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Abstract: Opacity is an important information secure property. A system is said to be infinite-
step opaque if the intruder is never able to ascertain that the system is or has been in a secret
state at some time, based on its observation of the system evolution. This work aims to verify
infinite-step opacity of discrete event systems modeled with labeled Petri nets. Based on the
notion of basis reachability graph, a new structure called basis two-way observer is proposed to
check infinite-step opacity of a bounded system, which is shown to be more efficient than the
standard method based on the reachability graph.

Keywords: Discrete event systems, Petri nets, Infinite-step opacity.

1. INTRODUCTION

Motivated by the concern about security and privacy
in cyber-physical systems, opacity has been extensively
investigated in the past years. Opacity describes the ability
of a system to hide a secret behavior from the intruders.
Different notions of opacity properties have been defined
for discrete event systems (DESs), including language-
based opacity (Lin, 2011; Zhang et al., 2012), current-
state opacity (Wu and Lafortune, 2013; Cong et al., 2018),
initial-state opacity (Saboori and Hadjicostis, 2013; Tong
et al., 2015b), K-step opacity (Falcone and Marchand,
2015; Yin et al., 2019), infinite-step opacity (Saboori and
Hadjicostis, 2011; Yin and Lafortune, 2017), etc. In this
paper, we focus on infinite-step opacity. Given a set of
secret states, a system is said to be infinite-step opaque if
the intruder is not able (and will never be able) to infer if
the system is in a secret state, or if it has been in a secret
state at some time instant.

The notion of infinite-step opacity was first defined by Sa-
boori and Hadjicostis (2009) in the nondeterministic finite
automaton (NFA) framework assuming that the events
are partially observable. Later on, the opacity property
was deeply explored in Saboori and Hadjicostis (2011),
where it is shown that infinite-step opacity can be verified
by constructing a current-state estimator and a bank of
estimators for a given NFA, and the verification of infinite-
step opacity is proved to be PSPACE-hard. More efficient
approaches to check infinite-step opacity are proposed by
Yin and Lafortune (2017). Such approaches are based
on the construction of a new structure, called two-way
observer (TW-observer). It is built through the concurrent
composition of two observers: one is the observer of the
given automaton, and the other is the observer of its re-
versed automaton. Yin and Lafortune (2017) show that the
complexity of verifying infinite-step opacity is exponential
in the number of states of the system.

Petri nets have been extensively used to model and check
different types of opacity, e.g., initial-state opacity (Tong
et al., 2015b), current-state opacity (Tong et al., 2015a;
Cong et al., 2018), and language-based opacity (Tong
et al., 2016). Moreover, these problems can be more
effectively solved in the framework of Petri nets for their
structural analysis and algebraic techniques. However, to
the best of our knowledge, infinite-step opacity has never
been studied in the framework of Petri nets.

In this paper, we address the formalization and verifica-
tion of infinite-step opacity in bounded labeled Petri net
systems. The secret is defined as a subset of the reachable
markings. A labeled Petri net (LPN) system is said to be
infinite-step opaque with respect to a given secret if the
intruder can never infer that the system is or it has been
in a secret state.

The basis reachability graph (BRG) of an LPN system
summarizes in a compact form the information contained
in its reachability graph (RG) 1 . Each node in the BRG
represents not only the marking associated with it, but
also its unobservable reach. In addition, only markings
(called basis markings) reachable through observable tran-
sitions and the unobservable transition sequences whose
firing is necessary to enable the observable transitions,
are enumerated. As a consequence, the size of the BRG is
usually much smaller than that of the RG, thus the BRG
has been efficiently used to verify some opacity properties
(Tong et al., 2017). In this paper, a necessary and sufficient
condition for infinite-step opacity is presented, which relies
on the language of the RG. We also show that such a
condition can be reduced to a condition on the language
of the BRG under certain assumptions. More precisely, if
any basis marking is in the secret, the markings that can
be reached from it through unobservable transitions are

1 The BRG and RG are both automata.
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also contained in the secret, then the BRG can be used to
verify infinite-step opacity. A new structure called the basis
two-way observer (BTW-observer) is constructed in order
to characterize the relation among the languages generated
in the BRG. Note that the BTW-observer is not the TW-
observer of the BRG. As illustrated in Algorithm 1, the
construction of the BTW-observer follows different rules
with respect to the TW-observer and it results in an
automaton with a lower number of transitions.

The contributions of the paper can be summarized as
follows.

• Infinite-step opacity is formally defined in the frame-
work of labeled Petri nets.
• A necessary and sufficient condition for infinite-step

opacity based on the RG of the Petri net system is
presented.
• Under certain assumptions, such a condition can

be rewritten in terms of a new condition on the
BRG. Therefore, the enumeration of all the reachable
markings is avoided, thus allowing to deal with much
larger systems.
• A new structure, the BTW-observer of the BRG, is

proposed to verify infinite-step opacity.

Note that, due to space constraints, we refer the reader to
Lan et al. (2020) for full proofs of the results in the paper.
The rest of the paper is organized as follows. In Section 2
some background on finite automata and labeled Petri
nets is provided. The definition of infinite-step opacity in
labeled Petri net systems is formalized in Section 3. In
Section 4, a necessary and sufficient condition for infinite-
step opacity is provided. The construction of the BTW-
observer is presented in Section 5. Conclusions are finally
drawn in Section 6 where our future lines of research in
this framework are also illustrated.

2. PRELIMINARIES AND BACKGROUND

In this section we recall the formalisms used in the paper
and some results on state estimation in labeled Petri nets.
For more details, we refer the reader to (Murata, 1989;
Cassandras and Lafortune, 2008).

2.1 Automata

A nondeterministic finite (state) automaton (NFA) is a
4-tuple A = (X,E, f,X0), where X is the finite set of
states, E is the finite set of events, f : X ×E → 2X is the
(partial) transition relation 2 , and X0 ⊆ X is the set of
initial states. The transition relation f can be extended to
f : X × E∗ → 2X in a standard manner. Given an initial
state x0 ∈ X0 and an event sequence w ∈ E∗, f(x0, w) 6= ∅
is the set of states reached in A from x0 with w occurring
and it is denoted by f(x0, w)!. The reversed automaton
Ar = (X,E, fr, X) of A is the automaton obtained by
reversing all arcs in A and taking all the states in A as its
initial states.

Given a set of states Y ⊆ X, the language generated from
Y is L(A, Y ) = {w ∈ E∗|∃x ∈ Y : f(x,w)!}. If Y = {x} is

2 In the paper we do not use the standard NFA whose transition
relation is defined on X × (E ∪ {ε}). Namely, we assume that no
transition is labeled with the empty word.

a singleton, the generated language is simply denoted by
L(A, x). The language generated from the initial states is
denoted by L(A).

Given an NFA, its equivalent DFA (namely the DFA gener-
ating the same language) called observer can be construct-
ed following the procedure in Section 2.3.4 of (Cassandras
and Lafortune, 2008). Each state of the observer is a subset
of states of X in which the NFA may be after a certain
event sequence has occurred.

2.2 Petri Nets

A Petri net is a structure N = (P, T, Pre, Post), where P
is a set of m places, graphically represented by circles; T
is a set of n transitions, graphically represented by bars;
Pre : P × T → N and Post : P × T → N are the pre-
and post-incidence functions that specify the arcs directed
from places to transitions, and from transitions to places,
respectively. The incidence matrix of a net is denoted by
C = Post − Pre. A Petri net is acyclic if there are no
oriented cycles.

A marking is a vector M : P → N that assigns to each
place a non-negative integer number of tokens, graphically
represented by black dots. The marking of place p is
denoted by M(p). A marking is also denoted by M =∑

p∈P M(p)·p. A Petri net system 〈N,M0〉 is a net N with
initial marking M0. A transition t is enabled at marking
M if M ≥ Pre(·, t) and may fire yielding a new marking
M ′ = M + C(·, t). We write M [σ〉 to denote that the
sequence of transitions σ = tj1 · · · tjk is enabled at M , and
M [σ〉M ′ to denote that the firing of σ yields M ′. The set
of all enabled transition sequences in N from marking M
is L(N,M) = {σ ∈ T ∗|M [σ〉}. Given a transition sequence
σ ∈ T ∗, the function π : T ∗ → Nn associates with σ the
Parikh vector y = π(σ) ∈ Nn, where y(t) = k if transition
t appears k times in σ. Given a sequence of transitions
σ ∈ T ∗, its prefix (denoted by σ′ � σ) is a string for which
∃σ′′ ∈ T ∗ : σ′σ′′ = σ. The length of σ is denoted by |σ|.
A marking M is reachable in 〈N,M0〉 if there exists a
transition sequence σ such that M0[σ〉M . The set of all
markings reachable from M0 defines the reachability set
R(N,M0) of 〈N,M0〉. A Petri net system is bounded if
there exists a non-negative integer k ∈ N such that for any
place p ∈ P and any reachable marking M ∈ R(N,M0),
M(p) ≤ k holds.

A labeled Petri net (LPN) system is a 4-tuple G = (N,M0,
E, `), where 〈N,M0〉 is a Petri net system, E is the alphabet
(a set of labels) and ` : T → E∪{ε} is the labeling function
that assigns to each transition t ∈ T either a symbol from
E or the empty word ε. Therefore, the set of transitions
can be partitioned into two disjoint sets T = To ∪ Tu,
where To = {t ∈ T |`(t) ∈ E} is the set of observable
transitions and Tu = T \ To = {t ∈ T |`(t) = ε} is the set
of unobservable transitions. We denote no = |To| (resp.
nu = |Tu|) the number of observable (resp. unobservable)
transitions. Given a marking M ∈ R(N,M0), we define

U(M) = {M ′ ∈ Nm|M [σu〉M ′, σu ∈ T ∗u}
its unobservable reach, namely, the set of markings reach-
able from M through unobservable transitions. Given a
subset of markings Y ⊆ R(N,M0), U(Y ) =

⋃
M∈Y U(M).
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The labeling function can be extended to transition se-
quences ` : T ∗ → E∗ as `(σt) = `(σ)`(t) with σ ∈ T ∗

and t ∈ T . Given a set Y ⊆ R(N,M0) of markings, the
language generated by G from Y is

L(G, Y ) =
⋃

M∈Y
{w ∈ E∗|∃σ ∈ L(N,M) : w = `(σ)}.

In particular, the language generated by G is

L(G, {M0}) = {w ∈ E∗|∃σ ∈ L(N,M0) : w = `(σ)},
which is also simply denoted by L(G). It is the set of words
that can be observed by the intruder. A word w ∈ L(G) is
called an observation. We denote as

C(w) = {M ∈ Nm|∃σ ∈ L(N,M0) : M0[σ〉M, `(σ) = w}
the set of markings consistent with w.

Given an LPN system G = (N,M0, E, `), the Tu-induced
subnet N ′ = (P, T ′, P re′, Post′) of N , is the net that
results by removing all transitions in To from N , where
Pre′ and Post′ are the restrictions of Pre, Post to
Tu, respectively. The incidence matrix of the Tu-induced
subnet is denoted by Cu = Post′ − Pre′.

3. INFINITE-STEP OPACITY IN LABELED PETRI
NETS

Infinite-step opacity has been defined in the automaton
framework (Saboori and Hadjicostis, 2011; Yin and Lafor-
tune, 2017). In this section we extend this notion to labeled
Petri net systems.

In the framework of LPNs, the secret is a subset of
reachable makings S ⊆ R(N,M0). A marking M ∈ S is
called a secret marking. Markings in S̄ = R(N,M0)\S are
called exposable markings.

Definition 1. [Infinite-Step Opacity] Let G = (N,M0,
E, `) be an LPN system and S ⊆ R(N,M0) a secret.
System G is infinite-step opaque w.r.t S if ∀σ1σ2 ∈
L(N,M0) with M0[σ1〉M1 ∈ S, there exists σ′1σ

′
2 ∈

L(N,M0) such that M0[σ′1〉M ′1 /∈ S, `(σ1) = `(σ′1), and
`(σ2) = `(σ′2).

In words, an LPN system is infinite-step opaque if for any
transition sequence σ1 leading to a secret marking M1

there exists another transition sequence σ′1 that leads to
an exposable marking M ′1 producing the same observation.
Meanwhile, the same observations can be generated from
both M1 and M ′1. Namely, for any observation `(σ1σ2) ∈
L(G) the intruder never knows that the system once
visited a secret marking.

Example 2. Let us consider the LPN system in Fig. 1(a)
where To = {t2, t3, t6, t7, t8, t9} and Tu = {t1, t4, t5}. The
RG of the LPN system is shown in Fig. 1(b). Let the secret
be S = {M2,M4}. Let σ1 = t1t2t4 and σ2 = t6t8. Thus,
M0[σ1〉M4 ∈ S. However, there is no σ′1σ

′
2 ∈ L(N,M0)

such that M0[σ′1〉M /∈ S and `(σ′1σ
′
2) = `(σ1σ2) = aaa.

Therefore, the LPN system is not infinite-step opaque.
Now, suppose that transition t9 is labeled a instead of
b. The LPN system becomes infinite-step opaque w.r.t
S since the intruder will never be able to distinguish
markings M2 and M4 from M3 and M5, thus, the intruder
is unable to ascertain if the secret markings have been
visited when observing aa∗.
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Fig. 1. The LPN system in Example 2 (a), and its RG (b).

Given a secret S and an observation w ∈ L(G), we denote
as S(w) = C(w) ∩ S (resp. S(w) = C(w) \ S) the set
of secret (resp. exposable) markings consistent with the
observation.

Proposition 3. Let G = (N,M0, E, `) be an LPN system
and S ⊆ R(N,M0) a secret. System G is infinite-step
opaque w.r.t S if and only if ∀w ∈ L(G), L(G,S(w)) ⊆
L(G,S(w)).

Proof. Follows from Definition 1. 2

According to the above proposition, an LPN system is
infinite-step opaque w.r.t a given secret if and only if
for any observation w ∈ L(G) the language generated
from its consistent secret markings S(w) is contained
in the language generated from its consistent exposable
markings. Therefore, the problem of verifying infinite-step
opacity in LPN systems is transformed into a language
containment problem in G.

4. NECESSARY AND SUFFICIENT CONDITIONS
FOR INFINITE-STEP OPACITY

In this section, we prove that, under an appropriate
assumption, a language containment problem in the RG
can be reduced to a language containment problem in
the basis reachability graph (BRG), which is a compact
representation of the RG. Thus exhaustively enumerating
all states in the RG is avoided. We first recall the definition
of basis marking and the construction rules of the BRG
presented in Ma et al. (2017).

Definition 4. Given a marking M and an observable tran-
sition t ∈ To, we denote as

Σ(M, t) = {σ ∈ T ∗u |M [σ〉M ′,M ′ ≥ Pre(·, t)}
the set of explanations of t at M and

Y (M, t) = {yu ∈ Nnu |∃σ ∈ Σ(M, t) : yu = π(σ)}
the set of e-vectors.

After firing any unobservable transition sequence in
Σ(M, t) at M , transition t is enabled. To provide a com-
pact representation of the reachability set, we are inter-
ested in finding the explanations whose firing vector is
minimal.

Definition 5. Given a marking M and an observable tran-
sition t ∈ To, we denote as

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}
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Fig. 2. The BRG B(a), and the reversed BRG Br, where
all the states are initial states (b).

the set of minimal explanations of t at M and

Ymin(M, t) = {yu ∈ Nnu |∃σ ∈ Σmin(M, t) : yu = π(σ)}
the corresponding set of minimal e-vectors.

There are many approaches to calculate Ymin(M, t). In
particular, Cabasino et al. (2011) present an approach
that only requires algebraic manipulations when the Tu-
induced subnet is acyclic.

Definition 6. Given an LPN system G = (N,M0, E, `)
whose Tu-induced subnet is acyclic, its basis marking set
Mb is defined as follows:

• M0 ∈Mb;
• if M ∈Mb, then ∀t ∈ To, yu ∈ Ymin(M, t),

M ′ = M + C(·, t) + Cu · yu ⇒M ′ ∈Mb.

A marking Mb ∈Mb is called a basis marking of G.

The set of basis markings contains the initial marking and
all other markings that are reachable from a basis marking
by firing a transition sequence σut, where t ∈ To and
σu ∈ Σmin(M, t). By Definition 6, basis markings can be
recursively computed from the initial marking if the Tu-
induced subnet is acyclic. Note that since yu ∈ Ymin(M, t),
t is enabled at some marking in the unobservable reach
of M . Clearly, Mb ⊆ R(N,M0) and in practical cases the
number of basis markings is much smaller than the number
of reachable markings (Tong et al., 2017; Cabasino et al.,
2011; Ma et al., 2017). The number of basis markings is
finite if the LPN system is bounded. Therefore, hereafter
it is assumed that:
A1) the LPN system is bounded, and
A2) its Tu-induced subnet is acyclic.
Given an LPN system G = (N,M0, E, `), its BRG is
an NFA, where each state is a basis marking, the set of
events is the alphabet of the LPN system, and there is
no transition labeled with the empty word. We denote
it as B = (Mb, E, f,M0). Due to limited spaces here,
the detailed algorithm for constructing the BRG is not
presented and Tong et al. (2017) is referred. Clearly,
L(B) = L(G).

Example 7. Let us consider again the LPN system in
Fig. 1(a). The system satisfies Assumptions A1 and A2,
and its BRG is shown in Fig. 2(a), where there are only
five basis markings Mb = {M0,M2,M3,M6,M7}.

Given an LPN system G, its set of basis markingsMb, and
an observation w ∈ L(G), in Ma et al. (2017) it is shown
that

C(w) = U(Mb ∩ C(w)). (1)

Given an observation w ∈ L(G), the set of secret basis
markings consistent with w is denoted by Sb(w) = S(w) ∩
Mb, and the set of exposable basis markings consisten-
t with w is denoted by Sb(w) = S(w) ∩ Mb. Since

L(B,Mb) = L(G,U(Mb)) = L(G,Mb), L(B,Sb(w)) =
L(G,U(Sb(w))) = L(G,Sb(w)). Then, since Sb(w) ⊆
S(w),

L(B,Sb(w)) ⊆ L(G,S(w)). (2)

Analogously, L(B,Sb(w)) = L(G,Sb(w)) and

L(B,Sb(w)) ⊆ L(G,S(w)). (3)

Thanks to the above inclusion relationships, the following
proposition can be derived.

Proposition 8. Let G be an LPN system, B its BRG, and
w ∈ L(G) an observation. If L(B,Sb(w)) ⊆ L(B,Sb(w)),
then L(G,S(w)) ⊆ L(G,S(w)).

Theorem 9. Let G be an LPN system and S ⊆ R(N,M0)
a secret. System G is infinite-step opaque w.r.t S if
L(B,Sb(w)) ⊆ L(B,Sb(w)).

Theorem 9 provides a sufficient condition for infinite-step
opacity. Furthermore, the condition only relies on the
structure of the BRG. Next we show that a necessary and
sufficient condition in the BRG can be derived under the
additional assumption:
A3) Mb ∈ S ⇒ U(Mb) ⊆ S.
Namely, if a basis markingMb is a secret marking, then any
marking reachable from Mb firing unobservable transitions
is also a secret marking.

Lemma 10. Let G be an LPN system and S a secret
satisfying Assumption A3. It holds that L(B,Sb(w)) =
L(G,S(w)), for any w ∈ L(G).

Based on Lemma 10, the condition in Proposition 8
becomes necessary and sufficient under the additional
Assumption A3.

Proposition 11. Let G be an LPN system, S a secret,
which satisfy Assumptions A1 to A3. It holds that
L(G,S(w)) ⊆ L(G,S(w)) if and only if L(B,Sb(w)) ⊆
L(B,Sb(w)).

In other words, the language containment problem in the
RG is reduced to a language containment problem in
the BRG. Thus, a necessary and sufficient condition for
infinite-step opacity based on the BRG is obtained.

Theorem 12. An LPN System G is infinite-step opaque
w.r.t a given secret S under Assumptions A1 to A3, if and
only if

∀w ∈ L(B), L(B,Sb(w)) ⊆ L(B,Sb(w)), (4)

where B is the BRG of G.

Theorem 12 leads to the conclusion that the BRG can be
used to check infinite-step opacity of an LPN system. In
the next section, we propose a new structure called basis
two-way observer (BTW-observer), to verify the condition
in Eq. (4).

5. BASIS TWO-WAY OBSERVER

A structure called two-way observer (TW-observer) is
proposed to verify infinite-step opacity in the automaton
framework (Yin and Lafortune, 2017). Its construction is
based on the synchronization between the observer and the
initial-state estimator 3 of the system. The BTW-observer
3 The initial-state estimator of an NFA is the observer of its reversed
NFA with the set of initial-states being the whole state space (Wu
and Lafortune, 2013).
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Fig. 3. The observer Bo (a) and the initial-state estimator
Be (b) of the BRG in Fig. 2 (a).

we propose, is different from the TW-observer as it is
constructed through partial synchronization between the
observer and the initial-state estimator of the BRG. We
first introduce some notations that are helpful to formalize
the construction of the BTW-observer.

Given a BRG B = (Mb, E, f,M0), we associate with it the
following three automata:

• Br = (Mb, E, fr,Mb) is the reversed automaton of
B, which is obtained by reversing all arcs in B and
taking all the states in B as initial states.
• Bo = (X , E, fo, X̂0) is the observer of B, where

X ⊆ 2X is a finite set of states, X̂0 = {M0} is the
initial state. The event set of Bo is the alphabet E.
The transition function is fo : X × E → X . The
observer of the BRG can be constructed by applying
the standard determination algorithm in Cassandras
and Lafortune (2008).
• Be = (Xe, E, fe, X0) is the initial-state estimator of
B. Be is also the observer of the reversed automaton
of B, with the initial state X0 =Mb.

Note that L(Bo) = L(B). Therefore, given w ∈ L(B),

fo(X̂0, w) = C(w) ∩Mb. (5)

Let w ∈ L(Be) be an observation, and wr the reversed
word of w. It holds that

fe(X0, w) = {M ∈Mb|f(M,wr)!}. (6)

Namely, fe(X0, w) is the set of basis markings from which
the reversed word of w can be generated in B, and
consequently, in the system G.

Let w1 ∈ L(B) and wr
2 ∈ L(Be). We denote

M(w1|w2) = fo(X̂0, w1) ∩ fe(X0, w
r
2). (7)

By Eqs. (5) and (6), if M(w1|w2) 6= ∅, M(w1|w2) is the
set of basis markings consistent with w1 and from which
w2 can be generated in the BRG, and thus in the system
G.

Theorem 13. Let B be the BRG of an LPN system G, Bo
the observer of B, Be the initial-state estimator of B, and
S a secret. System G is not infinite-step opaque w.r.t S if
and only if ∃w1 ∈ L(B), wr

2 ∈ L(Be) such that

M(w1|w2) ⊆ S and M(w1|w2) 6= ∅. (8)

In the following, the BTW-observer is proposed in order to
check whether the conditions in Theorem 13 are satisfied.

Let Bo = (X , E, fo, X̂0) be the observer of the BRG
of an LPN system G, and Be = (Xe, E, fe, X0) be its
initial-state estimator. The BTW-observer of G is a DFA
Btw = (Q,Etw, ftw, q0), where Q ⊆ X × Xe is a finite
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Fig. 4. The BTW-observer of the LPN system in Fig. 1(a).

set of states, Etw = (E × {λ}) ∪ ({λ} × E) is the set of
events, ftw : Q × Etw → Q is the transition function,
and q0 = (X̂0, X0) is the initial state. Each state q in Btw
consists of two elements (X̂i, Xj), and we denote q(1) = X̂i

its first element and q(2) = Xj its second element.

The procedure to construct the BTW-observer is summa-
rized in Algorithm 1, whose main steps can be explained
as follows. The initial state of the BTW-observer is taken
equal to q0 = (X̂0, X0). Two sets are initialized at qo
(Step 1): set Q, which at the end of the algorithm con-
tains all the states of the BTW-observer; set Qnew, which
contains all the states of the BTW-observer that still need
to be explored. The algorithm terminates when Qnew is
equal to the empty set. Steps 2 to 10 define all the states
q′ reachable through strings in (λ,E)∗. Then, from all the
states obtained so far, we compute the states q′ reachable
through (E, λ)∗ (Steps 11 to 20).

Example 14. Consider again the LPN system in Fig. 1(a).
Its BTW-observer is shown in Fig. 4. For instance, let
σ = (λ, b)(a, λ)(a, λ). Then w1 = aa, w2 = b, and

ftw(q0, σ) = (X̂2, X2) with X̂2 = {M6,M7} and X2 =

{M7}. Indeed, fo(X̂0, w1) = X̂2 and fe(X0, b) = X2, and

M(w1|wr
2) = X̂2 ∩X2 = {M7}.

The following theorem shows how the BTW-observer can
be used to verify infinite-step opacity of an LPN system.

Theorem 15. Let G be an LPN system, S a secret, and
Btw = (Q,Etw, ftw, q0) the BTW-observer. System G
is infinite-step opaque w.r.t S if and only if ∀q =
(q(1), q(2)) ∈ Q,

q(1) ∩ q(2) * S ∨ q(1) ∩ q(2) = ∅.
Example 16. Consider again the LPN system in Fig. 1(a),
where the secret is S = {M2,M4}. Its reversed automa-
ton, observer and initial-state estimator are shown in
Figs. 2(b), 3(a), and 3(b), respectively. By Algorithm 1,
the BTW-observer of the LPN system is constructed as
reported in Fig. 4. Since there exists a state (X̂1, X3) with

X̂1 ∩X3 = {M2} ⊆ S, by Theorem 15, the LPN system is
not infinite-step opaque w.r.t S.

We discuss the computational complexity of Algorithm 1.
In the BTW-observer, in the worst case, there are 2|Mb|×
2|Mb| states and |E|×2|Mb|×2|Mb|+|E|×2|Mb| transitions.
Therefore, the complexity of the proposed algorithm is
O(|E| × 2|Mb| × 2|Mb|). Since |Mb| << |R(N,M0)|, the
proposed approach is more efficient than the one using
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Algorithm 1 Computation of the BTW-observer

Input: An observer Bo = (X , E, fo, X̂0); An initial-state
estimator Be = (Xe, E, fe, X0).

Output: The BTW-observer Btw = (Q,Etw, ftw, q0).

1: q0 := (X̂0, X0), Q := {q0}, Qnew := {q0}.
2: for all q = (q(1), q(2)) ∈ Qnew, do
3: for all e ∈ E: fe(q(2), e)!, do
4: q′ := (q(1), fe(q(2), e)), ftw(q, (λ, e)) := q′,
5: if q′ /∈ Q, then
6: Q := Q ∪ {q′}, Qnew := Qnew ∪ {q′},
7: end if
8: end for
9: Qnew := Qnew \ {q}.

10: end for
11: Qnew := Q.
12: for all q = (q(1), q(2)) ∈ Qnew, do
13: for all e ∈ E: fo(q(1), e)!, do
14: q′ := (fo(q(1), e), q(2)), ftw(q, (e, λ)) := q′,
15: if q′ /∈ Q, then
16: Q := Q ∪ {q′}, Qnew := Qnew ∪ {q′},
17: end if
18: end for
19: Qnew := Qnew \ {q}.
20: end for

the RG. Note that given the observer and the initial-state
estimator, the BTW-observer has the same set of states
of the TW-observer. However, in the TW-observer in the
worst case, there are 2 × |E| × 2|Mb| × 2|Mb| transitions.
For instance, the TW-observer of the observer and initial-
state estimator in Fig. 3, contains the word (a, λ)(λ, a)
that does not appear in the BTW-observer. Moreover, all
the transitions in the BTW-observer also exist in the TW-
observer. Therefore, the BTW-observer is typically smaller
than the TW-observer.

6. CONCLUSION

In this paper, the notion of infinite-step opacity of labeled
Petri net systems is formalized. Under some assumptions
on the secret and the net structure, necessary and sufficient
conditions for infinite-step opacity are derived. A new
structure called basis two-way observer (BTW-observer) of
the basis reachability graph (BRG) is constructed to verify
infinite-step opacity. The proposed approach has compu-
tational complexity advantages over the reachability graph
based approaches in the literature, since enumerations of
the whole state space of the system may be avoided. Our
future research will focus on the verification of K-step
opacity in Petri nets.
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