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Abstract: Shannon’s sampling theory has had a great impact not only on signal processing, but also
on digital control theory. According to this theory it is universally believed that the so-called Nyquist
frequency is the absolute upper bound for any control objectives. For example, tracking or rejection of
signals that resides beyond the Nyquist frequency has been regarded impossible. On the other hand,
such a demand can often be encountered in practice. Disturbance rejection of winds in hard disc drives
where such a disturbance usually occurs at a frequency higher than the Nyquist frequency are such
examples. The present paper summarizes the recent results obtained by the authors that show that such
high frequency tracking/rejection problems are indeed solvable, even for the case that involve multiple
tacking and rejection signals simultaneously. It is also possible to give a robustness result that also
exhibits an interesting relationship between robustness and delay length introduced for tracking and
rejection. The paper gives a brief overview of the results obtained thus far, and also provides a new
result on robustness. Some simulation results are presented to show that the method can work in various
practical situations.
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1. INTRODUCTION

Shannon’s sampling theory has had a great impact not only on
signal processing, but also on digital control theory. According
to this theory it is universally believed that the so-called Nyquist
frequency is the absolute upper bound for any control objec-
tives. For example, tracking or rejection of signals that reside
beyond the Nyquist frequency has been regarded impossible.

On the other hand, there certainly exist many practical situ-
ations where such control objectives are demanded. For ex-
ample, rejection of wind disturbances of hard-disc drives (At-
sumi (2010); Zheng et al. (2016)), noise rejection of robotic
arms, tracking/regulation of an electric power supply curve,
where the demanded sampling frequency is not high enough
to allow for these signals to be below the Nyquist frequency.
1 This author was supported in part by the Japan Society for the Promotion of
Science under Grants-in-Aid for Scientific Research No. 19H02161. The author
also wishes to thank DIGITEO and Laboratoire des Signaux et Systemes (L2S,
UMR CNRS), CNRS-CentraleSupelec-University Paris-Sud and Inria Saclay
for their financial support while part of this research was conducted.

Such a limitation on the sampling frequency occurs due to
varied physical constraints. For example, in the case of hard-
disc drives, the sampling frequency is inherently limited due
to the limited number of markings on the rotating discs (and
the maximum rotation speed of the discs) whereas the rotation
of those discs often generate winds that have high-frequency
components higher than the Nyquist frequency.

If we faithfully follow the dogma demanded by the sampling
theorem, there seems to be no way out. However, this is based
on somewhat loose thinking. There are two important elements
either ignored or overlooked.

• The band-limiting condition is only a sufficient condition,
not necessary. Hence there is certainly a room for im-
provement if we remove this condition.

• We do not necessarily need perfect signal recovery.

While the authors have successfully derived a new framework
in digital signal processing Yamamoto et al. (2012) and shown
that signal recovery beyond the Nyquist frequency is indeed
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possible, there has not been much progress in the above control
problems involving such high frequency signals.

The above observations, however, also lead to a new solution in
the sampled-data control context. In view of this new paradigm,
we call the tracking and rejection schemes hypertracking and
hyperrejection to disinguish them from the classical sampled-
data control thinking.

2. PROBLEM FORMULATION

Consider the sampled-data system depicted in Fig. 1.
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Fig. 1. Sampled-data feedback system

P(s) is a linear, time-invariant, continuous-time plant, and K(z)
is a linear, time-invariant, discrete-time controller. The error
e is sampled with sampling period h, and after sampled, it is
upsampled by factor M to allow for a faster control processing.
The action of ↑M is given as follows:

(↑M)(e)[kh+ `] =

{
e[kh] if `= 0
0 `= h/M, . . .(M−1)h/M.

(1)

Hh/M is the zero-order hold that holds the output as constant
for the period of h/M.

We now consider the following problem:
Problem 1: In the block diagram Fig. 1, consider the reference
input sinωt where ω is greater than the Nyquist frequency π/h.
Find a discrete-time controller K(z) such that the output y(t)
nearly tracks the reference r(t) = sinωt or its delayed signal
r(t−L) = sinω(t−L).

We have given some solutions for this problem in Yamamoto
et al. (2016, 2017, 2018). The basic scenario is the following:

• Introduce a weighting function F(s) to the input so that
the input has a peak at the desired tracking frequency ω .
• Invoke sampled-data H∞ control to optimally design K(z).

3. DESIGN METHOD

Observe first that our system Fig. 1 cannot be used as it is for
a design block diagram for H∞ sampled-data control. Sampling
is not a bounded operator on L2, and hence system Fig. 1 as it
is cannot be used as a design model. To remedy this, we place a
strictly proper anti-alias filter F(s) in front of the adding point
of the error. In other words, the reference signal is pre-filtered
by F(s). This is advantageous in that we can control frequency
weighting in the input reference signals. We here emphasize
that unlike the usual case of F(s) where we put more emphasis
on the low-frequency range, we attempt to place more emphasis
on the frequency that we wish to track. This is a rather non-
standard idea different from usual sampled-data control, and
the objective here is to show that this does indeed work for the
tracking purpose of this paper.

Another attempt we devise here is that we allow some delays in
tracking. That is, instead of taking the error e(t) = r(t)− y(t),
we try to minimize the delayed error ẽ(t) := r(t−L)− y(t) for
some positive L as stated in Problem 1. This is under analogy

from the case of delayed signal construction in Yamamoto et al.
(2012) where we can achieve better performance by allowing
certain delays in signal reconstruction. While its real advantage
in performance is yet to be investigated in the future, this will
give us at least more freedom in controller design.

Incorporating these changes into Fig. 1, we obtain the following
generalized plant Fig. 2 for design. Here L is a design parame-
ter; we usually take L to be an integer multiple of h, with some
small number such as 4 – 10.

[
e−LsF −P

F −P

]
e

ẽ

u

r

Fig. 2. Generalized plant

We skip the details in the analysis of the design stated above.
Details can be found in Yamamoto et al. (2016, 2017, 2018),
and we here summarize

• the results obtained in the references above, and
• give a theorem on robustness in this new method.

4. EXAMPLE, DESIGN, AND SIMULATION

Example 4.1. Consider the plant

P(s) :=
1

s2 +2s+1
(2)

with (normalized) sampling period h = 1 in Fig. 1. The Nyquist
frequency is then π [rad/sec] which is just equal to 0.5 [Hz].
Suppose that we are given the tracking signal r = sinωt, where
ω = 3π/2 [rad/sec], which is equal to 0.75 [Hz]. This is clearly
above the Nyquist frequency, and a normal signal-processing
intuition or a digital control thinking may tell us that it is
impossible to track.

The basic idea is that we place more weight on this high
frequency signal rather than the low frequency range below the
Nyquist frequency. In fact, we take the weighting function

F(s) :=
s

s2 +0.1s+(3π/2)2 . (3)

which has a clear peak at 3π/2 [rad/sec] and also deemphasizes
low-frequency.

The response against the sinusoid r(t) = sin(3π/2)t is shown
in Fig. 3 with M = 8 and L = 4h. This figure clearly shows
that the output tracks the reference input sin(3π/2)t, which has
the natural frequency greater than the Nyquist frequency π , and
the output matches the given frequency 3π/2. Note also that
the output shows the delay of 4 steps which is specified by the
design specification.

Fig. 4 and Fig. 5 show the Bode plot of the controller as
well as its output. This output shows that the discrete-time
output indeed gives a discrete-time approximation of the sinu-
soid sin(3π/2)t, that is, the discrete-time controller contains
an approximate internal model of the reference input. If we in-
crease the upsampling factor M, it is expected that the designed
controller produces more accurate sinusoids.

The following example shows a tracking to a yet higher fre-
quency 5π/2:
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Example 4.2. Take the same plant P(s) := 1/(s2 +2s+1), but
with the objective of tracking the sinusoid sin(5π/2)t, i.e.,
sinusoid at 1.25 [Hz]. We take a new weight

F(s) :=
s

s2 +0.1s+(5π/2)2 ,

which now has a peak at 5π/2 [rad/sec].

The following Fig. 6 shows the result with M = 16 and L = 4.
We skip to show the Bode plot of the controller which looks
fairly similar to Fig. 4.

5. SIMULTANEOUS TRACKING AND REJECTION

Now consider the sampled-data system depicted in Fig. 7.

We take the following generalized plant Fig. 8 for the design:

the objective of tracking the sinusoid sin(5π/2)t, i.e., sinusoid
at 1.25 [Hz].
Example 5.1. Take the same plant and design specifications as
above with the objective of tracking sin(π/6)t and rejecting the
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Fig. 3. System output tracking sin(3π/2)t along with the de-
layed error
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Fig. 4. Discrete-time controller
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Fig. 5. Discrete-time controller output
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Fig. 6. System output tracking sin(5π/2)t along with the de-
layed error
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Fig. 7. Sampled-data feedback system with input disturbance

[
e−LsFr −PFd −P

Fr −PFd −P
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u
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Fig. 8. Generalized plant in the presence of input disturbance

disturbance sin(3π/2)t. That is, the tracking frequency is below
the Nyquist frequency while the disturbance above the Nyquist
frequency enters into the plant input. We take the following
weights:

Fr(s) =
s

s2 +0.01s+ω2
1
, Fd(s) =

s
s2 +0.01s+ω2

2
, (4)

Fig. 9 shows that the error has been very well attenuated.
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Fig. 9. Delayed error against sin(π/6)t in the presence of the
input disturbance sin(3π/2)t.

6. ROBUSTNESS

In order that the proposed framework of hypertracking and
hyperrejection be practical, we clearly need robustness under
various plant perturbations. We raise the following question:

Is it possible to guarantee hypertracking/hyperrejection
even under the presence of plant fluctuations or refer-
ence/disturbance frequency variations?

Let us start with the following example.
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Example 6.1. We take the same plant (2) as in Example 4.1 for
tracking sinωt with ω = π/3. with weighting function

Fr(s) =
s

s2 +0.01s+ω2 . (5)

We set the upsampling factor M = 8, the delay length L = 4.
While Fig. 10 shows a fine tracking property, it produces a
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Fig. 10. System output tracking sin(π/3)t without disturbance

fairly large error when we variate the plant P to P 7→ P+∆,
∆(s) = 0.05/(s+1). See Fig. 11 for comparison.
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Fig. 11. System output tracking sin(π/3)t under the additive
perturbation 0.05/(s+1) to the plant

In contrast, consider the following example.
Example 6.2. We take the same plant and simulation condition
as in Example 6.1, only with the difference that the tracking
signal r is replaced by r(t) = sin(π/2)t and the weighting
function (5) with ω = π/2. The result of robustness test for even
with a larger plant perturbation P 7→ P+∆, ∆(s) = 0.3/(s+1)
shows a fine tracking; Fig. 12.

The difference of these two examples becomes clear by the
following theorem:
Theorem 6.3. Consider the hypertracking problem Fig. 1 with
tracking/rejection signal sinωt and tracking delay L = mh. If
L is an integer multiple of 2π/ω , then the resulting system
possesses an (approximate) internal model of those sinusoidal
signals.

Proof is omitted here.

It is interesting to observe that this theorem shows that the
overall (robustness) performance does not necessarily improve
as the delay length becomes larger.
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Fig. 12. System output tracking sin(π/2)t under the additive
perturbation 0.3/(s+1) to the plant

7. CONCLUSION

We have summarized the results on hypertracking/hyperrejection
obtained thus far, and also given a new theorem on robustness
(the proof will be given elsewhere). It is highly interesting to
note that such a tracking and rejection problem involving sig-
nals beyond the Nyquist frequency is indeed possible provided
we give a sufficient attention on the choice of delays in tracking
to guarantee necessary robustness. Further outcomes of this
new scheme will be investigated in the future.
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