the estimated model parameters θ , the marginal log-
likelihood function of observations is 

                      ln p | q ln p | d X θ Z X θ Z                (5) 

where  q Z  is any distribution with respect to LVs. Further, 

(5) can be rewritten as  

           ln p | kl q || p | , q ,X θ Z Z X θ Z θ= +L  (6) 

where the first term at the right side is a Kullback–Leibler (KL) 

divergence measuring the dissimilarity between  q Z   and 

the posterior distribution  p | ,Z X θ . The KL divergence is 
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non-negative and will be zero when  q Z   is equal to

 p | ,Z X θ  . Actually,   q ,Z θ   is considered as a 

variational lower bound of the marginal log-likelihood because 

there is      q , ln p |Z θ X θ . And there is 

                         
 

p , |
q , q ln d

q
 

X Z θ
Z θ Z Z

Z
L             (7) 

It is clear that the lower bound will reach the marginal log-

likelihood when  q Z   is chosen to be the true posterior 

 p | ,Z X θ  . To maximize   ln p |X θ  , an iterative 

optimization procedure, known as the EM algorithm, is widely 
applied. Briefly, EM algorithm estimates parameters by letting 

the  q Z be equal to  p | ,Z X θ  with the θ  estimated in the 

last iteration and then maximizing the lower bound in (7) to 
update θ  in an iterative fashion until convergence. 
 

3. DEEP SMOOTHER 

Considering model (1), assume the noise distributions are 
respectively 

                                     0kp ,Iw                                 (8) 

                                     0kp , v                                   (9) 

where the covariance matrix of kw  can be assumed to be an 

identity matrix, which will not influence the model 
representation. Correspondingly, there are  

                             1 1k k kp | f ,I z z z                      (10) 

                               k k kp | g , x z z                        (11) 

(10) is known as the transition distribution and (11) is the 
emission distribution, respectively. Simultaneously, the initial 
LV distribution is assumed to be 

                                        0 0 0p , z μ                       (12) 

Thus, these terms     0 0 1k k, , f ,g , μ z z  are needed to be 

estimated for process modeling. To learn the model, the lower 
bound is firstly rewritten as 

          q ln p , | d q lnq d  θ Z X Z θ Z Z Z Z  (13) 

where  q Z  is set to be  p | ,Z X θ


 obtained and taken as a 

known condition in the last iteration so that the final objective 
is  

 
     
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where const stands for a constant term to be ignored and  �  

denotes the mathematical expectation operator under some 
distributions. Moreover, the joint log-likelihood 

 ln p , |X Z θ  can be factorized as 

 
 
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Further,  θ  is given by 
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 (16) 

Note that (16) is a result of factorizing the integral of KL 

divergence     kl q || pZ Z ,given in (Krishnan, Shalit et al. 

2015). 
To optimize objective (16), the first task is to figure out the 
smoothing posterior distributions, denoted as  

   k kq p |z z X  . Since the process is fairly complex and 

there is no any prior, these distributions are often intractable. 
To implement such a complex nonlinear structure, DNNs can 
approximate the smoothing posterior distribution, the 
transition equation and the emission equation. 

 Let    s k kq p |z z X   where subscript ‘s’ specifies the 

smoothing posteriors and it follows a backward recursion, 
given by 

                     1 1 1 1s k k k :k s k kq p | , q d   z z z x z z           (17) 

which is easy to derive. It can also refer to the Kalman 
smoother (Nasrabadi 2007). The backward recursion indicates 

 s kq z   is determined by  1s kq z   and 1:kx  . That means a 

backward RNN can be trained to model the backward 
recursion of smoothed posteriors, given by 

                                      1 1k k :k,h h x                           (18) 

where kh   denotes the cell state in the backward RNN. 

Considering kh  is an information summary of 1:kx . (18) can 

be changed into 

                                      1k k k,h h h                             (19) 

Observing (19), each cell state kh in forward RNN needs to be 

connected to the corresponding kh  in backward RNN, which 

entangles the forward RNN and the backward RNN, making 
the network structure fairly complicated and potentially 
increasing extra routes of gradient backpropagation. Note that 

there is  1N k k :N, h h x  for any time point k in the forward 

RNN. That means it is likely to use Nh   and 1k :Nx   to 

reconstruct the information related to kh , which is needed for 

constructing the smoothed distribution as implied by (19). 
From this illustration, one can train a backward RNN, given 
by  

                                  1 1k k N k :N, , h h h x                      (20) 

which avoids the direct connection from kh to kh . Based on 

those understandings, smoothers are designed and shown in 
Fig. 3. Firstly, a forward RNN is used to produce filtered 

distributions  f kq z  , which are mapped from the forward 

RNN cell states kh . Then the cell states kh  in the backward 

RNN can be utilized to produce smoothed distributions 
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 s kq z   according to (20). Specifically, the smoothed 

distribution is described by 

                s k k k k k kq p | ,  z z X μ h h                 (21) 

Note that the endpoint cell state Nh   of the forward RNN is 

connected to the initial cell state Nh  of the backward RNN, as 

   s N f Nq qz z  . Also, the ending cell state 0h   of the 

backward RNN is fed into the initial cell state 0h   of the 

forward RNN in the next iteration.  
 

1x 2x 3x 1N x Nx

0h 1h 2h 3h 1N h Nh

N
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 0sq z  1sq z  2sq z  1s Nq z   s Nq z

 
Fig. 3 The smoother generated from a forward-backward RNN  
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Fig. 4 The network structure for learning nonlinear state-space models 

 

 

Fig.5 The curves of iterations for different n 

 
4. MODEL TRAINING 
After the posterior distribution is implemented by the forward-
backward RNN, it is feasible to learn the nonlinear dynamic 
systems with the collected observation sequences. Hence, 
offline learning is performed with the smoothing distribution

 s kq z . In the offline learning stage, the first term in (16) will 

be     0 0skl q || p | z z θ  , implying the learned initial LV 

distribution  0p z  should be close to the smoothing posterior 

 0sq z . This has been implemented by the forward-backward 

RNN (Fig. 3) where 0h   is the final output of the backward 

RNN. Also, 0h  (the dashed line in Fig. 3) is assigned as the 

initial cell state of the forward RNN in each new iteration. 
However, the second and the third terms in the right side of 
(16) require the calculation of expectations associated with the 
smoothers. Because of complex distribution structures, it is 
hard to perform the integral for deriving the expectations. 
Therefore, like VAE, the empirical average is used in place of 
the true expectation, so the final optimization objective is 
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               (22) 

where s
kz   is s-th sampling point drawn from  s kq z  . And 

there are a total of S sampling points in each time point k. 
Moreover, the experience has been proved in VAE that S can 
be 1 in each iteration. The intuition is the analogy to stochastic 
gradient descent in which just one sample is used to update the 
network parameters in each iteration. After sufficient iterations, 
the parameters will be finally converged. Note that the 
sampling here is conducted in each individual Gaussian 
distribution without an expensive sampling cost in sequential 
Monte Carlo.  

In the offline stage,  1
s

s k kq | z z   is given by the smoothed 

transition distribution  1
s

k kp | ,z z X  , equal to 

 1
s

k k k:Np | ,z z x  .With the local Gaussian descriptors,

 1
s

s k kq | z z  is constructed by 

       1 1 1 1 1
s s s

k k k:N k k k kp | , , , ,     z z x z h z h    (23) 

Here 1kh   is used in the backward RNN to represent the 

information of k :Nx  . Similarly, a smoothed transition DNN 

similar to Fig. 3 is used to construct the distribution

 1
s

s k kq | z z  . Regarding  1
s

k kp | z z   in (22), it has been 

represented in (10) where the means vary with 1
s
k z   but the 

covariance matrix is identity. Given 1
s
k z , a transition DNN for 

 1
s

k kp | z z   just outputs the mean  1
s
kf z  . Similarly, an 
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emission DNN for  s
k kp |x z  in (22) will output  s

kg z  and 

the corresponding covariance matrix is estimated by 

 
(a) 

 
(b) 

  
(c) 

 
(d) 

   
(e) 

Fig. 6 The scatter plots of variables: From the left to the right, they are the 

scatter plots of    1 2x x  and    3 4x x .(a): the scatter plots of observations 
contaminated by measurement noises; (b): the true observations without 
measurement noises; (c): the reconstructed observations by the proposed 
method; (d): the reconstructed observations by the nonlinear AR model. (e): 
the reconstructed observations by the basis function method. 

 

                  
1

1

1

N T
s s

k k k k
k

ˆ g g
N 

   
  x z x z                 (24) 

The whole network structure is given in Fig. 4. Firstly, 
sampling is performed based on the smoothed posterior 
distribution. Then, the sampling values are inputted into the 
smoothed transition distribution, transition distribution and 
emission distribution, all of which are implemented by DNNs. 
Since the Gaussian distributions are chosen, the KL divergence 

and the conditional log-likelihood in (22) have closed forms. 
However, a general sampler prevents the gradient from 
backpropagation because the sampling operation is non-
differentiable. To solve this issue, reparameterization trick of 
Gaussian distribution (Doersch 2016) makes the network 
learnable without extra cost or compromise. The idea behind 
reparameterization is that the distribution in (21) can be 
regarded as an affine transformation of unit distribution 

   p ,I 0  as follows: 

                                  
1

2
k k k k k


  z h ε μ h                       (25) 

which is differentiable. Each required point s
kz   is given by 

   
1

2s s
k k k k k


  z h ε μ h     where s   is sampled from the 

unit Gaussian distribution. By reparameterizaiton, the gradient 
back-propagation is able to learn the network weights and 
biases. The iterative optimization is terminated when the lower 
bound tends to be stationary without increasing significantly.  
Before the network is trained, the number of LVs ( n ) is an 
important hyperparameter to be predefined. A poor choice of n 
that is different from the true case can cause a severe model 
bias, which means the learned model cannot represent the 
training data well. In this work, different values of n are chosen 
and the one is selected as the optimal choice that makes the 
lower bound as large as possible when the iteration terminates.  
 
5. ILLUSTRATIVE EXAMPLES 
The mathematical model of the nonlinear dynamic system in 
the numerical example is given as 
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   

   

  

   

 (26) 

where the four measurement noises (   1 2 3 4i
kv ,i , , , ) are zero-

mean Gaussian with the standard deviations 0.05, 0 16. , 0.02 

and 0.05, respectively. And there are two LVs  1
kz   and  2

kz  

following the nonlinear dynamics as follows:  
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







  

  
                (27) 

where process noises (  1
kw  and  2

kw ) are zero-mean Gaussian 

with the standard deviations 0.01. The networks in Fig. 4 are 
configured in this way: all DNNs are three hidden layers and 
each hidden layer has 30 neurons. And a single-layer RNN 
with 50 neurons is applied. Adam optimizer with the learning 
rate of 0.001 in TensorFlow is used. A total of 1,000 normal 
samples is generated for training the model. By incrementing 
the number of LVs from 1n  , the optimal n  is determined 
by maximizing the lower bound. Fig. 5 shows the trend of the 
variational lower bound as the iteration promotes forward. The 
objectives in the three cases tend to be stationary at about the 
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200th iteration and the values are maximized when 2n   and 
3n    . Since 2n    is a simpler structure and the 

corresponding curve in Fig. 5 is smoother than that with 3n  , 
2n   is an optimal choice for this example, living up to the 

true settings. The parameters at the 200th iterations are 
adopted for learning the nonlinear dynamic models. Note that 
the overall trend of the lower bound is gradually growing, but 
it is not necessarily smooth just like the stochastic gradient 
descent because of sampling. After the process models are 
trained, the means of learned emission distribution can be 
considered as the reconstructed values for the true values of 
observations. Fig. 6(a), (b) and (c) present the scatter plots of 
the observations contaminated by the measurement noises, the 
true observations without measurement noises, and the 
reconstructed observations by the proposed method. One can 
see the severe nonlinearity between variables and the noises 
can make the contour profile fairly unclear. The 
reconstructions in Fig. 6 show the proposed method is 
effective at modeling the nonlinear dynamics with some 
uncertainty.  
Two typical nonlinear models, the nonlinear AR model (Zhu 
2002, Ding 2019) and the basis function-based state-space 
representation (Gopaluni 2010, Svensson and Schön 2017), 
are chosen as comparative models to test the identification 
performance in terms of the observation reconstruction errors. 
In the training stage, the validation set with 300 samples is 
used to find suitable hyperparameters, such as the iterative 
number and the number of basis functions. For the nonlinear 
AR model, the 40 wavelet bases are chosen and the 
reconstructed values are plotted in Fig. 6(d). The nonlinear AR 
model is an input-output model. When the nonlinear state-
space model without any structure priors is considered, the 
state equations and output equations should be simultaneously 
structured by linear combinations of the basis functions. In this 
case, the radial basis function suggested in (Gopaluni 2010) is 
chosen. And the number of bases is also 40. The corresponding 
scatter plots of the reconstructed observations are also shown 
in Fig. 6(e). From the reconstruction performance in this 
numerical example, one can see that the two comparative 
methods have a mediocre ability to identify such complex 
nonlinearities. Several elementary nonlinear functions like 
exponential, sinusoidal and logarithm functions are composite 
in a complex fashion. That means the structured deep model 
presents a powerful ability in complex nonlinear situations. 
 
6. CONCLUSIONS 
In this paper, a novel structured deep learning representation 
for complex nonlinear state-space models is proposed. 
Especially the deep smoother is designed by connecting the 
forward RNN with the backward RNN in the ending state, 
realizing the forward recursion and backward recursion in the 
dynamic systems. Moreover, the training strategy takes 
advantage of the simple sampling from each individual 
Gaussian distribution, avoiding severe computation burden 
and sometimes instability in MCMC processes. The simulation 
results with a complex nonlinear example sufficiently show 
the efficacy of the proposed identification methods. 
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