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Abstract: Physically motivated models of electric drive trains with coupled mechanics are
ubiquitous in industry for control design, simulation, feed-forward, model-based fault diagnosis
etc. Often, however, the effort of model building prohibits these model-based methods. In this
paper an automated model selection strategy is proposed for dynamic simulation models that
not only optimizes the accuracy of the fit but also ensures practical identifiability of model
parameters during structural optimization. Practical identifiability is crucial for physically
motivated, interpretable models as opposed to pure prediction and inference applications.
Our approach extends structural optimization considering practical identifiability to nonlinear
models. In spite of the nonlinearity, local and linear criteria are evaluated, the integrity of which
is investigated exemplarily. The methods are validated experimentally on a stacker crane.

Keywords: model selection, structure and parameter identification, practical identifiability,
sensitivity analysis.

1. INTRODUCTION

Physically motivated models, mostly called bright grey-
box models of electric drive trains with coupled mechanics
are commonly used in industry for control design (Schütte
(2003)), simulation, feed-forward, model-based fault diag-
nosis (Witczak et al. (2002)) etc. Often, however, the effort
of modelling prohibits these model-based methods. As to
Mittelmann et al. (2007) 75 % of the cost of a modern
control application is attributed to model development.

It would be appealing to automatize the process of model
building, but also a very complex task. As a first step
in this direction one could derive a model that includes
only those complexities which are justified by the data.
The selection procedure should choose the model with
the smallest prediction error but it should also maintain
practical identifiability (Vu (2015)) of the bright grey-
box models because otherwise interpretation and control
design would be pointless.

Previous works on model selection are mainly restricted
to data-driven, static models of other disciplines such
as biology (Volinsky et al. (1996)) and finance (Draper
(1995)). A limited model selection in the field of dynamic
models for electric drives is performed in Schütte et al.
(1997), but the process is not fully automatic. The final
decision is left for a commissioning engineer, while the
algorithm merrily extracts relevant information. Also, the
analysis of practical identifiability of nonlinear dynamic
models, see for example Vu (2015); Gábor et al. (2017);

Popp et al. (2019), has rarely been combined with model
structure optimization. It is important that each gener-
ated model must be optimized separately before it can be
evaluated in the nonlinear case. In many model selection
problems parameters can be included or excluded on a
per-parameter basis into nested models. In this case ex-
plicitly verifying practical identifiability may be superficial
because an increase in the fit with each new parameter
ensures uniqueness of the parameters naturally. This is
different in the case of our physically motivated models
where the decisions are made on a per-submodel basis. A
submodel describes a certain physical effect, e.g. friction,
gravity and includes several parameters in a cluster.

One is often confronted with the following difficulties in
automatic model selection:

(1) Models should be selected based on their purpose,
not only on a fit measure (Hansen (2005)), but
formulating purpose-optimal models, e.g. for control
design, by interweaving modelling and model based
control optimization would be prohibitively complex.

(2) Manual model selection involves hardly comprehensi-
ble activities like identifying characteristic responses
and outliers (Nelles (2001)). Insisting on purely ob-
jective criteria for automatic selection would impose
too much inflexibility (Chatfield (1995)).

(3) Data-driven model design, possibly in an iterative
way, may lead to treacherously good fits due to spu-
rious correlations, especially if the set of candidate
models incorporates only little experience with the
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subject matter (data dredging) (Burnham and An-
derson (1998))

(4) Parameter optimization as part of the model selection
requires user interaction in the nonlinear case making
the integration into a fully automatic chain of tools
difficult (Nelles (2001))

(5) Uniqueness: Data admit multiple interpretations of
observed symptoms (Stigter and Beck (1994); Chat-
field (1995))

(6) Typically long runtimes (Nelles (2001))

We respond to these concerns one by one as follows:

(1) It is advisable to decouple model identification and
utilization to reduce complexities and dependencies.
Model validation should be carried out prior to taking
any further steps of the destined purpose (Nelles
(2001)).

(2) The consequence of this procedure is that preparatory
steps must forego the formal automatism. It is also
expectable that fiddle parameters (Nelles (2001)) will
remain to be adjusted by the operator.

(3) Modelling and identification always requires defining
and selecting candidate models, only here it is made
explicit. Data dredging must be avoided by specifying
a small set of candidate models based on expertise
(Stigter and Beck (1994)).

(4) For success a certain amount of prior knowledge is
required, especially regarding the parameter ranges.

(5) It is important that the operator gets feedback about
model uncertainty after the optimization, which may
even necessitate a reformulation of the problem.

(6) We consider runtimes up to 10 hours (over night)
on modern PC hardware acceptable. Still, time-
consuming techniques are precluded.

In this paper an automated model selection strategy is
proposed for dynamic simulation models that not only
optimizes the accuracy of the fit in time domain but
also ensures practical identifiability of model parameters
during structural optimization. The resulting models con-
tain no unnecessary complexities, which should speed up
simulations and facilitate system interpretation. It is be-
lieved that the six implications from above are considered
adequately in the procedure.

2. MODEL SELECTION AND VERIFICATION OF
PRACTICAL IDENTIFIABILITY

In this section the methodology for optimizing the model
structure is explained along with the set of candidate
submodels and the criteria for practical identifiability.

2.1 Class of models

The class of models considered is shown in Fig. 1. It is a
chain of elastically coupled rotary inertias, or equivalently
masses of which the first one is also subject to friction,
constant gravity MGrav and the torque of the driving
motor MM, which is subject to input delay time Tdead.

The friction torque is given by Schütte (2003):

MF = −cvisq̇i︸ ︷︷ ︸
viscous

−tanh (ftanhq̇i)
[
MC +MSe−q̇i/∆vel

]
︸ ︷︷ ︸

Coulomb and Stribeck

.
(1)

Fig. 1. Class of models

All three parts (viscous, Coulomb and Stribeck) are
considered individual submodels to be included or ex-
cluded 1 with a total of four estimation parameters:
{cvis,MC,MS,∆vel}. The other possible submodels are
delay time and gravity with the estimation parameters
Tdead and MGrav, resulting in 25 possible combinations.
In the case of a multiple mass system each additional
mass is a submodel with the parameters J2...N , c2..N and
d2...N . Here, the maximum number of masses is limited
to N = 3, giving a total of 96 different overall models.
Further details on the implementation of this construction
kit of submodels can be found in Tantau et al. (2019).
More diversity could be included easily but a large number
of candidate models would contradict point 3 from above.

The resulting dynamic models can be written in the
following continuous-time form:

ẋ = f(x(t), u(t), p̂) + v(t),

y = h(x(t), u(t), p̂) + w(t)
(2)

with u: input, x: states, p̂: estimation parameters. v(t)
and w(t) are mean-free noise. For simulation this descrip-
tion is discretized in time using Euler discretization with
sampling time Tsys:

xk+1 = xk + Tsysf(xk, uk, p̂) + v(tk),

yk = h(xk, uk, p̂) + w(tk).
(3)

More accurate solvers could be used but since calculation
time is critical here and accuracy is not the main concern
in short excitations a simple solution is chosen.

2.2 Model selection strategy

Model selection means finding the optimal model out of
the 96 possible models. In this paper an exhaustive search
over all combinations is performed. Heuristic optimizers
like genetic programming (Tantau et al. (2019)) are not
considered here in order to minimize random effects. For
each model the parameters are optimized once via particle
swarm optimization by matching time-domain simulation
output y and measured system response ym of the training
trajectory:

J = ||(ym,1, ym,2, ...ym,NS
)− (y1, y2, ..., yNS

)||22. (4)

Ns is the number of samples. Excitation signals are shown
in section 3. After optimization of each model’s param-
eters, all the models that fail to meet certain criteria of
practical identifiability, see next section, are discarded.

1 The gain ftanh is defined upfront. Choosing a high value will make
the simulation more accurate but eventually also prone to instability.
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Out of the remainder the model with the best fit on a
separate validation experiment, similar to (4) is chosen.

2.3 Assessing practical identifiability of linear models

In linear regression models of the form:

y = Xp + w (5)

with y being the set of observations and w an error
term various criteria have been described for the ma-
trix of regressors X. They can largely be grouped into
three categories: i. hypothesis testing, e.g. Farrar-Glauber
tests for significant departures from orthogonality of the
vectors in X (Farrar and Glauber (1967)), ii. separate
treatment of sensitivity and (multi)collinearity (Stewart
et al. (1987); Belsley (1991); Brun et al. (2001); Kovács
et al. (2005)), and iii. judgement of parameter variance
or variance inflation (Marquardt (1970); Kuczera and
Mroczkowski (1998)). Hypothesis testing is criticised by
Burnham and Anderson (1998) because significant depar-
tures from the null-hypothesis do not necessarily indicate
the opposite. For example departures from orthogonality
may still allow identification. Therefore hypothesis testing
is not followed here. The idea behind category ii is that a
parameter can be practically unidentifiable if it has either
a too small influence on the output (small sensitivity, small
corresponding column vector in X) or its influence can be
compensated by changes in other parameters (collinearity
in X). A further refinement is possible when the exact
pattern of correlation among parameters is of interest
(Farrar and Glauber (1967); Belsley (1991); Niena ltowski
et al. (2015)).

Criteria from the last two categories are reviewed in the
following as far as they are employed in this paper. For
category ii Brun et al. (2001) introduced the mean squared
residual (msqr) parameter importance index (PII):

δmsqr
j =

∣∣∣∣Xj∆pj
∣∣∣∣

2
(6)

with Xj the column of the regressor matrix corresponding
to parameter j together with the collinearity index γk:

γk =
1√
λk
, (7)

in which λk is the smallest singular value of X̃, which is
the matrix X with all columns normalized to unit length.
∆pj is a normalization constant in the unit of parameter
pj . Collinearity is critical if γk exceeds 5...20 (Brun et al.
(2001)).

Related are also the scaled condition indices by Belsley
(1991):

η̃k =
µmax

µk
. (8)

µk and µmax are the k-th and the maximum singular value
of X̃, respectively.

A criterion for category iii is the scaled parameter covari-
ance matrix (Nelles (2001)):

cov (p̂) = σ2
(
XT

nXn

)−1

, (9)

where σ2 is the variance of the output noise, Xn is the
matrix X with all columns multiplied by the range of

the respective parameter. Considering the parameter range
ensures that the parameter covariance is derived relative
to this range and not in physical units.

The exclusion criterion for practical identifiability is de-
fined as follows: Only if the smallest δmsqr

j is at least 2

1 % of the largest δmsqr
j and if all η̃k are less than 30, as

suggested by Belsley (1991), the model is accepted. In (6)
the parameter ranges for normalization ∆pj correspond to
the bounds of the identification. The other criteria are not
directly evaluated in the model selection process but will
be reported for comparison.

2.4 Extension to nonlinear models

Usually the profile likelihood method, see for example
Raue et al. (2009) is the best choice for the identifiability
analysis of nonlinear models. Instead the linear criteria
from above are used as a local/asymptotic approximation
in the vicinity of the previously obtained parameter esti-
mate p0 as explained in this section. The profile likelihood
method is used only to make the results plausible.

For the nonlinear regression model (Brun et al. (2001);
Kitsos and Kolovos (2013)):

y = g(p) + w (10)

with the objective function J = (ym − y)T(ym − y)
the standard assessment of identifiability for differentiable
models is made via linearisation (Brun et al. (2001)):

g(p) ≈ g(p0) +
∂g(p)

∂pT

∣∣∣∣
p=p0

(p − p0). (11)

Thus, a substitute for X is given by the output sensitivity

X =
∂g(p)

∂pT

∣∣∣∣
p=p0

. (12)

A relation can be established between the local criteria
and the curvatures of the profile likelihood plot for each
parameter pi. Corresponding to the linearisation (11) the
quadratic approximation of the cost function J(p) around

the optimum is given by J0 + (p − p0)T ·XTX · (p − p0).
According to the derivation in Press et al. (2007) the
objective function plotted against one parameter while
the others are optimized can be approximated locally by
Ji(pi) ≈ J0 + (pi − pi,0)2/Cii with C = (XTX)−1. So the
observed, local curvature 2/Cii of the profile likelihood
plot is directly related to the non-normalized variance,
compare (9) 3.

A further distinction between sensitivity and collinearity
is not possible, but when the remaining parameters, other
than pi, are not optimized in each step, the resulting
curvature around p0 is two times the element ii of XTX,
so with this modification sensitivity can also be visualized
and the difference between these modified plots and the
original profile likelihood plots is attributed to collinearity.
The collinearity index (7) characterizes this flattening out

2 A rejection threshold of 1/10000 as recommended in Gábor et al.
(2017) led to unreasonable results.
3 Normalization is included implicitly into the profile likelihood
method by plotting the functions against the parameter ranges.
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caused by optimizing the other parameters, but it does not
provide a quantitative measure for each parameter.

2.5 Sensitivity calculation

In compliance with the optimization target each point in
time is a separate entry in y. The output sensitivity can
be calculated readily from the output equation,

Xy =
dy

dp̂T
=

∂h

∂xT

dx

dp̂T
+

∂h

∂p̂T
, (13)

but it requires the state sensitivity Xx = dx/dp̂T, which
cannot be calculated directly. But given continuous second
partial derivatives of x(p̂, t) with respect to x and t the
partial derivatives are commutative according to Schwarz’s
theorem and the sensitivity differential equation can be
formulated (Bohn (2000)):

dẋ

dp̂T︸︷︷︸
˙Xx

=
∂f

∂xT

dx

dp̂T︸︷︷︸
Xx

+
∂f

∂p̂T
. (14)

Using the Euler discretisation again the sensitivity can
be propagated over time from given initial values with
sensitivity sample rate Tsens:

dxk+1

dp̂T︸ ︷︷ ︸
Xx,k+1

=
dxk
dp̂T︸︷︷︸
Xx,k

+ Tsens
∂f

∂xT

dxk
dp̂T︸︷︷︸
Xx,k

+
∂f

∂p̂T
. (15)

In the partial derivatives xk is inserted for x and uk
for u, while p̂ is constant. This procedure was adopted
from Bohn (2000) and it is also described in Gábor et al.
(2017). Here, the initial values of the sensitivities are
set to zero while the excitation trajectory also starts
from standstill, independent of the parameters. So, the
initial output sensitivity should actually be zero. For
the parameter Tdead the difference quotient with linear
sub-sample interpolation is used instead of the above
procedure, since this parameter does not appear in the
system or output function directly.

3. EXPERIMENTAL RESULTS

In this section we firstly validate the linear, local iden-
tifiability criteria against the profile likelihood method
in a representative experiment. Then, the structure op-
timization is carried out. For all experiments the testbed
shown in Fig. 2 is used. It is a stacker crane with three
orthogonal, belt-driven axes. The mast is 5.6 m heigh and
the horizontal axis along the shelf (x-axis) is 5 m long. Only
experiments on the x-axis are reported, while the load
handling device is held in a height of 2 m. From stepped
sine frequency-domain measurements it is known that this
axis shows the behaviour of a three-mass resonator, see
Fig. 3.

For the simulation of all dynamic models the sampling rate
is Tsys = 10 kHz, which is approx. factor 100 above the
expected max. eigenfrequencies of resonating masses (∼
100 Hz), while the sensitivity simulation is even sampled
at Tsens = 100 kHz to ensure stability of the latter for

Fig. 2. Experimental testbed: stacker crane

Fig. 3. Frequency response functions of the testbed mea-
sured with stepped sine excitation

all obtained parameter sets. The entire process of model
selection and validation takes approximately three hours
in our implementation on an i7 4-core computer running
at 3.7 GHz with 16 GB DDR4 Ram, which complies with
point 6 from above.

The choice of parameter ranges, see Fig. 5, is an important
manual preparation step corresponding to point 4 from
above. The inertias are known to be between 0 and the
overall inertia. For the other parameters it is more difficult
to specify bounds and the results should be interpreted on
the background of these parameter ranges.

3.1 Comparison of profile likelihood and local identifiability
criteria

The training trajectory for optimizing the full model
is shown in Fig. 4, a crest factor-optimized multisine
signal (MFE) (Mittelmann et al. (2007)), along with
the resulting model output. Full model means including
all potential submodels. Fig. 5 shows the corresponding
profile likelihood plot. It seems that all parameters, except
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Fig. 4. Training data and corresponding model output
after training with MFE excitation, full model

Fig. 5. Profile likelihood plot corresponding to Fig. 4.
The abscissa spans over each parameter’s range, the
same as used for the identification. Thick blue line:
profile likelihood cost function J in multiples of the
minimum, thick grey: asymptotic approximation, thin
dashed: identification result.

the friction parameters {cvis,MC,MS,∆vel} are practically
identifiable. Apparently, for the given dynamic excitation
friction is overparameterized.

Next, the local criteria are evaluated to find out if they
support or confute the results of the profile likelihood.
Firstly, it is striking that the asymptotic approximates,
also shown in Fig. 5 show the same behaviour although the
curves are not completely identical throughout. The PIIs

Fig. 6. Parameter importance indices for Fig. 4

Fig. 7. Left: variance decomposition proportions for Fig.
4, right: diagonal of the scaled parameter covariance
matrix according to (9)

δmsqr
j of the 13 parameters are shown in Fig. 6. As they

are all in the same order of magnitude, the identifiability
problem with the friction parameters is not explained by
the sensitivities.

The largest condition index η̃k is 281.3 > 30, the collinear-
ity index γk is 111 > 20, so the unidentifiability prob-
lem can be explained by collinearity. Taking this a step
further the scaled variance decomposition proportions for
the largest condition index according to Belsley (1991),
are shown in Fig. 7 on the left. Each of them corre-
sponds to one parameter. Although not always quite so
clear, here they show large values for the questionable
four parameters 8 to 11, indicating that these four are
responsible for collinearity. The less pronounced but also
visible involvement of parameter 4 could be the reason why
its parabola in Fig. 5 is less steep than that of parameter
1, although it has the highest sensitivity in Fig. 6.

As a last evaluation the scaled parameter variances are
plotted in Fig. 7 on the right. For scaling the same param-
eter ranges have been used as before. The absolute scale
of the variances is not meaningful because the variance of
the output is arbitrarily set to one. It can be seen that the
variances also indicate a problem in the variables 8 to 11.

As a conclusion of this examplary investigation, the local
criteria are in satisfactory agreement with the likelihood
plots and can be used for structural optimization in the
next section.

3.2 Structural optimization

Structure and parameter optimization is performed in ex-
periments. The same MFE excitation as before is used for
the training experiment, for validation an MFE excitation
with different settings is applied to the testbed. In Fig. 8
and 9 the measured velocities as well as the prediction of
the best model are shown. As a result of the structure
identification a three-mass system with viscous friction
and delay time is obtained. Comparing the figures visually,
the fit of this model seems less good on validation data
than on training data, but in both cases it is acceptable.
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Fig. 8. Training data and best model

Fig. 9. Validation data and best model

Fig. 10. PIIs and variances of the best model

The scaled parameter sensitivities and variances are shown
in Fig. 10 and the scaled condition indices are η̃k : 1.0, 1.2,
1, 2, 1.6, 1.8, 2.1, 3.6, 4.7. As requested, all sensitivities
are in the same order of magnitude and the largest η̃k is
less than 30. The likelihood plot in Fig. 11 also indicates
identifiability of this model, so again profile likelihood and
the local, linear criteria are in agreement. It is striking that
viscous friction is included in the optimal model although
it was judged unidentifiable in combination with the other
submodels in the full model.

When repeating the structural optimization it sometimes
happens that Coulomb friction or viscous friction with
parameters close to zero are also included in the resulting
model. Such models have approximately the same fit and
their is no direct penalty on the number of estimation
parameters, only if clear overfitting occurs, the fit on
validation data will deteriorate. The number of masses
is always found to be three which is in agreement with
the frequency response measurement in Fig. 3. It would
be interesting to see what the algorithm returns in less
obvious cases.

Fig. 11. Profile likelihood plot for excitation with multisine
signal for the best model, compare Fig. 5

4. DISCUSSION

A procedure for structure and parameter identification
of nonlinear dynamic models has been demonstrated. It
complies with all six implications from above, except
for the model uncertainty evaluation (point 5). Because
the outputs of the simulation at different time steps are
correlated, methods for model uncertainty evaluation like
the Akaike weights from Burnham and Anderson (1998)
cannot be used directly. Especially in the observed cases
of different friction models in subsequent runs it would
be nice to know if the best model could be chosen with
certainty or if another model is just as good.

In addition to the six points from above a new problem has
occurred: The commissioner is not limited to a given set
of data but can design the excitation arbitrarily. This is a
difficulty but also a chance, which is not fully utilized in
this paper. Also, special, dedicated trajectories to identify
each parameter separately as in Schütte (2003) could not
readily be integrated into our holistic assessment of prac-
tical identifiability. In a similar spirit the adjustment of
hyperparameters for the criteria of practical identifiability
intensifies point 2 from above. Fortunately the methods
applied here do not need many hyperparameters, only one
for sensitivity and one for collinearity. They are widely
independent of the model because of normalization.

It was chosen to include only those submodels that have
exclusively identifiable parameters. Although this is sound,
it sometimes leads to unintuitive conclusions, e.g. when
an elastically coupled mass is not included only because
the damping parameter cannot be identified securely.
Here, different strategies could be further investigated for
the transition from parameter investigations to submodel
inclusion/exclusion decisions.

In any case, results obtained with the method should be
reviewed carefully regarding integrity. Reasons for unrea-
sonable models are often related to the formulation of the
problem, e.g. candidate models, parameter bounds, exci-
tation, hyperparameters. Model simplifications, although
unavoidable, may lead to unrealistic values of the remain-
ing parameters.
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5. CONCLUSIONS

A procedure for model selection of nonlinear dynamic
models of electric drive trains has been proposed. It selects
the model with the lowest prediction error that satisfies
certain criteria of practical identifiability and identifies
its parameters. Because of the long simulation times only
linear criteria for practical identifiability are evaluated, but
it is shown in a few examples that these are in satisfactory
agreement with the profile likelihood method, which is the
more thorough nonlinear counterpart.

In experiments with an industry-like testbed the method-
ology proves to reveal the characteristic mechanical prop-
erties of the setup.

The method is easy to use as it requires only two time
series measurements of for example 2 s each and the
optimization of approx. three hours can be performed
without user interaction. Expert knowledge is still required
for setting initial parameter ranges and for checking sanity
of the results.
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