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Abstract: The micro perspective of manifold proximity would indicate local relationships with
their unique spatial geometric distribution characteristics among the data samples, which are
usually neglected by traditional data-driven virtual sensors. This would not guarantee a good
prediction performance. In this paper, a regression model with localized construction named
neighborhood preserving regression (NPR) model is proposed. It extends the unsupervised
neighborhood preserving embedding (NPE) to the supervised form. The projection vector is
learned from input process variables and the output quality variable, synchronously exploring
the manifold structure of the input process variables for the dimension reduction and developing
the regression relationship between the projected input process variables and the output quality
variable. The model is developed as a novelly designed optimization whose analytical solution
would be compactly and directly calculated without any iterative procedures. The effectiveness
of the proposed algorithm is demonstrated by case studies carried out on a simulated penicillin
production process.

Keywords: Monitoring of product quality and control performance, data mining and
multivariate statistics, artificial intelligence, data-driven regression methods, nonlinear
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1. INTRODUCTION

In recent years, real-time monitoring and control of indus-
trial processes has become increasingly important. For this
purpose, hardware sensors have been widely instrumented
to the production facilities so that the measurements of
process variables can be easily collected and recorded.
However, a kind of variable closely related to product
quality, known as the quality variables, is hard to be
obtained online due to technological limitations and eco-
nomic factors (Kadlec et al., 2009; Ge et al., 2017, 2018;
Yao et al., 2018; Kadlec et al., 2011). Examples of quality
variables include oxygen concentration in a furnace, melt
index of polypropylene, measured height of etching process
in semiconductor industry, etc (Shao et al., 2018; Wei et
al., 2019).

The technique of virtual sensor modeling is one of the
potential solutions that can estimate the measurements
of the quality variables online and indicate process issues
timely from easy-to-measure secondary variables (i.e. pro-
cess variables, like temperature, pressure, and flow rate).
With the rapid developments of computer science, data
analysis, artificial intelligence, and computing hardware,
data-driven virtual sensors have attracted much attention
among various virtual sensor techniques (Ge et al., 2017;
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Qin et al., 2012, 2014; Liu et al., 2013). A large amount of
data can be conveniently collected via distributed control
systems (DCS), which reflect the true process information.

In modern industries, the collected process data is usu-
ally characterized by high dimensionality, but only a few
intrinsic variables independently dominate the data vari-
ations. As the relationship among dimensions is usually
nonlinear, it is thus necessary to synchronously reduce
the dimensions and to handle the nonlinearity while con-
structing the virtual sensor models. Typical approaches
are neural network and kernel-based methods (Yan et al.,
2016; Yu et al., 2012). However, nearly all the traditional
approaches are derived from the global perspective of the
data structure and pursue the outer shape of the data.
They cannot provide any insight into the micro perspective
of manifold proximity indicating the local relationships
among the data samples. This should not be effective
since each local neighborhood may have its unique spatial
geometric distribution characteristics. NPE, a manifold
learning algorithm, was proposed by He to resolve the issue
through localized construction (He et al., 2005). Unlike
the techniques based on global-perspective, NPE aims at
exploring the intrinsic local manifold topology structure
and proximity relations among data samples. Ideally, NPE
reveals the real manifold structure of the nonlinear data in
high dimensions (He et al., 2005). More importantly, the
boundary of the spatial distribution of the samples in the
input space is more likely to be preserved. Besides, NPE is
naturally robust to outliers without using rigorous equality
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constraints. Despite the favorable properties of NPE, di-
rectly using the low dimensional embedding learned from
NPE may make a worse regression model with the quality
variables. This is because the quality variables are not
considered impartially while exploring the intrinsic local
topology and proximity relations among process variables,
and both the manifold structure information among quali-
ty variables and the information between process variables
and quality variables are totally discarded.

In this paper, NPR model with localized construction is
proposed as a regression model. It extends the unsuper-
vised NPE to the supervised form. The model is devel-
oped by synchronously exploring the manifold structure
of the input process variables for the dimension reduction
and developing the regression relationship between the
projected input process variables and the output quality
variable. The optimization whose analytical solution would
be compactly and directly calculated is novelly designed
and the projection vector is learned from input process
variables and output quality variable.

All of the above techniques will be further described in
more detail in the remainder of this paper. In Section
2, the background knowledge of the NPE algorithm will
be briefly reviewed. Section 3 introduces the proposed
NPR model with detailed motivations and derivations
of the optimization. In addition, procedures about how
the proposed model is utilized for virtual sensors are
presented. In Section 4, case studies on a simulated fed-
batch penicillin process are presented to evaluate the
performance of the proposed model, while the article ends
with concluding remarks in Section 5.

2. PRELIMINARY: NPE

The basic background knowledge of NPE is revisited as
a prelude in this section. NPE is proposed to explore
the local linearity of topology structure of a manifold
which locally resembles a Euclidean space. More precise-
ly, the neighborhood of each sample of a D-dimensional
manifold is homeomorphic to a D-dimensional Euclidean
space, which is a much weaker condition than the common
assumptions, such as Gaussian distribution, linearity, and
independent identically distributed. In case that high di-
mensional data inherently lie in or near a low dimensional
manifold, expressing the data in its original space is neither
efficient nor necessary since Euclidean distances are mean-
ingful only on the local scale. In this case, it is preferred to
pursue a representation so that Euclidean distances would
be globally meaningful.

NPE has been proposed as an unsupervised dimensionality
reduction approach (He et al., 2005). It aims at exploring
the intrinsic local manifold topology structure and prox-
imity relations among data samples. Ideally, NPE reveals
the real manifold structure of the nonlinear data in high
dimensions. More importantly, the boundary of the spatial
distribution of the samples in the input space is more likely
to be preserved. Based on the geometric intuition that
the global nonlinearity can be approximated by the local
linearity, NPE is conducted under the assumption that the
reconstructing coefficients which represent the local man-
ifold structure data samples within a neighborhood could
be represented by the linear reconstruction relationships

and should be preserved in the low dimensional embedding
space.

Suppose that the matrix of process variables in the original
space is expressed as X = [x1, · · · ,xN ] ∈ RN×P . N and
P respectively represent the number of training samples
and the dimension of process variables. The algorithm is
designed to find a projection matrix A = [a1, · · · ,aF ] ∈
RP×F to project the high dimensional data X into the
low dimensional representation Z = XA = [z1, · · · , zN ] ∈
RN×F , where F < P . The three procedures of NPE are
described in detail as follows:

(1) Construct the adjacency matrix representing the
neighborhood relationships. The grouping technique,
such as k-nearest neighbors (k-NN) or choosing the
neighbor samples within a sphere with the fixed ra-
dius (ε-neighborhoods), can be utilized to construct
the adjacency matrix.

(2) Compute the reconstruction weight matrix. Suppose
W to be the reconstruction weight matrix, where
its elements Wij is the weight from data sample xi

to data sample xj , and K to be the number of the
nearest neighbors. The matrix W can be optimized
by the following criteria that minimizes the squared
reconstruction error between all the data samples and
their corresponding reconstructions,

L (W ) = min
W

N∑
i=1

∥∥∥∥∥∥xi −
K∑
j=1

Wijxj

∥∥∥∥∥∥
2

(1)

It is noted that W includes the information of the
intrinsic local manifold topology structure extracted
from the data in the original space.

(3) Compute the projection matrix. Based on the geo-
metric graphical intuition that the local neighbor-
hood manifold topology structure of the original data
should be optimally preserved in the low dimensional
space, NPE reconstructs each data sample to be the
low dimensional representation with the same recon-
struction weight matrix, that is

L (Z) = min
Z

N∑
i=1

∥∥∥∥∥∥zi −
K∑
j=1

Wijzj

∥∥∥∥∥∥
2

(2)

Eq.(2) can be reformulated in terms of a as

aopt = argmin
a

∥∥∥∥∥∥
N∑
i=1

aTxi −
K∑
j=1

Wija
Txj

∥∥∥∥∥∥
2

= argmin
a

aTXTMXa

(3)

where

M =
(
IN×N −W

) (
IN×N −W

)T
(4)

IN×N = diag [1, · · · , 1] ∈ RN×N (5)

It is easy to check that M is symmetric and positive
semi-definite.

It is known that NPE can bottom-up learn the manifold
topology from the process data. More importantly, the
boundary of the spatial distribution of the samples in
the input space is more likely to be preserved. Besides,
NPE is naturally robust to outliers without using rigorous
equality constraints to preserve local manifold structure.
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Despite the favorable properties of NPE, directly using
the low dimensional embedding learned from NPE would
make a worse regression model with the quality variables.
This is because the quality variables are not considered
impartially while exploring the intrinsic local topology and
proximity relations among process variables, and both the
manifold structure information among quality variables
and the information between process variables and quality
variables are totally discarded. This will not guarantee a
good regression performance.

3. NEIGHBORHOOD PRESERVING REGRESSION
MODEL BASED VIRTUAL SENSORS

Modern plants have become far more complex and data-
driven methods have attracted more and more attentions
(Qin et al., 2012, 2014). As the collected process data
from modern complex systems is usually characterized by
high dimensionality and nonlinearity, it is thus desirable
to simultaneously reduce the dimensions and to handle the
nonlinearity while constructing the virtual sensor models.

Regression is the core of the virtual sensor technology.
Motivated by the concept of NPE and the supervised re-
gression modeling, this section proposes a regression model
with localized construction named NPR for virtual sensor
modeling. Unlike NPE, aiming at exploring the intrinsic
local manifold topology structure among process variables
for nonlinear dimension-reduction, NPR synchronously
explores the intrinsic local manifold topology structure
among the process variables and develops the regression
relationship for the estimates of the quality variable.

Specifically, NPR model is designed and developed upon
an optimization including one novelly constructed objec-
tive function subject to one constraint. The objective func-
tion is compounded by two parts: (1) ΓR represents regres-
sion by maximizing the regression relationship between
the projected process variables in the latent space and
the quality variable; (2) ΓDR is constructed for nonlinear
dimension-reduction, projecting the process variables to
the latent space to explore the local manifold topology
structure and proximity relations among them. The con-
straint is implemented to normalize the projection vector.
Suppose that the vector of the quality variable in the
original space is expressed as y = [y1, · · · , yN ] ∈ RN×1.

The latent variable of X is expressed as t = Xw where
w ∈ RP×1 is coefficient weight. To develop the regression
relationship between the projected input process variables
and the output quality variable, the objective function ΓR

for regression maximizes the measuring the dot product,

ΓR = 〈t,y〉 = 〈Xw,y〉 = wTXTy (6)

To extract local topologies among process variables, the
construction of ΓDR is based on the same concept in NPE,
which is, the local neighborhood manifold topology struc-
ture of the original data should be optimally preserved in
the low dimensional space. Similar to (3), ΓDR is expressed
as,

ΓDR = wTXTMXXw (7)

Process 
variables

Quality
variable

=max ( )DR + R

Process 
variables

Quality
variable

=max ( )DR 
(a)

Process 
variables

Quality
variable

=max ( )DR + R

Process 
variables

Quality
variable

=max ( )DR 
(b)

Fig. 1. Modeling sketch maps of (a) NPE, developed
merely upon local topology among process variables;
and (b) NPR, developed upon local topologies among
process variables and regression relationship.

where MX is calculated through (1) and (4). One con-
straint is supplement to this optimization to normalize the
projection vector of process variables, wTw = 1.

The independent parts of objective functions can be easily
combined together by taking the linear combination,

Γ = ΓR − µΓDR = wTXTy − µwTXTMXXw (8)

where µ is supplement to balance the order of magnitudes
between ΓR and ΓDR. Eq.(8) simultaneously maximizes
ΓR and minimizes ΓDR. To find the maxima of Γ, let
∂Γ/∂w = 0, it can be obtained that,

XTy − 2µwTXTMXXw = 0 (9)

Then the analytical solution would be compactly and
directly calculated as

w =
[
2µwTXTMXXw

]−1
XTy (10)

The projection vector is then normalized to ensure the
constraint wTw = 1.

[Note] Parameter optimization of NPR
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Fig. 2. Flowchart of the proposed NPR-based virtual
sensors.

K is the number of the nearest neighbors, which
determines the size of neighborhoods and influences
the linear reconstruction. If K is large, the neighbor-
hoods would include much data information, but this
may be conflicted with the local linear assumption.
If K is small, there may not be sufficient information
in the neighborhoods. In this paper, given ϑ to be
reconstruction errors (Kouropteva et al., 2002), the
value of K is determined by the following criterion,

N∑
i=1

∥∥∥∥∥∥xi −
K∑
j=1

Wijxj

∥∥∥∥∥∥ ≤ ϑ×N × P (11)

To illustrate the similarities and dissimilarities of modeling
of NPE and NPR, Fig. 1 presents the corresponding
modeling schematic diagrams. As shown in Fig. 1(a), ΓDR

in NPE ((7)) is developed merely upon process variables
for extracting local topology among them, but it does not
consider the quality variables (the minus sign is added for
unification). In the proposed NPR shown in Fig. 1(b),
Γ = ΓR − µΓDR is modeled for discovering the intrinsic
geometrical structure among both process variables and
quality variables and the regression simultaneously.

To calculate the prediction ỹnew with a new sample of
process variables, the regression system is developed and
expressed as,

ỹnew = xnew ×w (12)

The flowchart of the proposed NPR-based virtual sensors
is listed in Fig. 2.

4. CASE STUDIES

In this section, the effectiveness of the proposed NPR mod-
el is evaluated through case studies carried out on a sim-
ulated penicillin process. The data sets of the benchmark
case are generated through the fed-batch penicillin produc-
tion process. There are three quality variables. To compare
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Following this,Σm
(t+1) is further expressed in termsof the known input

vectors and mean matrices (i.e. xm,1
(t) , xm,L

(t+1), μm
(t), and μm

(t+1)) as follows:
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After performing updating, the new local PDD model is given by

p xnewjLDmð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þd Σ tþ1ð Þ

m

 r exp −
1
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3.3.2. Online inclusion of local models based on JIT learning
Though the sample-by-sample recursive adaptation of local models

can efficiently deal with gradual process changes, the prediction accura-
cy of the ensemble soft sensorswill decreasewhen encountering abrupt
changes. To address this issue, JIT learning is incorporated into the
DLOER method to enable online inclusion of local models.

Before triggering JIT learning for building new local models to ac-
count for new process states, the need for such adaptation has to be rec-
ognized by monitoring the performance of the ensemble model. This
can be achieved by comparing the ensemble predictionswith the offline
analysis results. To monitor and evaluate the soft sensor performance,
the absolute value of the relative error (ARE) is defined as follows:

AREt ¼ yt−yt
yt


 ð38Þ

where yt andyt are the actual and predicted values of the target variable
at time instant t, respectively.

When the newest measurement ynew of the output variable is avail-
able, the prediction ARE value can be calculated. Additionally, the new
sample is added to the training database {X, y} by simply using the
MW strategy. Then the new ARE value is compared with the presetting
threshold AREth to decidewhether a new local model is required or not.
If ARE≤AREth, no new local models are needed and the previously local
models serve the later query data until the next new measurement is
collected. Otherwise, it is assumed that a new process state occurs
and thus a new local model is required. Thus, a new local domain

LDnew={Xnew,ynew} and consequently a new local model can be built
based on JIT learning. Also, a new PDD model is built based on the
local domain data.

However, there remains a problemwith the online inclusion of local
models. That is, the new local model may be similar to the old ones and
therefore it is appealing to detect and remove those old redundant local
models. This is approached by performing the statistical hypothesis
testing based redundancy check mechanism, which is the same as that
applied during the offline training phase. It is worth noting that, the re-
dundancy check for online local model inclusion is slightly different
from that for offline training. At the level of online inclusion of local
models, the newly built local model information {LDnew,PDDnew, fnew}
is always retained. If the null hypothesis with respect to Rnew and Rm

is valid, the oldest redundant local model fm with m∈{1,2,… ,M}
is discarded. In this manner, as well as handling abrupt changes in pro-
cess dynamics, the size of the local model library can also be well
controlled.

3.4. Parameter selection and online implementation procedure

During the modeling procedure of the DLOER soft sensor, several
critical parameters should be optimized: (i) the number of latent vari-
ables for a local PLS model, LV; (ii) the local modeling size for process
partition, L; and (iii) the forgetting factor for recursive adaptation of
local PLS models, λ, and the ARE threshold for triggering online inclu-
sion of local models, AREth.

There are two basic stages to determine the DLOER model parame-
ters. At the first stage, λ and AREth are not considered and L is optimized

Acid
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water

Hot
water

FC

FC
T

pH

Substrate

Air

Fermenter

Fig. 2. Flow diagram of fed-batch penicillin fermentation process.

Table 1
Qualitative comparison of different soft sensor modeling methods.

Method
Model
structure

Learning
type

Model adaptation

Itema Mechanismb

PLS Single Global – –
JITPLS Single Local (iii), (iv) JIT
LWPLS Single Local (iii), (iv) JIT
OER A Multiple Local (i), (ii) Recursive, MW, ensemble
OER B Multiple Local (ii), (iii), (iv) JIT, MW, ensemble
OER C Multiple Local (ii), (iii), (iv) JIT, MW, ensemble
DLOER Multiple Local (i), (ii), (iii), (iv) Recursive, JIT, MW, ensemble

a (i) Adaptation of local model's parameters; (ii) adaptation of combination weights;
(iii) database updating; and (iv) online inclusion of new local models.

b JIT learning for online building of local models; recursive adaptation for updating of
local PLS models recursively; MW approach for updating of database and local PDD
models; and ensemble learning for online prediction.

235H. Jin et al. / Chemometrics and Intelligent Laboratory Systems 151 (2016) 228–244

Fig. 3. Flow diagram of penicillin fermentation process.

the different regression performance, the proposed NPR
in this paper is adopted. In addition, principal competent
regression (PCR), partial least squares (PLS), and kernel
PLS (KPLS), as frequently used data-driven methods,
are also adopted (Qin et al., 2012, 2014). The software
environment for both cases is MATLAB(R) R2016a with
hardware environment Intel(R) Core(TM) i7-8700 CPU
and 16-GB flash memory. The root-mean square error
(RMSE) is employed to quantify the regression accuracy,

RMSE =

√√√√ 1

Nt

Nt∑
i=1

(ỹi − yi)2 (13)

where Nt represent the total number of the testing sam-
ples. yi and ỹi respectively represent the true value and
the prediction of the quality variable. If there are multi-
quality variables, one RMSE value will be calculated for
each.

The penicillin production process is a fed-batch fermen-
tation process, characterized by nonlinearity and multi-
phase characteristics, which has been widely adopted
for regression performance evaluation of virtual sensors
(Shao et al., 2018). The simulator for this penicillin
production process under a variety of operating con-
ditions, referred to as Pensim (copyright), is available
at http://simulator.iit.edu/web/pensim/simul.html. Fig.
3 presents the flow diagram of this process. Two quality
variables are considered, the penicillin concentration and
biomass concentration; for virtual sensor modeling, 10
process variables are selected as the secondary variables,
as listed in Table 1, referring to Shao et al. (2018). Two
batches of data were generated with the Pensim tool under
the default simulation conditions. The total simulation
time was set to 400 hours and the sampling interval was
set to 0.4 hour, thus, each batch contains 1000 samples.
One batch is used for model construction and the other
one is used for validation.

PCR, PLS, KPLS, and NPR, are respectively built for each
quality variable based on the training data. The parame-
ters of all the virtual sensor approaches are summarized
as follows. For KPLS, the Gaussian kernel function issued
with τ = 100 as suggested in (Lee et al., 2004). For the
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Fig. 4. Prediction result of the penicillin concentration of the penicillin fermentation process based on (a) PCR, (b)
PLS, (c) KPLS, and (d) NPR.

Table 1. Secondary and quality variables of the
penicillin process

No. Secondary variables No. Quality variables

1 Aeration rate 1 Penicillin concentra-
tion

2 Agitator power 2 Biomass concentration
3 Substrate feed rate
4 Substrate feed temper-

ature
5 Dissolved oxygen con-

centration
6 Culture volume
7 Carbon dioxide con-

centration
8 pH
9 Fermenter temperature
10 Generated heat

proposed NPR, the number of the nearest neighbors of
process variables is set to be K = 5 with ϑ = 1/8 suggested
by (Kouropteva et al., 2002), while the combined objective
function is conducted with µ = 0.0005 to balance the order
of magnitudes between ΓR and ΓDR.

Table 2. RMSE results of penicillin process

Method Penicillin Biomass

PCR 0.1020 0.4068
PLS 0.0654 0.4269
KPLS 0.0600 0.4329
NPR 0.0513 0.2612

Table 2 gives the RMSE results, where the bolded numbers
represent the best regression performance. The results
show that the proposed NPR preforms the best with the
highest accuracy. PCR and PLS have poor performances
since both are limited by the linear assumption. KPLS
is one traditional kernel method model. The prediction
accuracy has been improved by introducing an artificially
determined kernel function to deal with nonlinearity. How-
ever, the utilization of the artificially determined kernel
function just focuses on how to map the training data onto
the high dimensional kernel spaces, while the regression
relationships between the process variables and the quality
variables are totally ignored. What’s more, PCR, PLS,
and KPLS are not designed to explore the local manifold
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topology structure and proximity relation among data
samples. This would not assure a satisfying prediction
performance. The proposed NPR learns the projection
matrix to project the original data to low-dimension space
from measured data, taking advantages of both regression
behavior from the process variables to the quality variable
and the dimension reduction via exploring the intrinsic
local topology structures among process variables, so it
performs the best with the highest accuracy.

The predictions of the penicillin concentration of the
penicillin fermentation process at each sampling time are
respectively depicted in detail in Fig. 4, by (a) PCR, (b)
PLS, (c) KPLS, and (d) NPR. In addition, the prediction
errors between the predicted penicillin concentration and
the real measurements are also presented. It is easy to see
that the prediction results by the proposed NPR match
the real measurements best. Also, the prediction errors of
NPR have the smallest undulations within the narrowest
range around zero. All the results show NPR outperforms
the other models.

5. CONCLUSIONS

The traditional data-driven virtual sensors mainly define
the outer shape of the data, but they cannot provide any
insight into the micro perspective of manifold proximity
indicating the local relationships among the data samples;
manifold learning to construct the virtual sensor models
from the micro-perspective (local view) is a practical
solution. In the current study, the NPR model to regression
is proposed and applied in virtual sensor applications. The
features of the proposed method are concluded as follows.

- NPR projects the process variables onto a new s-
pace to explore the intrinsic local manifold topology
structure and proximity relations among them. Based
on localized constructions, NPR is likely to provide
a steady and responsible presentation to handle the
nonlinear characteristics.

- In addition, NPR discovers the regression behavior
between the projected process variables and quality
variable to generate accurate estimates of the quality
variable.

- NPR aims to synchronously discover the regression
relationship as well as data representation in low
dimensional manifold space through an innovatively
designed optimization. The analytical solution would
be compactly and directly calculated without any
iterative procedures. The feasibility of the optimiza-
tion is guaranteed because the two parts of objective
function are trivially pursued.

The effectiveness of the proposed NPR algorithm is
demonstrated through the case study carried out on a
simulated penicillin production process. For space limit,
this paper only includes some preliminary simulations;
more simulations may be included in a future paper. Our
future work will be focused on the integration of the
dynamic characteristics into the NPR to catch information
between the current event and the just-passed events.
As there are usually much more unlabeled data without
the measurements of quality variables while these data
contains much useful process information, it is desired to
the corresponding semi-supervised form with the state-

of-art NPR to utilize the above-mentioned information.
Furthermore, the proposed NPR model ignores the infor-
mation among coupled quality variables, a bilinear form of
neighborhood regression model would be further desired in
our future work.
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