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Abstract: Non-linear differential equations are a common approach to modelling the spread
of infectious diseases. Unfortunately, a closed-form solution is not known for the majority of
epidemic models, which restricts an in-depth understanding of the evolution of the virus. In this
work, we solve the differential equations of the NIMFA epidemic model around the epidemic
threshold, provided that the initial viral state is small or proportional to the steady-state. The
solution of the NIMFA model around the epidemic threshold is of particular importance for
disease control measures that aim to eradicate the infectious disease.
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1. INTRODUCTION

Rooted in the study of infectious diseases, modern epi-
demiology encompasses a plethora of spreading phenom-
ena such as trends, voter dynamics, and posts on online
social media. Two characteristics are mutual to all epi-
demic processes. First, each individual can be infected by
the virus (trend, opinion, etc.) or healthy. Second, the
virus spreads from an infected individual to a healthy
individual, if the two individuals are in contact. In this
work, we consider the spread of a virus between groups of
individuals, where a group corresponds to, for instance, a
household or a contiguous geographic region.

More precisely, we study the non-linear differential equa-
tions of the N -Intertwined Mean-Field Approximation
(NIMFA) of the Susceptible-Infected-Susceptible (SIS)
epidemic process (Van Mieghem et al., 2009; Van Mieghem,
2011). Since there seems to be no closed-form solution of
the NIMFA equations, the precise behaviour of the viral
state v(t) over time t is not fully understood. Our main
result in Theorem 1 below specifies the solution vapx(t) of
the NIMFA equations just above the epidemic threshold
for small initial viral states v(0). The solution vapx(t)
around the epidemic threshold is useful for two reasons.
First, the solution vapx(t) is an accurate approximation
also for viral spreads that are further above the epidemic
threshold. Second, to effectively mitigate the prevalence
of the virus, disease control measures (e.g., vaccinations
or quarantine) must confine the viral spread as close as
possible to the epidemic threshold, i.e., in the regime where
the solution vapx(t) is accurate.

2. THE NIMFA EPIDEMIC MODEL

We consider the spread of a virus between N disjoint
groups of individuals that are either healthy or infected.
For every group i = 1, ..., N , the viral state vi(t) ∈ [0, 1]
equals to the fraction of infected individuals at contin-
uous time t ≥ 0. The viral state vector is defined as

v(t) = (v1(t), ..., vN (t))T . The NIMFA epidemic model
(Van Mieghem et al., 2009; Van Mieghem, 2011; Laj-
manovich and Yorke, 1976) describes the viral state evo-
lution for every group i as

dvi(t)

dt
= −δivi(t) + (1− vi(t))

N∑
j=1

βijvj(t). (1)

Here, δi > 0 is the curing rate of group i, and βij ≥ 0 is
the infection rate from group j to group i. Hence, if the
infection rate βij is strictly greater zero, then infections do
occur from group j to group i, for instance, because group
i and j correspond to two adjacent geographical regions.
We denote the N × N effective infection rate matrix by
W with the elements (W )ij = βij/δi. We assume that the
effective infection rate matrix W corresponds to a strongly
connected graph. The basic reproduction number R0 of
the NIMFA epidemic model (1) is defined as the spectral
radius of the effective infection rate matrix W . Around
the epidemic threshold criterion R0 = 1, there is a phase
transition (Lajmanovich and Yorke, 1976; Khanafer et al.,
2016): If R0 ≤ 1, then the only equilibrium is the all-
healthy state v(t) = 0, which is globally asymptotically
stable. Else, if R0 > 1, then there is a second equilibrium,
theN×1 steady-state vector v∞ with positive components,
and the steady-state v∞ is globally asymptotically stable
for every initial viral state v(0) 6= 0. Hence, the steady-
state v∞ is the long-term, or endemic, viral state, which
can be computed in three ways. First, the steady-state

v∞ follows by solving (1) with dvi(t)
dt = 0 for all i

numerically. Second, the steady-state v∞ can be obtained
via a Taylor expansion (Van Mieghem, 2012). Third, the
steady-state v∞ can be expressed as a continued fraction
expansion (Van Mieghem et al., 2009; Van Mieghem,
2011). In discrete time, the viral state dynamics of the
NIMFA epidemic model have been studied in (Ahn and
Hassibi, 2013; Paré et al., 2018; Prasse and Van Mieghem,
2019b), and a method for estimating the parameters from
observing the viral state v(t) has been proposed in (Prasse
and Van Mieghem, 2018). An extension of NIMFA (1) is to
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consider that the spreading parameters δi and βij can be
controlled. We refer the reader to (Nowzari et al., 2016) for
an overview of approaches that aim to control the epidemic
outbreak.

3. SOLUTION OF THE NIMFA MODEL AROUND
THE EPIDEMIC THRESHOLD

By solving the NIMFA equations “around the epidemic
threshold”, we mean solving the differential equations (1)
in the limit R0 ↓ 1. Since the basic reproduction number
R0 is the spectral radius of the effective infection rate
matrix W , the basic reproduction number R0 approaches
1 due to the following disease control measures: the cur-
ing rates δi are increased or the infection rates βij are
decreased (or both). Since the endemic viral state v∞
approaches zero as R0 ↓ 1, the objective of any disease
control is indeed to steer the basic reproduction number
R0 as close as possible to 1.

For the vast majority of real-world epidemics, the initial
viral state vi(0) is below the steady-state v∞,i for every
group i. In other words, at time t = 0 the prevalence has
not reached its maximum yet. If the initial viral state v(0)
is smaller than the steady-state v∞, then the viral state
vi(t) does not overshoot the steady-state v∞,i at any time
t ≥ 0:

Lemma 1. (Prasse and Van Mieghem, 2019a).
Suppose that the basic reproduction number R0 is greater
than 1, the infection rates satisfy βij = βji for all groups
i, j, and that the initial viral state vi(0) of every group i
is in [0, v∞,i]. Then, it holds that vi(t) ∈ [0, v∞,i] for every
group i at every time t ≥ 0.

Based on Lemma 1, we confine our analysis of the viral
state dynamics to the positive invariant set

V =
{
v ∈ RN

∣∣0 ≤ vi ≤ v∞,i, ∀i = 1, ..., N
}
.

In (Prasse and Van Mieghem, 2018), we observed that the
N × 1 viral state vector v(t) remains, approximately, in a
subspace of dimension m << N at all times t ≥ 0. More
precisely, at every time t it holds that

v(t) ≈ c1(t)y1 + ...+ cm(t)ym, (2)

where the functions c1(t), ..., cm(t) are scalar and the vec-
tors y1, ..., ym are orthogonal. More so, numerical simula-
tions indicate that, if the basic reproduction number R0 is
close to one, then the viral state v(t) is well approximated
by only m = 1 scalar function c1(t) and vector y1, which is
the focus of this work. Since the viral state v(t) converges
to the steady-state vector v∞ as t → ∞, a natural choice
for the vector y1 is y1 = v∞. We drop the subscript of the
scalar function c1(t), and decompose the initial viral state
vector v(0) as

v(0) = c(0)v∞ + ξ(0), (3)

where the N × 1 vector ξ(0) is orthogonal to the steady-
state vector v∞, and the scalar c(0) equals c(0) =
vT∞v(0)/‖v∞‖22. Then, the NIMFA epidemic model (1)
has a closed-form solution around the epidemic threshold
R0 = 1 when the vector ξ(0) is small:

Theorem 1. (Prasse and Van Mieghem, 2019a).
Suppose that the infection rates satisfy βij = βji for all
groups i, j and that the initial viral state vi(0) of every
group i is in [0, v∞,i]. Furthermore, suppose that for some

constant p > 1, ‖ξ(0)‖2 = O ((R0 − 1)p) when R0 ↓ 1, and
define

vapx(t) =
1

2

(
1 + tanh

(w
2
t+ Υ(v(0))

))
v∞. (4)

Here, the scalars Υ(v(0)) and w equal

Υ(v(0)) = arctanh

(
2
vT∞v(0)

‖v∞‖22
− 1

)
and

w = (R0 − 1)

N∑
l=1

δl (x1)
2
l ,

where x1 ∈ RN denotes the principal eigenvector of
the effective infection rate matrix W belonging to the
eigenvalue R0. Then, there exists some constant σ > 0
such that

‖v(t)− vapx(t)‖2
‖v∞‖2

≤ σ(R0 − 1)s−1 ∀t ≥ 0, (5)

where s = min{p, 2}, when the basic reproduction number
R0 approaches 1 from above.

Theorem 1 states a convergence of the viral state v(t)
to the approximation vapx(t) that is uniform in time t.
The upper bound (5) on the approximation error is best
possible (Prasse and Van Mieghem, 2019a) (up to the
constant σ) when p ≤ 2. Furthermore, both the viral state
v(t) and the approximation vapx(t) converge to the steady-
state v∞, which implies that vapx(t)→ v(t) when t→∞.
From the definition (3) of the vector ξ(0), it follows that
‖ξ‖2 ≤ ‖v(0)‖2. Hence, ‖v(0)‖2 = O ((R0 − 1)p) as R0 ↓ 1
implies ‖ξ(0)‖2 = O ((R0 − 1)p) as R0 ↓ 1. In real-world
epidemics, the total number of individuals per group is
large and the number of infected individuals at time t = 0
is small. Hence, the initial viral state v(0) is indeed small
in practice, and Theorem 1 is applicable to real-world
epidemics with a basic reproduction number R0 that is
close to one.

4. NUMERICAL EVALUATION

Figure 1 gives an impression of the accuracy of the
approximation vapx(t) when the initial viral state is set
to v(0) = 0.01v∞, such that the vector ξ(0) = 0.

We are interested in the accuracy of the approximation
vapx(t) with respect to the basic reproduction number R0,
and we define the approximation error εV as

εV =
1

Ntconv

N∑
i=1

∫ tconv

0

1

v∞,i

∣∣vi (t̃)− vapx,i (t̃)∣∣ dt̃.
Here, the convergence time tconv is defined as the smallest
time t at which

|vi(tconv)− v∞,i| ≤ 0.01

holds for every group i. Thus, at the convergence time
tconv the viral state v(tconv) has practically converged to
the steady-state v∞. Figure 2 shows that the approxima-
tion error εV converges quickly to zero when the basic
reproduction number R0 approaches 1 from above.

To study whether the approximation vapx(t) is accurate
for general initial viral states v(0), we set the initial viral
state vi(0) for every group i to a uniformly distributed
random number in [0, v∞,i]. Figure 3 shows that also for
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Fig. 1. For a Barabási-Albert random graph with N = 500
nodes and heterogeneous spreading parameters βij , δi,
the approximation accuracy of Theorem 1 is depicted
when the initial viral state equals v(0) = 0.01v∞.
The upper and lower sub-plot shows the viral state
traces vi(t) of seven different nodes i, including the
node i with the greatest steady-state v∞,i, for a basic
reproduction number of R0 = 1.01 and R0 = 1.2,
respectively.
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Fig. 2. The approximation error εV versus the basic
reproduction number R0 for Barabási-Albert random
graphs for different network sizes N when the initial
viral state equals v(0) = 0.01v∞.

randomly generated initial viral states vi(0) ∈ [0, v∞,i],
the approximation vapx(t) is accurate. In particular, the
exact viral state v(t) seems to converge rapidly to the
approximation vapx(t) as time t evolves.

5. CONCLUSION

We solved the non-linear differential equations of the
NIMFA epidemic model around the epidemic threshold
R0 = 1 for small initial viral states v(0). Numerical
simulations demonstrate that the solution around the
epidemic threshold R0 = 1 is accurate – also when the
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Fig. 3. For a Barabási-Albert random graph with N = 500
nodes and heterogeneous spreading parameters βij , δi,
a basic reproduction number R0 = 1.01 and a ran-
domly generated initial viral state v(0), the approxi-
mation accuracy of Theorem 1 is depicted. The upper
and the lower sub-plot show the viral state traces vi(t)
of seven different nodes i until time t = 120 and t = 3,
respectively.

basic reproduction number R0 is greater than 1 and for
general initial viral states v(0). Potential applications of
the solution around the threshold, in particular for the
stabilisation of the all-healthy viral state v(t) = 0, stand
on the agenda of future research. Furthermore, Theorem 1
is based on the decomposition (2) with m = 1 scalar
function c1(t) and vector y1. It is an open problem, how
to consider m > 1 orthogonal functions in (2) to derive
an approximation vapx(t) of the viral state v(t), which
potentially is accurate also when R0 >> 1.
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