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1. INTRODUCTION

The notion of input-to-state stability (ISS) was introduced
by Sontag (1989) for systems given by ordinary differential
equations as an extension of the asymptotic stability
property to systems with external inputs. The theory of
ISS is well established for finite dimensional systems and
is known to be fruitful in many applications, see, e.g.,
Sontag (2008), Karafyllis and Jiang (2011). During last
few years the ISS framework was rapidly developed to the
case of infinite dimensional systems and in particular to
the case of systems given by partial differential equations,
see Dashkovskiy and Mironchenko (2013a), Dashkovskiy
and Mironchenko (2013b), Mironchenko and Wirth (2018),
Mironchenko (2019), Karafyllis and Krstic (2019).

The ISS-like estimates are useful in order to quantify the
influence of disturbances, as well they are useful in study-
ing interconnected systems applying small gain theorems.
Many works are devoted to derivations of explicit estima-
tions of the ISS type. For example, Karafyllis et al. (2019)
consider a linear wave equation with Kelvin-Voigt and
viscous damping and disturbances acting at the boundary.
Estimation of the ISS-type are derived in this paper under
the assumption of rather smooth disturbances, namely of
the class C2.

In this work we investigate under which conditions a class
of nonlinear second order hyperbolic equations possess an
ISS-like property with respect to inputs entering not only
in domain but also at the boundary. As well we derive
explicit ISS estimates for the solutions. Theses derivations
are based on an ISS-Lyapunov function and suitable choice
of the function spaces and norms. In contrary to Karafyllis
et al. (2019) the Kelvin-Voigt damping is assumed to be
zero in our work, however instead we have a nonlinear term
in our equation, moreover the disturbances are assumed to
be of class C1 only.

? This work was supported by the German Research Foundation
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A special attention is paid to the measure of deviation
of the initial ”state” from the equilibrium. It turns out
that taking a norm of the initial function and of its time
derivative is not sufficient in order to say how far this
state is away from the equilibrium. Additionally we need
to consider the norm of its spatial derivative, which in
particular describes the elastic energy stored in the system
initially.

Also we would like to emphasize that the regularity of
input signals at the boundary is decisive for the ISS
estimates. For a weaker restriction on the disturbance
smoothness a partial ISS property is derived. In this case
the combination of the Lyapunov and the Faedo-Galerkin
methods, see Lions (1969), are applied. In case of a higher
regularity (boundedness of the second time derivatives)
we obtain a uniform estimate for the solution and an L2-
estimate for its time derivative by means of the Lyapunov
method only.

2. NOTATION

For (a, b) ⊂ R by L2(a, b) we denote the Lebesgue space
of measurable square integrable functions with scalar

product (f, g) :=
∫ b
a
f(s)g(s) ds and norm ‖f‖L2(0,1) =

(
1∫
0

|f(s)|2 ds)1/2.

For a Banach space X we denote by C(R,X ) the space
of continuous functions and by R → X , C1(R,X ) of
continuously differentialble functions with values in X .
L∞(R+) denotes the space of measurable and essentially
bounded functions equipped with the norm ‖f‖∞ =
ess supt≥0 |f(t)|.

Let Hk(0, 1) be the space of functions g ∈ L2(0, 1) such
that their generalized derivatives up to the order k belong
to L2(0, 1). By Ck(0, 1) we denote the space of functions
having continuous derivatives up to the order k on [0, 1].

C1
0 [0, 1] is the subspace of C1[0, 1] of function with a

compact support in (0, 1) and H1
0 (0, 1) is the closure
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of C1
0 (0, 1) with respect to the H1

0 (0, 1)-norm given by

‖f‖H1
0 (0,1)

=
√
‖f‖2L2(0,1) + ‖f ′‖2L2(0,1).

K is the class of continuous, strictly increasing func-
tions on R+ = [0,∞) vanishing at the origin. L de-
notes the set of continuous, strictly decreasing functions,
vanishing at infinity. KL = {β : R+ × R+ → R+ :
continuous with β(·, t) ∈ K, β(t, ·) ∈ L}. For x ∈ R we
denote by [x] the integer part of x, that is [x] := max{k ∈
Z : k ≤ x}.

3. PROBLEM STATEMENT

Consider the linear positive definite operator A = − d2

dz2 ,

D(A) = {f ∈ C2(0, 1) : f(0) = f(1) = 0}, and its
energetic space H1

0 (0, 1) equipped with the scalar product

[u, v]H1
0 (0,1)

=

1∫
0

(u′(z)v′(z) + u(z)v(z)) dz.

For any T > 0 we define the space of test functions as the
following set, cf. Mihlin (1977),

KT = {η : η ∈ C(R+;H(0, 1))∩C1(R+, L
2(0, 1)), η(T ) = 0}.

For α ∈ (0,∞) we consider the following nonlinear differ-
ential equation

utt(z, t) + 2αut(z, t)− uzz(t, z) = f(u(z, t)) +D(z, t)

(z, t) ∈ (0, 1)× (0,+∞)
(1)

with initial conditions

u(z, 0) = ϕ0(z), ut(z, 0) = ϕ1(z),

ϕ0 ∈ H1
0 (0, 1), ϕ1 ∈ L2(0, 1),

(2)

and with boundary conditions

u(0, t) = d0(t), u(1, t) = d1(t), di ∈ C2(R+) ∩ L∞(R+).
(3)

conditions. The nonlinear function f ∈ C(R;R) is assumed
to satisfy f(0) = 0, sf(s) < 0, s 6= 0, and to be globally
Lipschitz, that is for some L > 0 it holds that

|f(x)− f(y)| ≤ L|x− y|, x, y ∈ R.
D ∈ C([0,∞);L2(0, 1)) denotes the distributed perturba-
tion and di with di(0) = 0 denotes the perturbation acting
at the boundary points. Furthermore, we assume that the
first derivatives of boundary disturbances are essentially
bounded ḋ0, ḋ1 ∈ L∞(R+) and that the distributed dis-
turbance D(z, t) satisfies ‖D(·, t)‖L2(0,1) ∈ L∞(R+).

To define the weak solutions of the problem (1)-(3) we
denote

U(z, t) := u(z, t)− (zd1(t) + (1− z)d0(t)).

Definition 1. The function u(·, t) ∈ L2(0, 1) is called a
weak solution to (1)—(3), if the function U(·, t) satisfies
the following conditions

1) U(·, t) ∈ C([0,∞);H1
0 (0, 1)) ∩ C1([0,∞);L2(0, 1))

2) limt→0 ‖u(·, t)− ϕ0‖H1
0 (0,1)

= 0.

3) for any test function η ∈ KT the following equality holds

−
T∫

0

(U̇(·, t), η̇(t))dt+

T∫
0

[U(·, t), η(t)]H1
0 (0,1)

dt− (ϕ1, η(0))

=

T∫
0

(f(U(·, t)) +H(·, t), η(t)) dt

where
H(z, t) :=

−(zd̈1(t) + (1− z)d̈0(t))− 2α(zḋ1(t) + (1− z)ḋ0(t))

+f(U(z, t) + zd1(t) + (1− z)d0(t))− f(U(z, t)) +D(z, t).

The question of existence and uniqueness of weak solutions
to the problem (1)-(3) was considered in Evans (2010),
Lions (1969).

In this paper we are going to investigate the ISS-like
properties of (1)-(3).
Definition 2. The system defined by (1) and boundary
conditions (3) with input D := (d0, d1, D) is called par-
tially ISS, if there exist functions β ∈ KL, γ ∈ K such that
for any initial condition (2) and any disturbance d0, d1, D
from the spaces specified above the corresponding solution
satisfies

‖u(·, t)‖X ≤ β(ρ0, t) + γ(‖D‖D), t ≥ 0.

where ρ0 ∈ C(H1
0 (0, 1) × L2(0, 1);R+) is the norm of

the initial state, ρ0(0, 0) = 0 and the linear normed
spaces (X , ‖ · ‖X ) and (D, ‖ · ‖D) are given by X ⊂
C([0,∞);H1

0 (0, 1)) ∩ C1([0,∞);L2(0, 1)), (D, ‖ · ‖D) and
D ⊂ L∞(R+)×L∞(R+)×L∞(R+;L2(0, 1)), D ∈ D. The
latter one is called the input space.
Definition 3. The systems (1), (3) is called ISS if there
are functions βi ∈ KL, γi ∈ K such that for any initial
condition and any disturbance D the following estimates
hold

‖u(·, t)‖X1 ≤ β1(ρ0, t) + γ1(‖D‖D), t ≥ 0

‖ut(·, t)‖X2
≤ β2(ρ0, t) + γ2(‖D‖D), t ≥ 0.

Here (Xi, ‖ · ‖Xi) are linear normed spaces given by
X1 ⊂ C([0,∞);H1

0 (0, 1)) ∩ C1([0,∞);L2(0, 1)), X2 ⊂
C1([0,∞);L2(0, 1)).

Let us recall that stability of the unperturbed problem
(1)-(3), i.e., in the case of d0 = d1 = D = 0 was studied
in Caughey and Ellison (1975). Here we are interested in
an extensions of these results to the case of non-vanishing
perturbations and the corresponding estimates as in the
last two definitions.

4. MAIN RESULTS

Here we are going to verify whether the properties defined
above are satisfied by the initial value problem (1)-(3)
under different assumptions imposed on the boundary
disturbances di. Namely the following two cases will be
concidered:

(1) di ∈ L∞(R+), ḋi ∈ L∞(R+), i = 0, 1;

(2) di ∈ L∞(R+), ḋi ∈ L∞(R+), d̈i ∈ L∞(R+), i = 0, 1.

In the first case we will check the partial ISS property
with respect to X = L2(0, 1), D = {D = (d0, d1, D)},
where di ∈ L∞(R+)∩C2(R+), ḋi ∈ L∞(R+) for any t ≥ 0
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D(·, t) ∈ L2(0, 1), ‖D(·, t)‖L2(0,1) ∈ L∞(R+). The norm

in D is defined by ‖D‖D = maxi=0,1(‖di‖∞, ‖ḋi‖∞, D∞),
where D∞ = ‖‖D(·, t)‖L2(0,1)‖∞.

In the second case we will check the ISS property with
respect to X1 = X2 = C[0, 1], D = {D = (d0, d1, D)},
where di ∈ L∞(R+)∩C2(R+), ḋi ∈ L∞(R+), d̈i ∈ L∞(R+)
for all t ≥ 0 D(·, t) ∈ L2(0, 1), ‖D(·, t)‖L2(0,1) ∈ L∞(R+).

4.1 Partial ISS

Let us write the solution to (1)-(3) as the sum

u(z, t) = v(z, t) + w(z, t), (4)

where v(z, t) is the solution of following equation

vtt(z, t) + 2αvt(z, t)− vzz(t, z) = f(v(z, t)),

(z, t) ∈ [0, 1]× (0,+∞)
(5)

satisfying the initial conditions

v(z, 0) = ϕ0(z), vt(z, 0) = ϕ1(z),

ϕ0 ∈ H1
0 (0, 1), ϕ1 ∈ L2(0, 1)

(6)

and boundary conditions

v(0, t) = 0, v(1, t) = 0, (7)

and w(z, t) is the solutions of

wtt(z, t) + 2αwt(z, t)− wzz(t, z)
= f(v(z, t) + w(z, t))− f(v(z, t)) +D(z, t),

(8)

satisfying the initial conditions

w(z, 0) = 0, wt(z, 0) = 0, z ∈ [0, 1] (9)

and boundary conditions

w(0, t) = d0(t), w(1, t) = d1(t). (10)

Let us first estimate the solutions to the problem (5)-(7) by
means of the following Lyapunov function borrowed from
Caughey and Ellison (1975)

V (v(·, t), vt(·, t)) =
1

2

1∫
0

(
v2z(z, t)+

(vt + αv(z, t))2 + α2v2(z, t)− 2

v(z,t)∫
0

f(s) ds
)
dz

(11)

Lemma 1. The Lyapunov function defined above satisfies
the inequality

V (v(·, t), vt(·, t)) ≤ e−
2α
θ tV (ϕ0(z), ϕ1(z)), t ≥ 0 (12)

where θ := 1 + 1
2π2 (2α2 + L+

√
(2α2 + L)2 + 4π2α2).

Proof. The derivative of V along solutions of (5)—(7) is

dV

dt
=

1∫
0

(
vzvzt + (vt + αv)(vtt + αvt)

+α2vvt − f(v)vt

)
dz

=

1∫
0

(
vzvzt + (vt + αv)(vzz + f(v)− αvt)

+α2vvt − f(v)vt

)
dz

=

1∫
0

vzvzt dz +

1∫
0

vtvzz dz + α

1∫
0

vvzz dz +

1∫
0

vtf(v) dz

+α

1∫
0

vf(v) dz − α
1∫

0

v2t dz − α2

1∫
0

vvt dz + α2

1∫
0

vvt dz

−
1∫

0

vtf(v) dz = vz(z, t)vt(z, t)
∣∣∣z=1

z=0

−
1∫

0

vzzvt dz +

1∫
0

vzzvt dz + α(v(z, t)vz(z, t)
∣∣∣z=1

z=0

−
1∫

0

v2z dz)− α
1∫

0

v2t dz + α

1∫
0

vf(v) dz

= −α
1∫

0

(v2t (z, t) + v2z(z, t)) dz + α

1∫
0

vf(v) dz.

For the function V (v(·, t), vt(·, t)) the following estimates
hold

V (v(·, t), vt(·, t)) ≥
1

2

1∫
0

(
v2z(z, t)+

(vt(z, t) + αv(z, t))2 + α2v2(z, t)
)
dz

(13)

V (v(·, t), vt(·, t)) ≤
1

2

1∫
0

(
v2z(z, t)+

(vt(z, t) + αv(z, t))2 + (α2 + L)v2(z, t)
)
dz

With help of the inequality 2|a||b| ≤ ηa2 +η−1b2, a, b ∈ R,
η > 0 from the last inequality follows

V (v(·, t), vt(·, t)) ≤
1

2

1∫
0

(
v2z(z, t) + (1 + αη)vt(z, t)

2+

(2α2 + L+ α/η)v2(z, t)
)
dz

Then by the Friedrichs’s inequality
1∫

0

v2(z, t) dz ≤ 1

π2

1∫
0

v2z(z, t) dz

we obtain

V (v(·, t), vt(·, t)) ≤
1

2

1∫
0

(
(1 +

1

π2
(2α2 + L+ α/η))v2z(z, t)

+(1 + αη)v2t (z, t)
)
dz

So far η > 0 can be chosen arbitrary. Let η be such that

αη =
1

π2
(2α2 + L+ α/η),

that is η =
2α2+L+

√
(2α2+L)2+4π2α2

2π2α . Then we get

V (v(·, t), vt(·, t)) ≤
θ

2

1∫
0

(
v2z(z, t) + v2t (z, t)

)
dz (14)
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Hence,

dV

dt
≤ −α

1∫
0

(v2t (z, t) + v2z(z, t)) dz ≤ −2α

θ
V (v(·, t)).

which implies

V (v(·, t), vt(·, t)) ≤ e−
2α
θ tV (ϕ0(z), ϕ1(z)), t ≥ 0 (15)

This proves the lemma.

Next, we are going to derive estimates for the solutions to
the problem (8)—(10).
Lemma 2. Let us denote

γ =

[α/π]∑
n=1

1

π4n4
+

∞∑
n=[α/π]+1

1

α2ω2
n

,

δ =

[α/π]∑
n=1

(2
√

2π + 1)2

π4n3
+

∞∑
n=[α/π]+1

(2
√

2(1 + α) + 1)2

α2ω2
n

,

where ωn =
√
π2n2 − α2. Let the Lipschitz constant L be

small enough: L < 1/
√
γ.

Then

sup
t∈(0,∞)

‖w(·, t)‖L2(0,1) ≤
√
δ

1− L√γ
‖D‖D.

Proof. Let ψn(x), n ∈ N be the normalized eigenfunctions
of the Sturm-Liouville operator

L = − d2

dz2
, D(L) = {f ∈ C2(0, 1) f(0) = f(1) = 0},

that is

ψ′′n(z) + λnψn(z) = 0, ψn(0) = ψn(1) = 0,

then λn = π2n2, ψn(z) =
√

2 sinπnz.

We denote
G(z, t) := f(v(z, t) + w(z, t))− f(v(z, t)) +D(z, t),

Cn(t) :=

∫ 1

0

w(z, t)ψn(z) dz,

then

C̈n(t) =

1∫
0

wtt(z, t)ψn(z) dz =

1∫
0

(−2αwt(z, t) + wzz(z, t)

+G(z, t))ψn(z) dz

= −2αĊn(t) +

1∫
0

wzz(z, t)ψn(z) dz +

1∫
0

G(z, t)ψn(z) dz.

Let us apply two times the integration by parts to the last
but one integral:

1∫
0

wzz(z, t)ψn(z) dz = wz(z, t)ψn(z)
∣∣∣z=1

z=0

−
1∫

0

wz(z, t)ψ
′
n(z) dz = −

1∫
0

wz(z, t)ψ
′
n(z) dz =

−
(
w(z, t)ψ′n(z)

∣∣∣z=1

z=0
−

1∫
0

w(z, t)ψ′′n(z) dz
)

= d0(t)ψ′n(0)− d1(t)ψ′n(1)− λnCn(t).

This implies that Cn(t) is the solution to the initial value
problem for the following ordinary differential equation of
the second order

C̈n(t) + 2αĊn(t) + λnCn(t) = πnξ(t) + gn(t),

Cn(0) = 0, Ċn(0) = 0,

where

gn(t) =

1∫
0

G(z, t)ψn(z)dz, ξ(t)=
√

2(d0(t) + (−1)n+1d1(t)).

Hence for n >
[
α/π

]
we have

Cn(t) =
1

ωn

t∫
0

e−α(t−s) sinωn(t− s)(πnξ(s) + gn(s)) ds,

and for n <
[
α/π

]
we have

Cn(t) =
1

βn

t∫
0

e−α(t−s) sinhβn(t− s)(πnξ(s) + gn(s)) ds,

where βn =
√
α2 − π2n2. For n =

[
α/π

]
Cn(t) =

t∫
0

e−α(t−s)(t− s)(πnξ(s) + gn(s)) ds.

By means of the Cauchy inequality the following estimate
for gn(t) follows:

|gn(t)| ≤ ‖G(·, t)‖L2(0,1)

≤ ‖f(v(·, t) + w(·, t))− f(v(·, t))‖L2(0,1) + ‖D(·, t)‖L2(0,1)

≤ L‖w(·, t)‖L2(0,1) +D∞.

Let T > 0, then for all t ∈ (0, T ] we have

sup
t∈(0,T ]

|gn(t)| ≤ L sup
t∈(0,T ]

‖w(·, t)‖L2(0,1) +D∞.

Let us estimate Cn(t) for 0 < n ≤
[
α/π

]
, t ∈ [0, T ]:

|Cn(t)| ≤ 1

βn

t∫
0

e−α(t−s) sinhβn(t− s) ds

×(2
√

2πnd∞ + L sup
t∈(0,T ]

‖w(·, t)‖L2(0,1) +D∞)

≤ 1

βn

t∫
0

e−αs sinhβns ds

×(2
√

2πnd∞ + L sup
t∈(0,T ]

‖w(·, t)‖L2(0,1) +D∞)

≤ 1

βn

+∞∫
0

e−αs sinhβns ds

×(2
√

2πnd∞ + L sup
t∈(0,T ]

‖w(·, t)‖L2(0,1) +D∞)

≤ 1

π2n2
(L sup

t∈(0,T ]

‖w(·, t)‖L2(0,1) + 2
√

2πnd∞ +D∞),

then again by the inequality (a + b)2 ≤ (1 + ε)a2 + (1 +

ε−1)b2, a, b ∈ R, ε > 0 we get for 0 < n ≤
[
α/π

]
, t ∈ (0, T ]

that
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C2
n(t) ≤ 1

π4n4
((1 + ε)L2 sup

t∈(0,T ]

‖w(·, t)‖2L2(0,1)

+(1 + ε−1)(2
√

2πnd∞ +D∞)2).

To estimate Cn(t) for n >
[
α/π

]
, t ∈ (0, T ] we first apply

the integration by parts to the integral

1

ωn

t∫
0

e−α(t−s) sinωn(t− s)πnξ(s) ds

=
πn

ωn

t∫
0

e−α(t−s) sinωn(t− s)ξ(s) ds

=
πn

ωn

t∫
0

e−αs sinωnsξ(t− s) ds

= −e
−αt(α sinωnt+ ωn cosωnt)

ωnπn
ξ(0) +

1

πn
ξ(t)

+
1

ωnπn

t∫
0

e−αs(α sinωns+ ωn cosωns)ξ̇(t− s) ds,

Taking into account that ξ(0) = 0 we get∣∣∣ 1

ωn

t∫
0

e−α(t−s) sinωn(t− s)πnξ(s) ds
∣∣∣

≤ 2
√

2d∞
πn

+
2
√

2d̃∞
αωn

≤ 2
√

2(αd∞ + d̃∞)

αωn
,

where

d∞ = max(‖d0‖∞, ‖d1‖∞), d̃∞ = max(‖ḋ0‖∞, ‖ḋ1‖∞).

Hence the following estimate holds

|Cn(t)| ≤ 2
√

2(d∞ + α−1d̃∞)

ωn

+
1

αωn
(L‖w(·, t)‖L2(0,1) +D∞)

=
L

αωn
sup

t∈(0,T ]

‖w(·, t)‖L2(0,1)

+
2
√

2(d∞ + α−1d̃∞) +D∞/α

ωn
,

That is for n >
[
α/π

]
, t ∈ (0, T ] we get

C2
n(t) ≤ (1 + ε)

L2

α2ω2
n

sup
t∈(0,T ]

‖w(·, t)‖2L2(0,1)

+(1 + ε−1)
(2
√

2(d∞ + α−1d̃∞) +D∞/α)2

ω2
n

From the Parseval’s identity we get for t ∈ (0, T ]

‖w(·, t)‖2L2(0,1) =

1∫
0

w2(z, t) dz =

∞∑
n=1

C2
n(t)

≤ (1 + ε)γL2 sup
t∈(0,T ]

‖w(·, t)‖2L2(0,1) + (1 + ε−1)δ‖D‖2D.

Let γL2 < 1, 0 < ε < 1−γL2

γL2 = ε∗, then

sup
t∈(0,T ]

‖w(·, t)‖2L2(0,1) ≤
(1 + ε−1)δ‖D‖2D
1− (1 + ε)γL2

.

Hence

sup
t∈(0,T ]

‖w(·, t)‖2L2(0,1) ≤ inf
ε∈(0,ε∗)

(1 + ε−1)δ‖D‖2D
1− (1 + ε)γL2

=
δ‖D‖2D

(1− L√γ)2
.

The right hand side in the lst inequality does not depend
on T , hence we get

sup
t∈(0,∞)

‖w(·, t)‖L2(0,1) ≤
√
δ

1− L√γ
‖D‖D.

The lemma is proved.

Theorem 1. Let the Lipschitz constant for f be such that
L < 1/

√
γ. Then the problem (1)—(3) satisfies the partial

ISS property with respect to the L2-norm and the following
estimate holds true

‖u(·, t)‖L2(0,1) ≤
√

2

π2 + α2
e−

αt
θ %0 +

√
δ

1− L√γ
‖D‖D.

where %0 =
√
V (ϕ0, ϕ1).

The proof is based on the estimates from Lemma1 and
Lemma 2 as well as on the Friedrich’s inequality, however
it is omitted due to space reasons.

4.2 The ISS property

To derive the uniform estimates for the solutions of (1)-
(3) we need to require some more regularity from the

disturbances di(t), i = 0, 1. Let us assume that d̂∞ =

max(‖d̈0‖∞, ‖d̈1‖∞) < +∞. Let us apply the following
substitution

U(z, t) = u(z, t)− (zd1(t) + (1− z)d0(t)).

in (1)-(3), then we get

Utt + 2αUt − Uzz = f(U(z, t)) +H(z, t),

(z, t) ∈ [0, 1]× (0,+∞)
(16)

with initial conditions

U(z, 0) = ϕ0(z), Ut(z, 0) = ϕ1(z),

ϕ0 ∈ H1
0 (0, 1), ϕ1 ∈ L2[0, 1],

(17)

and boundary conditions

U(0, t) = 0, U(1, t) = 0. (18)

We also assume that the following consistency conditions
are satisfied: d0(0) = d1(0) = 0.
Theorem 2. The problem (1)–(3) satisfies the ISS prop-
erty, satisfying the following estimates

‖u(·, t)‖C[0,1] ≤ e−
α
θ tρ0 + ‖D‖D, t ≥ 0,

‖ut(·, t)‖L2(0,1) ≤ e−
α
θ tρ0 + ‖D‖D, t ≥ 0,

where ‖D‖D = θ
α (
√

2
3 (d̂∞ + 2αd̃∞ + Ld∞) + D∞√

2
) +

2 max{d∞, d̃∞} and d̂∞ = maxi=0,1(‖d̈i‖∞), d̃∞ =

maxi=0,1(‖ḋi‖∞), d∞ = maxi=0,1(‖di‖∞).

Proof. Estimations for solutions of (16)-(18), will be de-
rived by means of the following Lyapunov function
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V (U(·, t), Ut(·, t)) =
1

2

1∫
0

(
U2
z (z, t) + (Ut(z, t) + αU(z, t))2

+α2U2(z, t)− 2

U(z,t)∫
0

f(s) ds
)
dz

(19)
For this functions we have already derived that

V (U(·, t), Ut(·, t)) ≥
1

2

1∫
0

(
U2
z (z, t)

+(Ut(z, t) + αU(z, t))2 + α2U2(z, t)
)
dz

(20)

V (U(·, t), Ut(·, t)) ≤
θ

2

1∫
0

(
U2
z (z, t) + U2

t (z, t)
)
dz (21)

For the derivative of V (U(·, t), Ut(·, t)) along solutions of
(16)-(18) we have the following expression

dV

dt
= −α

1∫
0

(U2
t (z, t) + U2

z (z, t)) dz

+α

1∫
0

U(z, t)f(U(z, t)) dz +

1∫
0

(Ut(z, t) + αU(z, t))H(z, t)dz.

(22)

Let us separately estimate the integral
1∫
0

(Ut(z, t) +

αU(z, t))H(z, t)dz by means of the Cauchy inequality

1∫
0

(Ut(z, t) + αU(z, t))H(z, t)dz

≤ ‖Ut(·, t) + αU(·, t)‖L2[0,1]‖H(·, t)‖L2[0,1].

From (20) it follows that

‖Ut(·, t) + αU(·, t)‖L2(0,1) ≤
√

2V (U(·, t), Ut(·, t)),
hence for H(·, t) we get the next estimate

‖H(·, t)‖L2[0,1] ≤
2√
3
d̂∞ +

4α√
3
d̃∞ +

2L√
3
d∞ +D∞.

Let us denote ∆ =
√
2√
3
(d̂∞ + 2αd̃∞ + Ld∞) + D∞, then

from (22) we obtain the inequality

dV

dt
≤ −α

1∫
0

(U2
t (z, t) + U2

z (z, t)) dz + 2∆
√
V (U(·, t), Ut(·, t)).

(23)
Taking into account the inequality (14), we obtain the
differential inequality

dV

dt
≤ −2α

θ
V (U(·, t), Ut(·, t)) + 2∆

√
V (U(·, t), Ut(·, t)).

By theorem for differential inequalities follows that√
V (U(·, t), Ut(·, t))

≤ e−αθ t
√
V (ϕ0(z), ϕ1(z)) +

θ

α

(
1− e−αt/θ

)
∆, t ≥ 0.

(24)
Hence,

‖Uz(·, t)‖L2(0,1) ≤ e−
α
θ tρ0 +

θ

α
∆,

‖Ut(·, t)‖L2(0,1) ≤ e−
α
θ tρ0 +

θ

α
∆

(25)

and from the boundary conditions (18) by means of the
Cauchy inequality we obtain that

|U(z, t)|=
∣∣∣ z∫
0

Uz(s, t) ds
∣∣∣≤‖U(·, t)‖L2(0,1) ≤ e−

α
θ tρ0 +

θ

α
∆.

Hence

sup
z∈[0,1]

|u(z, t)| ≤ e−αθ tρ0 +
θ

α
∆ + 2d∞.

and

‖ut(·, t)‖L2(0,1) ≤ e−
α
θ tρ0 +

θ

α
∆ +

2√
3
d̃∞.

The theorem is proved.
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