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Abstract: This paper reexamines an epidemiological model with 4 population groups (vigilant/non-vigilant 

susceptible/infectious) built to study the effect of user vigilance on computer transmitted infections (CTIs) 

in computer networks. The model serves as an example through which a model conversion process is 

delineated, which aims at enhancing computational efficiency in the evaluation of the global prevalence of 

CTIs. More specifically, the conventional node-centric networked Markov chain (NCMC) is remodeled as 

a population-centric Markov chain (PCMC) to reduce the state-space size from an exponential to a 

polynomial function of the number of computing nodes N in a strongly connected network, where external 

attack and internal spread processes are aggregated. The PCMC is then realized as a closed queueing 

network of 4 M/M/N/N queueing nodes, corresponding to the 4 population groups. The results of evaluating 

the evolution of mean populations for the 4-population network of up to 150,000 computing nodes show 

that the queueing network realization slows the growth of computational complexity from exponential to 

linear with respect to the network size without resorting to mean field approximations. The paper briefly 

discusses on how the queueing network framework can accommodate node-centric Markov chains 

(NCMCs) of arbitrary directed networks of heterogeneous nodes, and its potential to significantly reduce 

the complexity in the evaluation of mean population dynamics for the more general class of large networks.  

Keywords: computer transmitted infections, epidemiological models, Markov models, computational 

methods, closed queueing networks, performance evaluation, and probabilistic risk assessment. 

1. INTRODUCTION 

Epidemiological models introduced nearly a century ago by 

Kermack and McKendrick [6] have been used to study 

equilibria as well as transient behaviours of computer 

transmitted infections (CTI) in computer networks, and more 

recently to serve as the bases of control designs for CTI 

mitigation [9]. This paper seeks to develop a stochastic 

modelling and computation framework for more efficient 

evaluation of mean infectious population, and ultimately, cost-

constrained control of CTIs under the new framework.   

The proposed queueing network formalization here builds on 

a sample 4-population model of Kelley and Camp (K-C) [5], 

in which (𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎)(𝑡)  represents the evolution of non-

vigilant susceptible, vigilant susceptible, non-vigilant 

infectious, and vigilant infectious populations, respectively, in 

a network of N computing nodes. We interpret subscript r as 

implying risk-seeking (non-vigilant), and a as risk-aversion 

(vigilant) users. The K-C paper sought to determine from data 

the parameters of a non-vigilant/vigilant SIS (susceptible-

infectious-susceptible) model (N/VSIS hereafter), and study 

the sensitivity of the global prevalence of CTIs, quantified by 

the steady-state fraction of the total infectious population, with 

respect to the model parameters, especially those capturing the 

effects of patching and upgrading, as well as targeted social 

pressure [15]. Similar studies to model and understand the 

effects of user awareness/alert can be found in [10], [13], and 

some references therein.  

The N/VSIS network [5] is selected here to represent a class of 

networks, whose epidemiological models have been linked 

through mean-field approximations to higher dimensional 

Markov chains. A mean-field approximation [14] replaces the 

random population-dependent state transition rates by an 

expectation with respect to node-specific marginal 

distributions. The class contains variations and extensions of 

the Kephart and White homogeneous 2-population SIS mean-

field model [7], [14]. Examples in this class include the 3-

population SIRS (R means recovered) network [12], for which 

the relationship between a 3N-state networked Markov chain 

and its 3N-state mean-field approximation was explored, and 

the 4-population G-SEIV (G means generalized and E means 

exposed) network [9], whose mean-field approximation 

provided the basis for optimal allocation of resources to speed 

up the eradication of the infectious populations. These models 

typically represent networks with a small number, m, of 

population groups, typically a low single digit number, and a 

large number, N, of computing nodes. The curse of 

dimensionality in a large network limits the utility of Markov 

chains without mean-field approximations, whose validity and 

accuracy, however, are not universally held. In the case of the 

N/VSIS network, for example, a mean-field-like model was a 

least-squares fit of a parametric system of differential 

equations to a single sample path of attack data [5].  

This paper challenges the conventional modelling practice for 

CTIs, and aims to enable a more efficient numerical evaluation 

of 𝐸(𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎)(𝑡), the mean population dynamics, without 

resorting to mean-field approximations, and pave the way for 
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their optimal control [1]. The 4-population N/VSIS network 

serves as a vehicle to explain the significant computational 

advantage of the proposed queueing network realization of a 

proposed population-centric Markov chain (PCMC) in relation 

to the existing node-centric networked Markov chains 

(NCMC). Terms NCMC and PCMC are coined in this paper 

and are contrasted in multiple occasions hereafter. More 

specifically, the dimension of the PCMC state-space is (𝑁 +

3)(𝑁 + 2)(𝑁 + 1)/6,  a polynomial, reduced from 4𝑁 , an 

exponential function in an NCMC, for an N-node network. 

This paper further implements a PCMC as a closed 

queueing network [3] with 4 M/M/N/N queueing nodes 

(Poisson inter-arrival time/exponential service time/N-server 

per queueing node/N-entity network). The paper establishes 

the validity of the queueing network formalization of the 

PCMC, and verifies their equivalence numerically. The results 

of evaluating the mean population evolution for networks of 

15 to 150,000 nodes show that the queueing network 

realization of a PCMC leads to a linear growth of 

computational time with respect to the growth of network size 

N. Finally, the extension of the queueing network modelling 

framework is discussed briefly to accommodate networks of 

heterogeneous nodes and node interactions. 

The paper is organized as follows. Section 2 interprets the 

N/VSIS model as a mean-field approximation of a more 

detailed NCMC, states the assumptions used in the modified 

N/VSIS and constructs its PCMC. Section 3 formalizes a 

queueing network realization of the PCMC, demonstrates its 

computational advantage via evaluating mean population 

evolution for networks with up to 150K nodes, and describes 

several extensions. Section 4 concludes the paper and briefly 

discusses the planned future research. 

 

2. N/VSIS NETWORK AS NCMC AND PCMC 

In this section, the Kelley and Camp N/VSIS model [5] is re-

examined. Its original form is reinterpreted as a mean-field-

like approximation of a more rigorously built node-centric 

Markov chain (NCMC), whose construction is briefly 

discussed. We then propose to reconstruct the Markov chain 

with a population-centric approach (PCMC) in which the 

infection process of a node is triggered by an aggregated event 

of internal spread and external attack as an independent 

Poisson arrival process. The goal is to use the modified 4-

population N/VSIS as a representative network to elucidate the 

distinction and the relation between the existing NCMC and 

the proposed PCMC modelling frameworks that can be 

generalized to any m-population N-node networks. 

2.1 N/VSIS and its mean-field-like approximation 

The flow of populations (𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎)(𝑡) was expressed in [5] 

by four dependent differential equations. Equation (1) below, 

where 𝑆𝑟(𝑡) + 𝑆𝑎(𝑡) + 𝐼𝑟(𝑡) + 𝐼𝑎(𝑡) = 𝑁, slightly modifies the 

K-C N/VSIS model to uphold the flow balance principle [3]. 
𝑑𝑆𝑟

𝑑𝑡
= −(𝜂 + 𝛽𝑟)

𝐼𝑟 + 𝐼𝑎
𝑁

𝑆𝑟 + 𝛿𝑆𝑎 + 𝜇𝑟𝐼𝑟 

𝑑𝑆𝑎

𝑑𝑡
= 𝜂

𝐼𝑟 + 𝐼𝑎
𝑁

𝑆𝑟 − (𝛿 + 𝛽𝑎

𝐼𝑟 + 𝐼𝑎
𝑁

)𝑆𝑎 + (𝜇 + 𝛾
𝑆𝑎

𝑁
)𝐼𝑟 + (𝜇𝑎 + 𝛾𝑎

𝑆𝑎

𝑁
)𝐼𝑎 

𝑑𝐼𝑟
𝑑𝑡

= 𝛽𝑟

𝐼𝑟 + 𝐼𝑎
𝑁

𝑆𝑟 − (𝜇𝑟 + 𝜇 + 𝛾
𝑆𝑎

𝑁
)𝐼𝑟 

𝑑𝐼𝑎
𝑑𝑡

= 𝛽𝑎

𝐼𝑟 + 𝐼𝑎
𝑁

𝑆𝑎 − (𝜇𝑎 + 𝛾𝑎

𝑆𝑎

𝑁
)𝐼𝑎 

   

 

(1) 

The original notations used in [5] are largely retained in (1). 

They are defined in Table 1 as transition rates of a single 

network node between two population groups for use later in 

the stochastic versions of the model. The rate values in the 

table are set to reflect the N/VSIS utility with 𝛽𝑟 > 𝛽𝑎 > 0 

implying that a vigilant node is less prone to attacks, 0 < 𝜇𝑟 <

𝜇𝑎 implying that a vigilant node is quicker to recover, and 𝜂,

𝜇 > 0, representing the effort to promote vigilance. Note that 𝜂,  

𝛽𝑟 , 𝛽𝑎 , 𝛾𝑎 , and 𝛾 in (1) have population variables attached to 

them that cause the model to be nonlinear with bifurcation and 

epidemic threshold [9],[14] indicating whether the network 

can be infection-free in the long run.  

Table 1 Transition rates in Equation (1) (1/unit time) 
Symbol Transition rate of a single node between two populations 

𝜂 Upgrade: non-vigilant susceptible to vigilant susceptible 

𝛿 Downgrade: vigilant susceptible to non-vigilant susceptible 

𝛽𝑟 Infect: non-vigilant susceptible to non-vigilant infectious 

𝛽𝑎 Infect: vigilant susceptible to vigilant infectious 

𝜇𝑟 Recover&upgrade: non-vigilant infectious to vigilant susceptible 

𝜇𝑎 Recover: vigilant infectious to vigilant susceptible 

𝜇 Recover: non-vigilant infectious to vigilant susceptible 

𝛾 Social pressure: non-vigilant infectious to vigilant susceptible 

𝛾𝑎 Social pressure: vigilant infectious to vigilant susceptible 

The underlying N-node network of the N/VSIS model (2) is 

understood as being strongly connected and homogeneous. 

The homogeneity assumption recognizes random scanning as 

a common online attack mechanism rendering well-mixed 

populations in certain sociotechnical networks, differing from 

most biological epidemics [11]. The construction of a 4𝑁-state 

node-centric networked Markov chain (NCMC) for the 4-

population N-node N/VSIS network can follow the procedure 

described in [9] for a 4-population N-node heterogeneous G-

SEIV network. With some abuse of notations, we now 

interpret (𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎) as state names in the stochastic setting 

for an NCMC associated with a generic node. Each node in 

this NCMC can be in any one of the four states at any given 

time with a certain probability. A mean-field approximation of 

the NCMC can be sought in the form of a set of 4N-dependent 

ordinary differential equations on marginal probability 

distributions (𝑝𝑆𝑟

𝑖 , 𝑝𝑆𝑎

𝑖 , 𝑝𝐼𝑟
𝑖 , 𝑝𝐼𝑎

𝑖 )(t) for node i, where  𝑖 = 1,⋯ ,𝑁. 

Homogeneity further reduces a 4N-variable system to the 4-

variable mean-field-like approximation below, where 𝑝𝑆𝑟
(𝑡) +

𝑝𝑆𝑎
(𝑡) + 𝑝𝐼𝑟

(𝑡) + 𝑝𝐼𝑎
(𝑡) = 1.  

𝑑𝑝𝑆𝑟

𝑑𝑡
= −(𝜂 + 𝛽𝑟)(𝑝𝐼𝑟 + 𝑝𝐼𝑎)𝑝𝑆𝑟

+ 𝛿𝑝𝑆𝑎
+ 𝜇𝑟𝑝𝐼𝑟 

𝑑𝑝𝑆𝑎

𝑑𝑡
= 𝜂(𝑝𝐼𝑟 + 𝑝𝐼𝑎)𝑝𝑆𝑟

− 𝛿𝑝𝑆𝑎
− 𝛽𝑎(𝑝𝐼𝑟 + 𝑝𝐼𝑎)𝑝𝑆𝑎

 

             +𝜇𝑝𝐼𝑟 + 𝛾𝑝𝑆𝑎
𝑝𝐼𝑟 + 𝜇𝑎𝑝𝐼𝑎 + 𝛾𝑎𝑝𝑆𝑎

𝑝𝐼𝑎 
𝑑𝑝𝐼𝑟

𝑑𝑡
= 𝛽𝑟(𝑝𝐼𝑟 + 𝑝𝐼𝑎)𝑝𝑆𝑟

− (𝜇𝑟 + 𝜇)𝑝𝐼𝑟 − 𝛾𝑝𝑆𝑎
𝑝𝐼𝑟 

𝑑𝑝𝐼𝑎

𝑑𝑡
= 𝛽𝑎(𝑝𝐼𝑟 + 𝑝𝐼𝑎)𝑝𝑆𝑎

− 𝜇𝑎𝑝𝐼𝑎 − 𝛾𝑎𝑝𝑆𝑎
𝑝𝐼𝑎 

(2) 

System (2) governs the evolution of population probabilities 

of the underlying stochastic process, whereas system (1) 

governs the evolution of the population flow, and is therefore 

deterministic. Note that (2) so far is merely a conjecture using 

a similar argument to that provided in [14], where it only 

concluded the validity of the early Kephart-White epidemic 

model [7] as a mean-field approximation of a 2𝑁–state NCMC 

for a 2-population SIS network. The earlier reference to 

N/VSIS model (1) as a mean-field-like approximation can be 

explained by a comparison of (2) and rescaled (1) in which all 

population variables are normalized by total population N. 
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2.2 Population-centric Markov chains for N/VSIS  

We now reconstruct a Markov chain for the strongly connected 

and homogeneous N/VSIS network, in which independent 

Poisson event clocks define all interevent time distributions [3] 

for transitions between population groups of any single nodes. 

Two major departures distinguish our proposed stochastic 

model from the NCMCs in [14], [12], and [9].  

(A1) The state space is modified from node-centric  
𝑥 = (𝑥1, ⋯ 𝑥𝑁) ∈ 𝑆𝑁𝐶 ,  𝑥𝑖 ∈ {𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎}, 𝑖 = 1,⋯ ,𝑁  (3) 

to population-centric 
 𝑥 = (𝑆𝑟, 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎) ∈ 𝑆𝑃𝐶 ,   𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎 ∈ {0,1,⋯ ,𝑁},   

  𝑆𝑟 + 𝑆𝑎 + 𝐼𝑟 + 𝐼𝑎 = 𝑁. 
(4) 

(A2) Infection process of a susceptible node is triggered by an 

aggregated Poisson event arrival representing both internal 

spread and external attack. Thus, infection rates 𝛽𝑟 , 𝛽𝑎 , and 

upgrade rate 𝜂 are assumed to be unaffected by the infectious 

populations. Moreover, the social response in [5] are ignored 

by setting 𝛾 = 𝛾𝑎 = 0 to focus on our goal to develop PCMCs.   

Point of departure (A1) dictates the size of the state space 

defined in (4) for a PCMC as a function of total population N  

|𝑆𝑃𝐶| = (𝑁 + 3)! 𝑁!⁄ 3!⁄ ~𝑂(𝑁3),  (5) 

which is reduced from |𝑆𝑁𝐶| = 4𝑁for an NCMC whose state 

space is defined in (3). Point of departure (A2) leads to 

irreducible Markov chains [3] for both the NCMC and the 

PCMC. As a result, there no longer exists an infection-free 

steady-state distribution. 

Remark 1. Lack of uniform fit of parametric N/VSIS model 

(1) to a sample path of attack data [5] suggests that the assumed 

N/VSIS structure may be too restrictive to properly capture the 

population dynamics (𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎)(𝑡)  in modern networks. A 

better fit can be expected in the determination of the transition 

rates in Table 2 that define individual interevent time 

distributions using, say, maximum likelihood estimation and 

goodness of fit tests [4] with labelled data for each triggering 

event.  

To gain a concrete sense of the relation between an NCMC and 

a PCMC, we list in Table 2 the states in their respective state 

spaces for a 2-node N/VSIS network. Symbols 𝑆𝑟, 𝑆𝑎, 𝐼𝑟, and 

𝐼𝑎 are again somewhat abused as they are defined differently 

for the PCMC in the 1st column and for the NCMC in the 2nd 

column of the table. There are 5! (2! × 3!) = 10⁄  states in the 

PCMC, whereas there are 𝑚𝑁 = 42 = 16 states in the NCMC.  

A partial rate transition diagram of a population-centric 

Markov chain (PCMC) built for the modified N/VSIS network 

is shown in Fig.1, where state transition rates into and out of 

representative state (𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎) are also shown.  

Table 2. State space of the PCMC in the left column and an NCMC 

in the right column for a 2-node N/VSIS under (A2). 

𝑥 = (𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎), 𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎 ∈ {0,1, 

2}, 𝑆𝑟 + 𝑆𝑎 + 𝐼𝑟 + 𝐼𝑎 = 2, |𝑆𝑃𝐶| = 10 

𝑥 = (𝑥1, 𝑥2),  𝑥𝑖 ∈ {𝑆𝑟, 𝑆𝑎 , 𝐼𝑟 , 
𝐼𝑎}, 𝑖 = 1,2,  |𝑆𝑁𝐶| = 16 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,0,0,2) (𝑥1, 𝑥2) = (𝐼𝑎 , 𝐼𝑎) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,0,1,1) (𝑥1, 𝑥2) = (𝐼𝑟, 𝐼𝑎), (𝐼𝑎 , 𝐼𝑟) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,0,2,0) (𝑥1, 𝑥2) = (𝐼𝑟, 𝐼𝑟) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,1,0,1) (𝑥1, 𝑥2) = (𝑆𝑎 , 𝐼𝑎), (𝐼𝑎 , 𝑆𝑎)  
(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,1,1,0) (𝑥1, 𝑥2) = (𝑆𝑎 , 𝐼𝑟), (𝐼𝑟 , 𝑆𝑎) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (0,2,0,0) (𝑥1, 𝑥2) = (𝑆𝑎 , 𝑆𝑎) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (1,0,0,1) (𝑥1, 𝑥2) = (𝑆𝑟, 𝐼𝑎), (𝐼𝑎 , 𝑆𝑟) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (1,0,1,0) (𝑥1, 𝑥2) = (𝑆𝑟, 𝐼𝑟), (𝐼𝑟 , 𝑆𝑟) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (1,1,0,0) (𝑥1, 𝑥2) = (𝑆𝑟, 𝑆𝑎), (𝑆𝑎 , 𝑆𝑟) 

(𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎) = (2,0,0,0) (𝑥1, 𝑥2) = (𝑆𝑟, 𝑆𝑟) 

 
Fig.1 Partial PCMC rate transition diagram with transitions into 

and out of state (𝑆𝑟 , 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎), with 0 < 𝑆𝑟, 𝑆𝑎 , 𝐼𝑟 , 𝐼𝑎 < 𝑁 and 𝑆𝑟 +
𝑆𝑎 + 𝐼𝑟 + 𝐼𝑎 = 𝑁. 

The transient state probabilities for the PCMC can be solved 

from the forward Chapman-Kolmogorov equation [3]. 

𝑑�⃗� (𝑡) 𝑑𝑡⁄ = �⃗� (𝑡)𝑄,  (6) 

where �⃗� (𝑡) is a row vector containing |𝑆𝑃𝐶| state probabilities 

that form a distribution ∑ 𝜋𝑥(𝑡)𝑥∈𝑆𝑃𝐶
= 1, and 𝑄 is an |𝑆𝑃𝐶| ×

|𝑆𝑃𝐶| transition rate matrix populated with transition rates. As 

an example, 𝑄 matrix of the 2-node PCMC is  

𝑄 =

[
 
 
 
 
 
 
 
 
 
 
𝑞1,1 0 0 2𝜇𝑎 0 0 0 0 0 0

0 𝑞2,2 0 𝜇 𝜇𝑎 0 𝜇𝑟 0 0 0

0 0 𝑞3,3 0 2𝜇 0 0 2𝜇𝑟 0 0

𝛽𝑎 0 0 𝑞4,4 0 𝜇𝑎 𝛿 0 0 0

0 𝛽𝑎 0 0 𝑞5,5 𝜇 0 𝛿 𝜇𝑟 0

0 0 0 2𝛽𝑎 0 𝑞6,6 0 0 2𝛿 0

0 𝛽𝑟 0 𝜂 0 0 𝑞7,7 0 𝜇𝑎 0

0 0 𝛽𝑟 0 𝜂 0 0 𝑞8,8 𝜇 𝜇𝑟

0 0 0 0 𝛽𝑟 𝜂 𝛽𝑎 0 𝑞9,9 𝛿

0 0 0 0 0 0 0 2𝛽𝑟 2𝜂 𝑞10,10]
 
 
 
 
 
 
 
 
 
 

, 

where 𝑞𝑖,𝑖 = −∑ 𝑞𝑖,𝑗𝑗≠𝑖 , 𝑖 = 1,⋯ ,10.  The unique equilibrium 

�⃗� (∞)  of the PCMC can be solved from a set of |𝑆𝑃𝐶| 
independent linear equations among the |𝑆𝑃𝐶| + 1 in  

�⃗� (∞)𝑄 = 0⃗ ,  ∑ 𝜋𝑥(∞)𝑥∈𝑆𝑃𝐶
= 1. (7) 

Remark 2. A PCMC and an NCMC built for the same network 

are equivalent, as long as (A2) is assumed for both. To see this 

through the simple example of the 2-node N/VSIS network, 

aggregate each pair of the NCMC states that appear in the same 

row in the right column of Table 2, and order the (aggregated) 

states as they appear in the table. Then the PCMC and NCMC 

represented by (6) have exactly the same Q matrix.  

2.3 Evolution of mean populations 

In this section, the PCMC built for the modified N/VSIS 

network is used to predict network-wide prevalence of CTIs. 

Denote by (𝜋𝑆𝑟
, 𝜋𝑆𝑎

, 𝜋𝐼𝑟 , 𝜋𝐼𝑎)(𝑡) the set of marginal distributions 

of the PCMC  

𝜋𝑆𝑟=𝑖(𝑡) = ∑ 𝜋𝑥(𝑡)

𝑥,𝑆𝑟=𝑖 

, 𝜋𝑆𝑎=𝑖(𝑡) = ∑ 𝜋𝑥(𝑡),

𝑥,𝑆𝑎=𝑖 

 

𝜋𝐼𝑟=𝑖(𝑡) = ∑ 𝜋𝑥(𝑡)

𝑥,𝐼𝑟=𝑖 

, 𝜋𝐼𝑎=𝑖(𝑡) = ∑ 𝜋𝑥(𝑡).

𝑥,𝐼𝑎=𝑖 

 
(8) 

Components 𝜋𝑥(𝑡)  of �⃗� (𝑡)  are solved from (6). Mean 

population evolution (or mean population dynamics) can then 

be found as follows.   
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𝐸{𝑆𝑟(𝑡)} = ∑𝑖 × 𝜋𝑆𝑟=𝑖

𝑁

𝑖=1

(𝑡), 𝐸{𝑆𝑎(𝑡)} = ∑𝑖 × 𝜋𝑆𝑎=𝑖

𝑁

𝑖=1

(𝑡), 

𝐸{𝐼𝑟(𝑡)} = ∑𝑖 × 𝜋𝐼𝑟=𝑖

𝑁

𝑖=1

(𝑡), 𝐸{𝐼𝑎(𝑡)} = ∑𝑖 × 𝜋𝐼𝑎=𝑖(𝑡)

𝑁

𝑖=1

. 

(9) 

Using (6), (8), and (9), the evolution of mean populations for 

the PCMC is computed for the modified N/VSIS network with 

𝑁 = 19  nodes. The four normalized mean population 

dynamics as functions of time are displayed in Fig. 2. Rates 

(𝜂, 𝛿, 𝛽𝑟 , 𝛽𝑎 , 𝜇𝑟 , 𝜇𝑎, 𝜇)  are set at (
1

3
,
1

3
,

1

30
,

1

60
,
20

3
,
80

3
,
20

3
)  (1/unit 

time). It is seen that all nodes start in population group 𝑆𝑟, and 

gradually spread into other three population groups. At steady 

state, the population is divided almost equally between the 

non-vigilant susceptible and vigilant susceptible populations. 

At no point during the evolution do the infected populations 

become significant. The long-run mean populations settle at 

𝐸{𝑆𝑟(∞)} = 8.9598, 𝐸{𝑆𝑎(∞)} = 10.0084, 𝐸{𝐼𝑟(∞)} = 0.0262, and 

𝐸{𝐼𝑎(∞)}  = 0.0056. The observed dependence of the total 

infectious population on the parameters is as expected, 

increasing with respect to increasing 𝛿, 𝛽𝑟  and 𝛽𝑎 ,  and 

decreasing with respect to increasing 𝜇𝑟 , 𝜇𝑎 , 𝜇  and 𝜂,  while 

𝛽𝑟 > 𝛽𝑎  and 𝜇𝑟 < 𝜇𝑎  distinguish the non-vigilant and vigilant 

populations.  

Remark 3. We name parameters 𝜂, 𝜇𝑟 , 𝜇, and 𝜇𝑎 in Table 1 as 

controllable parameters, which can be adjusted to suppress the 

total infectious mean population 𝐸{𝐼𝑟(∞) + 𝐼𝑎(∞)} in the long 

run at a cost. This can be formulated as a Markov decision 

problem [1], [3], whose solutions will be reported separately 

in the near future.   

 
Fig.2 Mean populations solved using (6), (8), (9) for the PCMC of 

a 19-node N/VSIS network initialized at 𝜋(19,0,0,0)(0) = 1. 

The N/VSIS network size chosen is limited by the 

computational power required to solve (6), which is of 

dimension |𝑆𝑃𝐶| = (𝑁 + 3)! 𝑁!⁄ 3! = 1540⁄  for a 19-node 

network. Note that the dimension of Equation (6) has been 

reduced from |𝑆𝑁𝐶| = 419 > 2.7 × 1011 ≫ 1.54 × 103 = |𝑆𝑃𝐶| 

for a 19-node NCMC. To study the mean population evolution 

of PCMCs with more than a few tens of nodes, we propose to 

realize a PCMC as a queueing network in the next section. 
 

3. MEAN POPULATION OF A PCMC SOLVED FROM A 

CLOSED QUEUEEING NETWORK REALIZATION 

This section formalizes a closed queueing network realization 

of a PCMC for the modified N/VSIS network. A closed 

queueing network [3] is a discrete-state system of 𝑁 entities, 

which move among a network of 𝑚 queueing nodes to receive 

specific services. Such a queueing network can be simulated 

using a discrete-event simulation software package, such as 

SimEvents [8]. The discussion in this section also draws a 

numerical comparison between the PCMC of Section 2.2 and 

its queueing network realization for the same 19-node N/VSIS 

network, and for larger networks in terms of their efficiency in 

evaluating the evolution mean population evolution. Extension 

of queueing network realization to NCMC of more general 

networks is then briefly discussed.  

3.1 Queueing network realization of a PCMC 

The four queueing nodes (Q-nodes), respectively named as 

susceptible risk-seeking, susceptible risk-aversion, infectious 

risk-seeking, and infectious risk-aversion Q-nodes, are 

abbreviated as 𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , and 𝐼𝑎  in Fig. 3. Each Q-node can 

house up to N entities in its N servers. Thus, each Q-node is of 

the M/M/N/N type, meaning Poisson arrivals / exponential 

service time distributions / N identical servers per Q-node / 

queue capacity equal to N at each Q-node. Each entity here 

corresponds to a computing node (C-node) in the N-node 

N/VSIS network. Service is provided as soon as an entity 

arrives at a Q-node, as there are only N entities (C-nodes) in 

the closed queueing network. Because symbols 𝑆𝑟, 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎 are 

used to denote the names of the Q-nodes, we avoid using them to also 

define the state space for the above queueing network.  

𝑆𝑄𝑁 = {(𝑛1, 𝑛2, 𝑛3, 𝑛4)|0 ≤ 𝑛1, 𝑛2, 𝑛3, 𝑛4 ≤ 𝑁,    

𝑛1 + 𝑛2 + 𝑛3 + 𝑛4 = 𝑁}. 
(10) 

whose element 𝑥 = (𝑛1, 𝑛2, 𝑛3, 𝑛4)  is the composite queue 

length at the four queueing nodes named 𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎, 

respectively, as depicted in Fig.3.  

Theorem 1. The PCMC with state space defined in (4) 

constructed for the 4-population N-computing-node 

N/VSIS network in Section 2.2 fully coincides with the 

Markov chain with state space defined in (10) representing 

the 4-queueing node N-entity closed queueing network of 

Fig. 3, where the service rates and routing probabilities are 

specified. 

Proof. Consider the state space defined in (10) for the closed 

queueing network in Fig.3. The entities in the queueing 

network have been equated to the C-nodes in the N/VSIS 

network, the queue lengths (𝑛1, 𝑛2, 𝑛3, 𝑛4)  in the four Q-

nodes have been equated to the numbers of C-nodes in their 

respective four population groups (𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎). An entity 

arrival at a Q-node implies a transition of a C-node into the 

population group hosted by the corresponding Q-node, and 

the service time of an entity at a server equals to the holding 

time of a C-node in the corresponding population group. 

Specific service rates are now assigned to the servers in 

the four Q-nodes. They are 𝜎1 = 𝛽𝑟 + 𝜂 for any server in the 

susceptible risk-seeking Q-node, 𝜎2 = 𝛽𝑎 + 𝛿 for any server 

in the susceptible risk-aversion Q-node, 𝜎3 = 𝜇𝑟 + 𝜇 for any 

server in the infectious risk-seeking Q-node, and 𝜎4 = 𝜇𝑎 for 

any server in the infectious risk-aversion Q-node. Note that 

the inverse of the service rates are the average holding times 

of the C-nodes in their respective population groups.  

A routing probability at the output of a Q-node indicates 

the likelihood of a departing entity’s being routed to the 

input of another Q-node. They are 𝑝12=
𝜂

𝛽𝑟+𝜂
, 𝑝13=

𝛽𝑟
 𝛽𝑟+𝜂

 from 

Q-node 𝑆𝑟  to Q-nodes 𝑆𝑎, 𝐼𝑟 ,  respectively; 𝑝21=
𝛿

𝛽𝑎+𝛿
,
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𝑝24=
𝛽𝑎

𝛽𝑎+𝛿
 from Q-node 𝑆𝑎  to Q-nodes 𝑆𝑟 ,  𝐼𝑎 , respectively; 

𝑝31=
𝜇𝑟

𝜇𝑟+𝜇
,  𝑝32=

𝜇

𝜇𝑟+𝜇
 from Q-node 𝑆𝑎  to Q-nodes 𝑆𝑟 ,  𝑆𝑎 ,  

respectively; and 𝑝42 = 1 from Q-node 𝐼𝑎  to Q-node 𝑆𝑎. 

These correspond to event probabilities at a given PCMC 

state. 

Since state space 𝑆𝑄𝑁 defined in (10) for the queueing 

network is the same as state space 𝑆𝑃𝐶 defined in (4) for the 

corresponding PCMC, the construction of the Markov chain 

for the queueing network depicted in Fig.3 generates the 

same rate transition diagram shown in Fig.1, which 

uniquely defines transition rate matrix Q in (6). More 

specifically, the probability flow balance equation [3] of the 

Markov chain of the queueing network governing the 

evolution of state probability 𝜋(𝑛1,𝑛2,𝑛3,𝑛4)  at composite 

queue length (𝑛1, 𝑛2, 𝑛3, 𝑛4)  in the four Q-nodes 𝑆𝑟 , 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎 

respectively is given by  

�̇�(𝑛1,𝑛2,𝑛3,𝑛4)  = − ∑ 𝜎𝑖𝜋(𝑛1,𝑛2,𝑛3,𝑛4)

𝑖:𝑛𝑖>0

 

+ ∑ ∑ 𝑝𝑗𝑖

𝑖𝑗:𝑛𝑗>0

𝜎𝑗𝜋(⋯,𝑛𝑗+1,⋯,𝑛𝑖−1,⋯,), 

where 0 ≤ 𝑛1, 𝑛2, 𝑛3, 𝑛4 ≤ 𝑁 and ∑ 𝑛𝑖
4
𝑖=1 = 𝑁. This gives rise 

to |𝑆𝑄𝑁| = (𝑁 + 3)! (𝑁!⁄ × 3!)  differential equations on state 

probabilities matching those |𝑆𝑃𝐶|  differential equations in 

(6). Therefore, queue length distribution {𝜋(𝑛1,𝑛2,𝑛3,𝑛4)} for 

the 4-queueing-node N-entity queueing network in Fig.3 

and population distribution {𝜋(𝑆𝑟,𝑆𝑎,𝐼𝑟,𝐼𝑎)}  for the 4-

population N-computing-node PCMC are identical. Using 

(8) and (9), the mean evolution of the queue lengths 

evaluates the mean evolution of the PCMC populations.   

 
Fig.3 A closed queueing network realization of a PCMC for a 4-

population N-computing-node (C-node) N/VSIS network. Each 

queueing node (Q-node) is of the M/M/N/N type. Routing 

probabilities at the output of each Q-node indicates the likelihood 

of a departing C-node (entity) from a population group (Q-node) 

being routed to the input of another Q-node 

Fig.4 shows the evolution of mean queue lengths in the four 

queueing nodes of the 19-entity queueing network of Fig.3. 

Each sample path in the figure is the pointwise average of 

20 independent replications generated by SimEvents [8] 

initiated at state (𝑆𝑟, 𝑆𝑎, 𝐼𝑟 , 𝐼𝑎) = (19,0,0,0). The PCMC rate 

parameters (𝜂, 𝛿, 𝛽𝑟 , 𝛽𝑎 , 𝜇𝑟 , 𝜇𝑎 , 𝜇)  used in Section 2.3 are 

retained, which now enter the service rates and routing 

probabilities in the queueing network in Fig.3. They define 

distributions from which random variates of entity service 

times are sampled.  

 
Fig.4 Evolution of expected queue lengths in the 4-queueing node 

19-entity queueing network in Fig.3, generated by SimEvents that 

averages 20 independent replications initialized at (𝑛1, 𝑛2, 𝑛3, 𝑛4) 

=(19,0,0,0).  

With the equivalence between a PCMC and its queueing 

network realization established and numerically verified as 

seen in Fig.2 and Fig.4, we now move to examine the mean 

population evolution of a 1500-node N/VSIS network using 

discrete event simulation of a 1500-entity queueing network 

realization of its PCMC. Fig.5 shows the SimEvents 

generated average sample paths of 20 independent 

replications on the evolution of mean queue lengths using 

the same set of rate values. It is interesting to note that how 

the mean queue lengths (mean populations) evolve in time 

remains unchanged for this N/VSIS network of nearly 100 

times larger. 

 
Fig.5 Evolution of expected queue lengths in the 4-Q-node 1500-

entity queueing network in Fig. 3 initialized at (1500,0,0,0) with 

20 independent replications.    

To cover a wider range of the N/VSIS network size, PCMCs 

realized as closed queueing networks are programmed in 

MATLAB for evaluation of the evolution of the four mean 

queue lengths. As the N/VSIS network size increases from 

15 to 1,500 to 150,000 nodes, the CPU time increases from 

0.33 to 29.3 to 2943.8 seconds. This is a linear growth of 

CPU time. Each evaluation involves 10 replications of 20-

second long simulation time, and is carried out by a 2.6 GHz 

Intel Xeon processor with 8GB RAM.  

Remark 4. The queueing network realization of a PCMC 

enables fully rigorous evaluation of the mean populations 

without resorting to any mean field approximations and 

without having to solve for (6). The computational benefit 
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is gained through analysing the statistics of a few quantities 

easily observable from discrete event simulations and 

directly linked to the performance measures sought. More 

specifically, only the queue length profile samples at the 

four Q-nodes are acquired and averaged over a sufficient 

number of independent replications to estimate the mean 

population profiles of the PCMC. The samples are readily 

collected from the simulated queueing network in Fig.3 

with a defined set of Poisson clock structure and routing 

probabilities mapped from the PCMC. On the other hand, 

seeking mean population dynamics via evaluating (6), (8) 

and (9) for a PCMC requires at least multiples of 𝑁6 

floating point operations [2] in each discrete time step, 

which worsens to an exponential function of 𝑁 per time step 

for an NCMC.  

3.2 Some Extensions 

Some immediate extensions of the above work are now 

briefly discussed.  

(i) Queueing network realization of an m-population 

PCMC. Equivalence between the PCMC of an m-

population N-node computer network and the Markov chain 

of an m-queueing-node N-entity queueing network can be 

readily established for any m population groups following 

the same argument as in the proof of Theorem 1, which has 

been established for 𝑚 = 4.  

(ii) Queueing network realization of an NCMC modelling 

an arbitrary directed network of heterogeneous nodes. For 

simplicity, we return to the example of a 4-popualtion N-

computing-node N/VSIS network, for which, however, the 

assumption of homogeneous nodes and node interactions is 

relaxed. Now the servers in each Q-node are ordered 

according to the cardinal numbers assigned to the C-nodes. 

Sever i, 𝑖 = 1,⋯ ,𝑁, in Fig.3 can only host C-node i, with 

service rate 𝛽𝑟,𝑖 + 𝜂𝑖 , or 𝛽𝑎,𝑖 + 𝛿𝑖 , or 𝜇𝑟,𝑖 + 𝜇𝑖 , or 𝜇𝑎,𝑖  in Q-

node 𝑆𝑟, or 𝑆𝑎, or 𝐼𝑟, or 𝐼𝑎, respectively. As a result, at most 

one of the ith servers in the four Q-nodes can be occupied 

by C-node i at a time. The routing probabilities following 

each Q-node in Fig.3 must be modified to have subscript i 

as well, and thus its value becomes departure entity-

dependent. In this setting, the queueing network state space 

𝑆𝑄𝑁 becomes identical to state space 𝑆𝑁𝐶 of an NCMC. An 

example of naming the NCMC states is given in Table 2 

when N=2. Based on the argument in Remark 4, significant 

computational advantage can be expected in the evaluation 

of the NCMC mean population dynamics with a queueing 

network realization.  

 

4. CONCLUSIONS 

A strongly connected, homogeneous N/VSIS network [5] was 

placed in the class of node-centric networked Markov chains 

(NCMC) whose mean-field-like approximations conform to 

the traditional epidemiological models. To study the evolution 

of mean infectious populations of NCMCs for large networks, 

a population-centric Markov chain (PCMC) with significantly 

reduced state space size was proposed. Computational 

complexity for evaluation of mean population dynamics was 

further reduced to linear growth with respect to network size 

N by a proposed queueing network realization of the PCMC. 

Two extensions were discussed: (i) queueing network 

realization of PCMCs for m-population networks (m ≠ 4), and 

(ii) queueing network realization of NCMCs as an alternative 

computational framework for evaluation of mean population 

dynamics of networks with heterogeneous computing nodes. 

Many challenges remain. We seek in the future to design cost 

constrained policies to control the global prevalence of CTIs 

under the proposed new modelling framework (Remark 3). We 

look for ground-truth data to estimate the rate parameters [4] 

in the structured PCMCs for specific networks using labelled 

attack data (Remark 1). We also seek to formally establish the 

NCMC-queueing network equivalence, briefly discussed in 

Section 3.2 (ii), for heterogeneous networks and quantify the 

expected complexity reduction afforded by the queueing 

network realization (Remark 4). 
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