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Abstract: We propose an efficient solution method of finite horizon optimal control problems
(FHOCPs) for fixed-based rigid-body systems based on inverse dynamics. Our method can
reduce the computational cost compared with the conventional FHOCP based on forward
dynamics. We reformulate the FHOCP for the rigid-body systems by utilizing the generalized
acceleration as the decision variables and inverse dynamics as the equality constraint. We derive
the necessary conditions of the optimal control, namely, the optimality conditions, and formulate
a two-point boundary-value problem that can be solved efficiently by using the recursive Newton
Euler algorithm (RNEA) and the partial derivatives of RNEA. The results of the several
numerical experiments on nonlinear model predictive control using the proposed formulation
demonstrate the effectiveness of our approach.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC) (Magni et al.
(2008)) has attracted much attention in various fields,
especially in the robotics community in which it has
been applied to wheeled robots (Hsieh and Liu (2012)),
multicopters (Kamel et al. (2015)), and legged robots
(Koenemann et al. (2015); Neunert et al. (2018)). This
is because NMPC achieves a state-feedback control law
treating nonlinear dynamics and constraints explicitly by
solving a finite horizon optimal control problem (FHOCP)
at each sampling time. However, we cannot implement
NMPC unless we can solve the FHOCP within a given
sampling period. From this view, we still need to reduce
the computational cost of NMPC when we apply it to
complicated rigid-body systems such as legged robots that
have a high dimensional state, complicated dynamics, and
require a short sampling period.

When solving an FHOCP for NMPC, i.e., finding the
optimal control input that minimizes the performance
index subject to the dynamics of a controlled system, the
most efficient algorithms of NMPC belong to the first-
order methods (Graichen and Käpernick (2012)) or the
second-order methods (Ohtsuka (2004); Todorov and Li
(2005); Diehl et al. (2005); Ferreau et al. (2014); Frasch
et al. (2015); Zanelli et al. (2020)), both of which need
to compute a function representing the system’s dynamics
and its partial derivatives. In the FHOCP for a rigid-body
system, the state is composed of the generalized config-
uration and velocity, and the behavior of the system’s
dynamics for given decision variables is simulated over
the horizon by integrating the generalized acceleration.
Previous studies applying NMPC to such systems, e.g.,
? This work was partly supported by JSPS KAKENHI Grant
Number 15H02257.

Diehl et al. (2006), Gerdts et al. (2012), Koenemann et al.
(2015), and Neunert et al. (2018), assume the generalized
torque as decision variables of the FHOCP and compute
the generalized acceleration from the given generalized
configuration, velocity, and torque, which is called forward
dynamics. These studies also compute the partial deriva-
tives of the function of forward dynamics with respect to
the generalized configuration, velocity, and torque to apply
the aforementioned NMPC algorithms. Forward dynamics
and the partial derivatives are so complicated that their
computations occupy most of the total computational
cost of NMPC, requiring efficient numerical methods to
compute them. Featherstone (1983, 2008) proposed the
articulated body algorithm (ABA), a highly efficient re-
cursive algorithm to compute the forward dynamics of
open-chain rigid-body systems whose degree of freedom
is as large as realistic robots such as manipulators and
humanoid robots. When it comes to the partial derivatives
of the function of forward dynamics, a recursive algorithm
proposed by Carpentier and Mansard (2018) is faster than
other methods such as finite-difference approximation or
automatic differentiation (Neunert et al. (2016)). However,
it still takes up a lot of computational time, which makes
it difficult to use with NMPC.

An alternative representation of the dynamics of rigid-
body systems is inverse dynamics, which involves the cal-
culation of the generalized torque for the given general-
ized configuration, velocity, and acceleration. Like forward
dynamics, inverse dynamics and the partial derivatives
of the function of inverse dynamics are complicated and
require efficient numerical methods. The recursive New-
ton Euler algorithm (RNEA) (Featherstone (2008)) is the
most efficient algorithm to compute inverse dynamics. To
calculate the partial derivatives of the function of inverse
dynamics, a recursive algorithm proposed by Carpentier
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and Mansard (2018), referred to as the partial derivatives
of RNEA in their paper, is also more efficient than other
methods such as finite-difference and automatic differenti-
ation (Neunert et al. (2016)).

Featherstone (2008) demonstrated through analysis of
arithmetic operations and numerical experiments that the
computational cost of RNEA is less than that of ABA.
Furthermore, the computational cost of the partial deriva-
tives of RNEA is less than that of the recursive algo-
rithm for the partial derivatives of the function of forward
dynamics proposed by Carpentier and Mansard (2018).
The automatic differentiation of the function of inverse
dynamics is also faster than that of forward dynamics
(Neunert et al. (2016)). Therefore, we expect to reduce the
computational cost by replacing forward dynamics and the
partial derivatives of the function of forward dynamics in
the FHOCP with inverse dynamics and the partial deriva-
tives of the function of inverse dynamics. Fortunately, this
is possible because the forward and inverse dynamics of a
fully actuated system represent the equivalent constraints
derived from the same equation of motion.

Previous works on the FHOCP based on inverse dynamics
instead of forward dynamics are found in the context of
direct trajectory optimization with contacts (Erez and
Todorov (2012); Posa et al. (2014)). However, these studies
focus on the stable solution method for the complementar-
ity problem arising from contacts with the environment
rather than the computational efficiency. As a result, they
use the direct multiple shooting, where all variables are
treated as the decision variables of the optimization prob-
lem. Furthermore, they do not utilize efficient algorithms
for rigid body dynamics such as RNEA.

In this study, we propose an efficient solution method of
the FHOCP for rigid body systems using RNEA and the
partial derivatives of RNEA, which reduces the computa-
tional cost compared with the conventional FHOCP based
on forward dynamics. We reformulate the FHOCP with
the generalized acceleration utilized as decision variables
and inverse dynamics as an equality constraint. We then
derive the necessary conditions of the optimal control,
namely, the optimality conditions, and formulate a two-
point boundary-value problem (TPBVP) that can be ef-
ficiently solved by RNEA and the partial derivatives of
RNEA. For the resultant TPBVP, we can use either the
single shooting method or the multiple shooting method
with condensing (Bock and Plitt (1984)), whose optimiza-
tion problems are smaller than those of direct multiple
shooting. The TPBVP can also be combined with NMPC
algorithms such as Ohtsuka (2004); Diehl et al. (2005);
Ferreau et al. (2014); Frasch et al. (2015); Zanelli et al.
(2020). We conduct numerical experiments in several prob-
lem settings and show that the FHOCP based on inverse
dynamics is faster than the FHOCP based on forward
dynamics.

This paper is composed as follows. In Section 2, we
introduce the dynamics of rigid-body systems, and efficient
algorithms to compute them. In Section 3, we reformulate
the FHOCP and derive the optimality conditions based
on inverse dynamics and apply it to NMPC. In Section
4, we show a numerical simulation of NMPC and show
that the proposed method reduces the computational cost

compared with the conventional formulation based on
forward dynamics. In Section 5, we conclude our paper.

2. RIGID-BODY DYNAMICS

2.1 Dynamics of the Rigid-Body Systems

In this paper, we consider a fully actuated open-chain
fixed-based rigid-body system that has n joints. Let q ∈ Rn
be the generalized configuration of the system and τ ∈ Rn
be the generalized torque of the system. The equation of
the motion of this system is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ, (1)

whereM(q) ∈ Rn×n denotes the inertial matrix, C(q, q̇)q̇ ∈
Rn encompasses the Coriolis, frictional, and centrifugal
forces, and g(q) ∈ Rn denotes the gravity torque. Forward
dynamics is a calculation of the generalized acceleration
q̈ under the given generalized configuration q, generalized
velocity q̇, and generalized torque τ . In the following, we
describe the function of forward dynamics as FD(·, ·, ·) :
Rn × Rn × Rn → Rn, e.g.,

FD(q, q̇, τ) = M−1(q)(τ − C(q, q̇)q̇ − g(q)). (2)

On the other hand, inverse dynamics is a calculation
of the generalized torque τ under the given generalized
configuration q, velocity q̇, and acceleration q̈. In the
following, we describe the function of inverse dynamics as
ID(·, ·, ·) : Rn × Rn × Rn → Rn, e.g.,

ID(q, q̇, q̈) = M(q)q̈ + C(q, q̇)q̇ + g(q). (3)

The constraints

q̈ − FD(q, q̇, τ) = 0, (4)

and
τ − ID(q, q̇, q̈) = 0, (5)

are equivalent because the system is fully actuated, i.e.,
the dimensions of q̈ and that of τ are the same and M(q)
is square and non-singular.

2.2 Algorithms of the Rigid-Body Dynamics

When the system has three or more joints, it is difficult
to write the equation of motion (1) explicitly because it
is too complicated. In such cases, recursive algorithms
are required to compute forward and inverse dynamics.
ABA (Featherstone (1983, 2008)) would be the most
efficient algorithm to compute forward dynamics, and
RNEA (Featherstone (2008)) is the fastest algorithm to
compute inverse dynamics. More detailed descriptions of
rigid-body algorithms are found in Featherstone (2008). In
this paper, we assume that we compute FD(q, q̇, τ) using
ABA and ID(q, q̇, q̈) using RNEA.

2.3 Algorithms of the Partial Derivatives of the Rigid-Body
Dynamics

The most efficient algorithms of NMPC and nonlinear
optimal control are classified into first-order methods and
second-order methods, in which we need to compute the
partial derivatives of the state equations and constraints
with respect to the state and control input. If the con-
trolled systems are rigid-body systems, we need to com-
pute the partial derivatives of FD(q, q̇, τ) or ID(q, q̇, q̈).
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Explicit formulations of their derivatives are also difficult
because of their extreme complexities. Carpentier and
Mansard (2018) proposes an efficient algorithm of the
partial derivatives of ID(q, q̇, q̈), called the partial deriva-
tives of the RNEA. They also proposes an efficient way
to compute the partial derivatives of FD(q, q̇, τ). Because
they are faster than other methods such as finite-difference
or automatic differentiation (Neunert et al. (2016)), we
utilize their algorithms to compute the partial derivatives
of FD(q, q̇, τ) and ID(q, q̇, q̈) in this paper.

3. OPTIMAL CONTROL PROBLEM BASED ON
INVERSE DYNAMICS

The forward dynamics-based FHOCP for the rigid body
systems is a problem to find the optimal control input
minimizing a performance index subject to the state
equation

d

dt

[
q
q̇

]
:=

[
q̇

FD(q, q̇, τ)

]
. (6)

In solving the FHOCP, FD(·, ·, ·), ∂FD
∂q (·, ·, ·), ∂FD

∂q̇ (·, ·, ·),
and ∂FD

∂τ (·, ·, ·) are computed as many times as the divi-
sion number of the finite horizon to predict the future
trajectory of the system and evaluate its sensitivity. In
this section, we reformulate the FHOCP based on inverse
dynamics and its partial derivatives. We then derive the
necessary conditions of the optimal control and formulate
the TPBVP based on inverse dynamics.

3.1 Formulation of the FHOCP and the derivation of the
optimality conditions

To derive the optimality conditions based on inverse dy-
namics, we consider the generalized acceleration as the
decision variables in the FHOCP. Note that the general-
ized acceleration q̈ and torque τ of a fully actuated system
have the same dimensions and are equivalent through q̈ =
FD(q, q̇, τ) and τ = ID(q, q̇, q̈) as well as the constraints
(4) and (5). We set the state as x := [qT q̇T]T. Since we
assume that the generalized acceleration q̈ (t0 ≤ t′ ≤ tf )
is known, the state equation is simply given by

d

dt

[
q
q̇

]
:= f(q̇, q̈) =

[
q̇
q̈

]
. (7)

However, (7) cannot consider the effect of the system’s
dynamics (1). We therefore consider the inverse dynamics
(3) as an equality constraint in the FHOCP. We also
assume that q0 and v0 are given as

q0 = q(t0), v0 = q̇(t0). (8)

The optimization problem is then given as follows: find
the optimal generalized acceleration q̈(t′) (t0 ≤ t′ ≤ tf )
minimizing the cost function

J = ϕ(q(tf ), q̇(tf ))+

∫ tf

t0

L(q(t′), q̇(t′), q̈(t′), u(t′))dt′, (9)

subject to (7) and

u(t′)− ID(q(t′), q̇(t′), q̈(t′)) = 0. (10)

Note that u denotes the control input torques and we
define the stage cost as L(q, q̇, q̈, u) so that the acceleration
can be included in its arguments to evaluate the accelera-
tion in the cost function explicitly. In contrast, the stage
cost in the forward dynamics-based formulation is often

formulated by a function of the configuration, velocity, and
torques, i.e., L(q, q̇, u). This FHOCP is then equivalent to
the FHOCP based on forward dynamics unless the terms
related to the generalized acceleration are included in the
cost function (9). However, we sometimes need to impose
the penalty on the generalized acceleration in the cost
function to improve the numerical stability in practice.

Next, we discretize the FHOCP for numerical computa-
tion. We devide the horizon into N steps and introduce
∆τ := (tf − t0)/N . We discretize the generalized configu-
ration into q0, ..., qN , velocity into v0, ..., vN , acceleration
into a0, ..., aN−1, and the control input into u0, ..., uN−1.
The cost function (9) is then discretized as

J = ϕ(qN , vN ) +

N−1∑
i=0

L(qi, vi, ai, ui)∆τ, (11)

the state equation (7) is discretized as[
qi+1

vi+1

]
=

[
qi
vi

]
+

[
vi
ai

]
∆τ, i = 0, ..., N − 1, (12)

and the constraint (10) is discretized as

ui − ID(qi, vi, ai) = 0, i = 0, ..., N − 1. (13)

To derive the optimality conditions, we introduce the
Lagrange multipliers for (12), λ1, ..., λN ∈ Rn, γ1, ..., γN ∈
Rn, and the Lagrange multipliers for (13), β0, ..., βN−1 ∈
Rn and formulate the augmented cost function

J̃ = ϕ(qN , vN ) +

N−1∑
i=0

L(qi, vi, ai, ui)∆τ

+

N−1∑
i=0

λTi+1 (vi∆τ + qi − qi+1)

+

N−1∑
i=0

γTi+1 (ai∆τ + vi − vi+1)

+

N−1∑
i=0

βT
i (ui − ID (qi, vi, ai)) ∆τ. (14)

By making all variables perturbed, we obtain δJ̃ as in (15).
We then derive the optimality conditions, necessary condi-
tions for δJ̃ = 0 under arbitrary δq1, ..., δqN , δv1, ..., δvN ,
δa0, ..., δaN−1, and δu0, ..., δuN−1 (Note that δq0 = 0 and
δv0 = 0 because q0 and v0 are fixed by (8)):(

∂ϕ

∂q

)T

(qN , vN )− λN = 0, (16)

(
∂L

∂q

)T

(qi, vi, ai, ui)∆τ−
(
∂ID

∂q

)T

(qi, vi, ai)βi∆τ

+ λi+1 − λi = 0, (17)

for i = 1, ..., N − 1,(
∂ϕ

∂q̇

)T

(qN , vN )− γN = 0, (18)

(
∂L

∂q̇

)T

(qi, vi, ai, ui)∆τ−
(
∂ID

∂q̇

)T

(qi, vi, ai)βi∆τ

+ λi+1∆τ + γi+1 − γ=0, (19)

for i = 1, ..., N − 1,
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δJ̃ =

(
∂ϕ

∂q

)T

(qN , vN )δqN +

(
∂ϕ

∂q̇

)T

(qN , vN )δvN

+

N−1∑
i=0

{(
∂L

∂q

)T

(qi, vi, ui)δqi +

(
∂L

∂q̇

)T

(qi, vi, ui)δvi +

(
∂L

∂q̈

)T

(qi, vi, ui)δai +

(
∂L

∂u

)T

(qi, vi, ui)δui

}
∆τ

+

N−1∑
i=0

λTi+1 (δvi∆τ + δqi − δqi+1) +

N−1∑
i=0

γTi+1 (δai∆τ + δvi − δvi+1)

+

N−1∑
i=0

βT
i

{
δui −

(
∂ID

∂q

)
(qi, vi, ai) δqi −

(
∂ID

∂q̇

)
(qi, vi, ai) δvi −

(
∂ID

∂q̈

)
(qi, vi, ai) δai

}
∆τ (15)

γi+1 +

(
∂L

∂q̈

)T

(qi, vi, ai, ui)−
(
∂ID

∂q̈

)T

(qi, vi, ai)βi = 0,

(20)

for i = 0, ..., N − 1, and(
∂L

∂u

)T

(qi, vi, ai, ui) + βi = 0, (21)

for i = 0, ..., N − 1. From (21), we can eliminate β1, ..., βN
in (17), (19) and (20) as(

∂ID

∂q

)T

(qi, vi, ai)

(
∂L

∂u

)T

(qi, vi, ai, ui)∆τ

+

(
∂L

∂q

)T

(qi, vi, ai, ui)∆τ + λi+1 − λi = 0, (22)

(
∂ID

∂q̇

)T

(qi, vi, ai)

(
∂L

∂u

)T

(qi, vi, ai, ui)∆τ

+

(
∂L

∂q̇

)T

(qi, vi, ai, ui)∆τ + λi+1∆τ + γi+1 − γi = 0,

(23)

and

γi+1 +

(
∂L

∂q̈

)T

(qi, vi, ai, ui)

+

(
∂ID

∂q̈

)T

(qi, vi, ai)

(
∂L

∂u

)T

(qi, vi, ai, ui) = 0, (24)

respectively. The FHOCP is then reduced to the following
nonlinear problem: find the sequence of the optimal gen-
eralized acceleration a0, ..., aN−1 satisfying (8), (12), (16),
(18), and (22)–(24). Note that under the given a0, ..., aN−1,
we can first determine v0, ..., vN and q0, ..., qN from (8) and
(12). Then, we can determine u0, ..., uN−1 by

ui = ID(qi, vi, ai). (25)

Finally, we can determine the multipliers λN , ..., λ1 from
(16) and (22) and γN , ..., γ1 from (18) and (23). The errors
from the optimal control of given a0, ...aN−1 can be then
measured by (24) for i = 0, ..., N − 1, which defines the
TPBVP.

Except the terms related to the acceleration in (11), the
proposed formulation is identical to the formulation based
on forward dynamics because the adjointed constraints
(12) and (13) are equivalent to the discretized state equa-
tion (6), which is treated as a constraints in the FHOCP
based on forward dynamics,[
qi+1

vi+1

]
=

[
qi
vi

]
+

[
vi

FD(qi, vi, ui)

]
∆τ, i = 0, ..., N−1. (26)

The dimensions of the decision variables are the same
between the two formulations, i.e., the total dimension of
a0, ..., aN−1 and that of u0, ..., uN−1 are the same.

3.2 Application to NMPC

Next, we apply the proposed formulation of the FHOCP to
NMPC for rigid-body systems. We hereafter consider the
optimality-conditions-based numerical methods of NMPC,
i.e., numerical methods that seek a solution satisfying a
number of conditions such as the optimality conditions, the
Pontryagin’s maximum principle (PMP), or the Karush-
Kuhn-Tucker (KKT) conditions. We also assume that
these methods are Hessian-free, that is, we do not need to
compute further derivatives of these conditions explicitly.
It is worth noting that typical efficient second-order algo-
rithms of NMPC use Hessian approximation such as finite-
difference (Ohtsuka (2004)) or Gauss-Newton (Diehl et al.
(2005); Ferreau et al. (2014); Frasch et al. (2015); Zanelli
et al. (2020)) because computing further derivatives re-
quires too much computational time and is impractical.

In NMPC for rigid-body systems based on the forward
dynamics-based FHOCP, we compute the optimal control
input torques from the current time t to the finite future
t + T (T > 0) on the basis of the current state q(t)
and q̇(t) at each sampling time. Then, the initial value of
the optimal control input torques is applied to the actual
system. In contrast, the solution of the proposed FHOCP
based on inverse dynamics is the optimal generalized
acceleration a0, ..., aN−1. Therefore, after obtaining the
optimal generalized acceleration a0, ..., aN−1 by solving the
proposed FHOCP on the basis of the current state, we have
to compute the actual control input applied to the system,
e.g., by

u(tapp) = ID(q̃(tapp), ˜̇q(tapp), a0), (27)

where tapp is the instant when the optimal control input

is applied to the system and q̃(tapp) and ˜̇q(tapp) are the
estimations of the generalized configuration and general-
ized velocity at tapp. Note that if a lag between the state
measurement and the application of the control input is
sufficiently short, i.e., t ' tapp, we can estimate q̃(tapp) '
q(t) and ˜̇q(tapp) ' q̇(t). When we cannot disregard the

lag, we estimate q̃(t) and ˜̇q(t) using the optimal general-
ized acceleration computed at the previous sampling time,
â0, ..., âN−1, e.g., by

q̃(tapp) = q(t)+(tapp− t)q̇(t), ˜̇q(tapp) = q̇(t)+(tapp− t)â0.
(28)
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4. NUMERICAL EXPERIMENTS

In this section, we compare the proposed FHOCP based
on inverse dynamics with the FHOCP based on forward
dynamics in terms of computational time by simulating
NMPC using these FHOCPs.

4.1 NMPC controllers using the continuation/GMRES
method

In numerical experiments of NMPC in this paper, we uti-
lize the continuation/GMRES (C/GMRES) method (Oht-
suka (2004)) as an efficient Hessian-free method of NMPC.
The C/GMRES method achieves fast computation by
tracking the solution of the FHOCP, i.e., it computes the
time variant of the optimal solution instead of computing
it directly by solving the FHOCP. Let U(t) be a solution of
the FHOCP and F (U(t), x(t), t) = 0 be the equation U(t)
has to satisfy, i.e., U(t) = [uT0 · · · uTN−1]T for the FHOCP

based on forward dynamics and U(t) = [aT0 · · · aTN−1]T for
the FHOCP based on inverse dynamics. F (U(t), x(t), t) for
the FHOCP based on forward dynamics is easily obtained
by using the state equation (6) in the TPBVP described in
Ohtsuka (2004). F (U(t), x(t), t) for the FHOCP based on
forward dynamics is composed by (24) for i = 0, ..., N − 1.
Note that the current state x(t) is given by [q(t)T v(t)T]T.
The C/GMRES method does not solve the nonlinear equa-
tion F (U(t), x(t), t) = 0 directly but solves the following
equation that is derived using the continuation method
(Richter and DeCarlo (1983))

∂F

∂U
U̇ = −∂F

∂x
ẋ− ∂F

∂t
− ζF, (29)

where ζ > 0 is a stabilization parameter. Note that
we omit arguments in (29). The products of the partial
derivatives of F and vectors in (29) are computed by the
finite-difference approximation and the partial derivatives
of F are not computed explicitly, i.e., we do not need to
compute the partial derivatives of the state equation, the
constraints, and the cost functions twice, which means it is
a Hessian-free method. The C/GMRES method computes

U̇ by solving the linear problem (29) using the GMRES
method (Kelly (1995)), a fast inexact numerical solver of
the linear problem, and updates the solution by

U(t+ ∆t) = U(t) + U̇∆t, (30)

where ∆t > 0 is the sampling period.

In the following, we consider two NMPC controllers
for fully actuated rigid-body systems: one utilizing the
C/GMRES method solving the FHOCP based on forward
dynamics and the other utilizing the C/GMRES method
solving the FHOCP based on inverse dynamics. We call
the former C/GMRES (FD) and the latter C/GMRES
(ID). Note that in C/GMRES (ID), the sequence of the
optimal generalized acceleration is updated by (30). The
control input to the system is then obtained by (27) and
the lag in the state measurement is coped with by (28) with
setting tapp = t+∆t. The following describes the common
settings of the two controllers. We set the length of the
horizon of NMPC as a time-dependent smooth function
T (t) such that T (0) = 0 and T (t)→ Tf (t→∞), e.g., as

T (t) = Tf (1− e−αt), (31)

!"!#
!$

!%

Fig. 1. A fixed-based fully actuated four-link arm

for the initialization of the solution (see Ohtsuka (2004)),
where Tf = 0.5, α = 1.0. We also set the increment of the
finite-difference approximation in the C/GMRES method
as h = 1.0× 10−8 and the stabilization parameters of the
C/GMRES method ζ by the reciprocal of the sampling pe-
riod. The remaining parameters of the C/GMRES method
are the number of the discretization of the horizon N and
the number of the iteration of the GMRES method kmax,
which we do not fix here. Note that the computational time
of the C/GMRES method is determined by the number of
joints n, N , and kmax with n indicating the complexity
of the system. As n increases, the computational time of
RNEA, ABA, and the partial derivatives of both functions
of inverse and forward dynamics increase. As N increases,
the accuracy of the solution increases because the ap-
proximation of the continuous FHOCP by the discretized
FHOCP becomes more accurate and the computational
cost increases because the number of times to calculate
RNEA, ABA, and both partial derivatives increases. As
kmax increases, the accuracy of the solution and the com-
putational cost also increases because the linear problem
(29) is solved more accurately.

4.2 Swing-Up Control of a Fixed-Based Fully Actuated
Four-link Arm

Problem Settings First, we simulate the swing-up control
of a fully actuated four-link arm depicted in Fig. 1 using
C/GMRES (FD) and C/GMRES (ID). In Fig. 1, a white
circle is the fixed-base joint and the black circles are the
other joints. The generalized configuration is given by
q = [θ1 θ2 θ3 θ4]T. We assume that each joint has no
mass and inertia and that each link has the same physical
characteristics. We set the whole length of the link to 1[m],
the width to 0.1[m], and the mass to 1[kg]. We also assume
that the mass is distributed uniformly in the link. We
construct the terminal cost of both C/GMRES (FD) and
C/GMRES (ID) by

ϕ(q, v) =
1

2
(q − qref)TQq (q − qref) +

1

2
vTQvv, (32)

where qref = [0, 0, 0, 0]T, Qq = diag {1, 1, 1, 1}, and Qv =
diag {0.1, 0.1, 0.1, 0.1}. We set the stage cost of C/GMRES
(FD) by

L(q, v, u) =
1

2
(q − qref)TQq (q − qref) +

1

2
vTQvv

+
1

2
uTRu, (33)

where R = diag
{

10−4, 10−4, 10−4, 10−4
}

, and that of
C/GMRES (ID) by

L(q, v, a, u) =
1

2
(q − qref)TQq (q − qref) +

1

2
vTQvv

+
1

2
aTQaa+

1

2
uTRu. (34)
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Table 1. Average computational time [ms] per
control update of C/GMRES (FD) for the

four-link arm.

N = 10 N = 15 N = 25 N = 50

kmax = 3 0.37* 0.55* 0.94* 1.8*

kmax = 5 0.48* 0.75* 1.2* 2.4*

kmax = 10 8.1 1.2 2.0 4.0

* Computation diverges.

Table 2. Average computational time [ms] per
control update of C/GMRES (ID) for the four-

link arm.

N = 10 N = 15 N = 25 N = 50

kmax = 3 0.22* 0.33* 0.58* 1.1*

kmax = 5 0.29 0.45 0.81 1.5*

kmax = 10 0.47 0.73 1.3 2.5

* Diagonals of Q are nonzero.

where Qa ∈ R4×4 is a diagonal matrix. Note that if we
set all diagonal elements of Qa by zero, the stage cost
is the same between in C/GMRES (FD) and C/GMRES
(ID). However, we set all diagonal elements of Qa by
1.0 × 10−4 only if the numerical computation fails with
setting them by 0. We simulate the swing-up control
of the four-link arm using two controllers with various
number of discretization of the horizon N and various
iterations of the GMRES method kmax. We choose kmax

from {3, 5, 10} and N from {10, 15, 25, 50}. The numerical
simulations are performed under the following conditions.
The initial generalized configuration of the system is
[−π, 0, 0, 0]T and the initial generalized velocity of the
system is [0, 0, 0, 0]T. The sampling period is 1[ms] and
the simulation time is 10[s]. The CPU is Intel Core i5
2.00 GHz and the C/GMRES method is written in C++.
To compute ABA, RNEA, and the partial derivatives of
both functions of forward and inverse dynamics, we utilize
Pinocchio (Carpentier et al. (2019)), an efficient C++
library for the rigid-body dynamics algorithms.

Simulation Results We enumerate the average compu-
tational time per control update of C/GMRES (FD) for
all kmax ∈ {3, 5, 10} and N ∈ {10, 15, 25, 50} in Table 1
and those of C/GMRES (ID) in Table 2. Note that if
the computation diverges in C/GMRES (FD), we write
asterisks in Table 1. The computational time is then mea-
sured until the divergence. If the computation diverges in
C/GRMRES (ID), we set the diagonal elements of Qa
1.0 × 10−4, which is shown as asterisks in Table 2. As
a result, all the cases are succeeded in inverting the arm
without the divergence. As shown in Table 1 and Table
2, the computational time of C/GMRES (ID) is less than
that of C/GMRES (FD) under the same N and kmax.

We also found that C/GMRES (ID) with setting all the
diagonal elements of Qa by zero results in little difference
in control input with C/GMRES (FD). We show the
simulation result of C/GMRES (ID) when N = 25 and
kmax = 10 in Fig. 2. C/GMRES (FD) results almost the
same control as in Fig. 2 so that we cannot read the
difference from the graphs like Fig. 2. This fact shows that
the proposed FHOCP reduces computational time without
compromising performance.

Table 3. Average computational time [ms] of
C/GMRES (FD) and C/GMRES (ID) for var-

ious numbers of joints n

n = 8 n = 16 n = 24 n = 32

C/GMRES (FD) 4.5 11 20 32

C/GMRES (ID) 2.6 6.0 10 16

4.3 Comparison of the Computational Time for Rigid-Body
Systems with Various Numbers of Joints

Next, we compare the computational efficiency of the
two controllers with various numbers of joints. We fix
N = 25 and kmax = 10 and restrict the number of joints
of the controlled system n to 8, 16, 24, and 32. This
subsection aims to compare the computational time of
the two controllers for the control update and measure
the calculation time until the calculation diverged. We
list the average computational time of the control update
of the two controllers in Table 3. The results show that
C/GMRES (ID) reduces the computational time up to
50% from C/GMRES (FD) in every case.

5. CONCLUSIONS

In this paper, we have proposed an efficient solution
method of the FHOCP for rigid body systems using
RNEA and the partial derivatives of RNEA, which re-
duces the computational cost compared with the con-
ventional FHOCP based on forward dynamics. We have
reformulated the FHOCP with the generalized accelera-
tion utilized as decision variables and inverse dynamics
as an equality constraint. We have derived the optimality
conditions and formulated the TPBVP so that it can be
solved efficiently by RNEA and the partial derivatives of
RNEA. Numerical experiments have shown that NMPC
solving the proposed FHOCP based on inverse dynamics
reduces the computational cost compared to solving the
FHOCP based on forward dynamics. For future work, we
will formulate the FHOCP based on inverse dynamics for
under-actuated systems such as floating base systems. We
will also examine the contact forces arising in realistic
problems, e.g., manipulation and locomotion.
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