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Abstract: This work studies chance constrained optimization of boundary-value parabolic
partial differential equations (CCPDE) with random data, where the PDE model is treated
as equality constraint and chance constraints are imposed on inequality constraints involving
state variables. Since such a CCPDE problem is generally non-smooth, non-convex and difficult
to solve directly, we use our recently proposed smoothing approximation method to solve the
problem. As a result, the probability function of the chance constraints is approximated in
two different ways by a family of differentiable functions. This leads to two smooth parametric
optimization problems IAτ and OAτ , where the feasible sets of IAτ are always subsets (inner
approximation) and the feasible sets of OAτ always supersets (outer approximation). The
feasible sets of IAτ (resp. OAτ ) converge asymptotically to the feasible set of the CCPDE.
Moreover, any limit point of a sequence of optimal solutions of IAτ (resp. OAτ ) is a stationary
point of CCPDE. The viability of the approximation approach is numerically demonstrated by
optimal thermal cancer treatment as a case study.
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1. INTRODUCTION

Partial differential equations are widely used to describe
the spatial variations of the behaviors of physical, bi-
ological, social systems as well as processes in nature,
industrial manufacturing, etc. In general, practical PDE
models involve uncertainties arising from imprecise model
parameters and the operational environment of the sys-
tem. Frequently, a PDE model contains parameters, for
example, describing heat capacity, diffusion, viscosity, hy-
draulic conductivity, pressure, permeability, etc. These
parameters are usually difficult to precisely determine,
i.e., they vary randomly in space and time. Therefore, the
random parameters can be considered as random fields[1]-
[11]. In real-life applications, external influences have a
non-negligible impact and seriously disturb the system
behavior. For example, ambient temperature and pressure
are external uncertain influences imposing a serious impact
on the performance of a PDE system. This means that
such uncertainties will definitely cause significant uncer-
tainties in state variables, thus leading to difficulties in
dealing with their inequality constraints for optimization.
Therefore, stochastic optimization methods are needed
to gain optimal as well as reliable solutions for systems
governed by PDEs under uncertainty.

This work considers uncertain influences arising from
model parameters (coefficients), forcing term, and bound-
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ary conditions of PDE systems and assumes that all un-
certain influences are random variables. As a result, we
study the chance constrained optimization of boundary-
value parabolic PDE systems (CCPDE), where chance
constraints are imposed on the inequality constraints in-
volving state variables. Preliminary theoretical functional
space analysis of elliptic CCPDE problems can be found
in our recently work [7]. Recently the work [6; 7; 14] (also
related work [13]) study chance constrained optimization
problems on infinite dimensional spaces. Nevertheless, so-
lution approaches for CCPDE problems are not yet well-
developed. Hence, this work demonstrates the practical
applicability of the approach developed in [7] for the so-
lution of CCPDE problems with parabolic PDE systems.
Moreover, as a case-study, we consider chance constrained
optimal control of a parabolic PDE system that naturally
arises in hyperthermia treatment (HT)[2; 3; 5; 12]. It is
now a well established practice to use HT as a pretreat-
ment strategy in modern clinical cancer therapy.

The numerical computation of CCPDE needs a finite
dimensional representation through space-time discretiza-
tion coupled with appropriate sampling for the random
variables. Since the resulting finite dimensional chance
constrained optimization problem is generally nonsmooth,
nonconvex and are difficult to solve directly, we use our
recently proposed smoothing inner-outer approximation
approach [9; 7] for the solution of the CCPDE problem.
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The paper is organized as follows. Section 2 presents the
problem definition of CCPDE. Section 3 discusses basic
concepts and relevant results of the inner-outer approxi-
mation approach. Section 4 presents a hypothetical hyper-
thermia treatment problem as a case study. The problem
is modeled as a CCPDE problem and subsequently solved
through the inner-outer approximation approach after an
appropriate finite dimensional discretization. Finally, the
study concludes with Section 5 by providing summary and
future work.

2. PROBLEM DEFINITION

We consider the following optimal control problem of
parabolic PDE systems under random data (CCPDE)

min
u
J(u) = E[‖T − Td‖]2H1

g(D,[t0,tf ]) +
γ

2
‖u‖2L2(D,[t0,tf ])(1)

subject to:

∂T

∂t
−∇.[κ(ξ1, t, x)∇T )]

= Q(ξ2, t, x), for (t, x) ∈ [t0, tf ]×D, ξ ∈ Ωa.s.; (2)

T = g(u, ξ3, t, x), for (t, x) ∈ [t0, tf ]× ∂D, ξ ∈ Ω a.s.;(3)

T (x, t0) = T0(x), for x ∈ D; (4)

Pr{Tmin ≤ T (u, ξ, t, x) ≤ Tmax} ≥ α; (5)

umin ≤ u(t, x) ≤ umax, (6)

where D ⊂ Rn (n = 1, 2, 3) is bounded spatial domain
with Lipschitz boundary ∂D; x ∈ D represents the spatial
variables; ξ = (ξ1, ξ2, ξ3) ∈ Ω ⊂ Rp is a vector of random
input variables from a probability space (Ω,F ,P), F is
the σ-algebra and P is a probability measure with a prob-
ability density function φ(ξ) associated to ξ; the interval
[t0, tf ] represents the optimization time-horizon.

The parabolic PDE system (2) with Drichlet boundary
(3) condition and initial value (4) represents a distributed
control system. The coefficient κ(ξ1, t, x) is a random field,
where ξ1 represents the random inputs due to model
parameter uncertainties. The system is driven by a dis-
tributed random forcing term Q(u, ξ2, t), where ξ2 stands
for random input uncertainties, i.e., due to errors in mea-
surement devices. The boundary condition (3) specifies
a boundary value g(u, ξ3, t, x) for the states T with ξ3
representing random external influences that act through
the boundary ∂D at the time instant t ∈ [t0, tf ]. Due
to the various random influences ξ = (ξ1, ξ2, ξ3), the
state T is a random variable and also depends on the
control u which is indicated by T (u, ξ; t, x). Hence, it is
assumed that T (u, ·; t, ·) ∈ Lp(Ω;V), V = H1

g (D)), where

V = H1
g (D) is a Banach space, e.g., W = L2(Ω, H1

g (D))

or W = L2(Ω × H1
g (D)), and ‖T (u, ·; t, ·)‖pLp(Ω;V) =∫

Ω

[∫
D
|T (u, ξ; t, x)|p dx

]
φ(ξ)dξ

+
∫

Ω

[∫
∂D
|∇T (u, ξ; t, x)|p ds

]
φ(ξ)dξ = E [‖T (u, ξ; t, ·)‖pV ] <

∞ for each t ∈ [t0, tf ]; u represents the controls and
u(t, ·) ∈ U = {v ∈ L2(D)| umin ≤ v ≤ umax, v ∈ Rm}.
In general, the control variables u are deterministic.

The operators E[·] and Pr(·), respectively, represent the
expected value and probability measure with respect to
the random variables ξ. The constraint in equation (5)

Pr {Tmin ≤ T (u, ξ; t, x) ≤ Tmax} ≥ α
specifies the probability (reliability) of holding restrictions
on the state variable, where α ∈ [0, 1] is a pre-specified
level of reliability. Hence, the chance constraint (5) is
required to hold point-wise over the spatial domain D at
each time instant t ∈ [t0, tf ].

The purpose of the control is to optimally attain a desired
temperature profile Td as accurately as possible, despite all
random influences. The constant γ > 0 is a regularization
parameter for the energy or cost term ‖u(t, ·)‖L2(D).

Associated to the chance constraint of CCPDE, we have
the function

p(u; t, x) = Pr {Tmin ≤ T (u, ξ; t, x) ≤ Tmax} (7)

which is commonly known as the probability function of
the chance constraint (5), where p(·; t, x) : U → [0, 1], for
each fixed (t, x) ∈ [t0, tf ] × D. Subsequently, the feasible
set of the CCPDE is represented by

P = {u ∈ U | p(u; t, x) ≥ α, (t, x) ∈ [t0, tf ]×D}. (8)

In general, the mathematical analysis of this problem
demands relevant function spaces, specifically Sobolev and
Bochner spaces.

3. SMOOTHING INNER-OUTER APPROXIMATION
METHODS

For the sake of brevity, we assume that for a given u ∈ U
and a realization of the random variable ξ ∈ Ω, there
is a unique weak solution of the PDE system given by
T (u, ξ; t, x) 1 . Accordingly the problem CCPDE can be
stated in a reduced form as follows

(CCPDEreduced) min
u

J(u) (9)

subject to:

Pr {Tmin ≤ T (u, ξ; t, x) ≤ Tmax} ≥ α (10)

(t, x) ∈ D × [t0, tf ]

u ∈ U . (11)

The major computational bottleneck comes from the non-
smoothness and above all, from the difficulty to evaluate
the chance constraint of CCPDE. Based on our inner-outer
approximation approach [7; 8] we use computationally
amenable smoothing approximations of CCPDE in order
to attain approximate solutions.

To guarantee that the problem posses fair mathematical
properties, it is commonly necessary to assume that the
set of random variables {ξ ∈ Ω | T = Tmin or T = Tmax}
to be of measure zero. This is commonly known as measure
zero property. Briefly, the smoothing approximations are
based on the following essential equivalent representations

of probability functions p(u) = Pr
{
T̂ (u, ξ; t, x) ≤ 0

}
≥ α

≡ 1− Pr
{
T̂ (u, ξ; t, x) ≥ 0

}
≤ 1− α, where T̂ (u, ξ; t, x) =

T − Tmax ≤ 0 or Tmin − T ≤ 0. By using the upper semi-
continuous Heaveside(unit jump) function

h(s) =

{
1, if s ≥ 0,
0, if s < 0.

1 This claim can be substantiated through a standard functional
analytic argument using the Lax-Milgram Theorem.
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The following well-known identities are obtained

p(u; t, x) = E[h(−T̂ (u, ξ; t, x))] = 1− E[h(T̂ (u, ξ; t, x))]
(12)

where

E[h(T̂ (u, ξ; t, x))] =

∫
Ω

T̂ (u, ξ; t, x)φ(ξ)dξ.

Despite the appealing expected value representation of
probability functions in (12), the missing smoothness of
the unit jump function does not provide computational
advantages. Nevertheless, the function h provides an in-
sight for the construction of a smoothing approximation
for the probability function p. Hence, for h(s) and h(−s),
the approach [7; 8] uses smoothing approximating scalar
functions defined by introducing the parametric function

Θ(τ, s) =
1 +m1τ

1 +m2τ exp
(
− s
τ

) , for τ ∈ (0, 1), s ∈ R,

(13)
with the parametric family {Θ(τ, ·), τ ∈ (0, 1)} of functions
Θ : (0, 1) × R → R+ possessing the following strict
monotonicity and uniform limit properties:

P1: There is a constant C with 1 < C < +∞ such that

C ≥ Θ(τ, s) > h(s),∀s ∈ R, τ ∈ (0, 1). (14)

P2: Θ(·, s) is strictly increasing on (0, 1), for each s ∈ R,
P3: Θ(τ, ·) is continuously differentiable and strictly in-

creasing on R, for each τ ∈ (0, 1),
P4: infτ∈(0,1) Θ(τ, s) = h(s), for all s ∈ R,
P5: limτ↘0+

sups∈(−∞,−ε)∪[0,∞)(Θ(τ, s) − h(s)) = 0, for
all ε > 0.

Now, based on the parametric function Θ the following

functions are defined ψ(τ, u; t, x) := E
[
Θ(τ, T̂ (u, ξ; t, x))

]
and ϕ(τ, u; t, x) := E

[
Θ(τ,−T̂ (u, ξ; t, x))

]
, τ ∈ (0, 1).

Under the measure zero property and smoothness proper-
ties of T̂ (u, ξ; t, x), the functions ψ(τ, u; t, x) and ϕ(τ, u; t, x)
can be shown to be smoothing approximations of 1 −
p(u; t, x) and p(u; t, x), respectively (see Geletu etal.[7]).
Moreover, the following convergence properties

inf
τ∈(0,1)

ϕ(τ, u; t, x) = p(u; t, x) (15)

sup
τ∈(0,1)

(ψ(τ, u; t, x)) = 1− p(u; t, x) (16)

and dominance properties
1− p(u; t, x) ≤ ψ(τ, u; t, x) ≤ 1− α
ϕ(τ, u; t, x) ≥ p(u; t, x) ≥ α, for (t, x) ∈ [t0, tf ] × D
hold true. Now, using the parametric functions ψ(τ, ·) and
ϕ(τ, ·), we define the following problems with the same
objective function J as in CCPDE.

min
u
J(u) (IAτ )

s.t.
ψ(τ, u; t, x) ≤ 1− α, x ∈ Dc
u ∈ U,

min
u
J(u) (OAτ )

s.t.
ϕ(τ, u; t, x) ≥ α
u ∈ U,

with respective feasible sets

M(τ) := {u ∈ U | ψ(τ, u; t, x) ≤ 1− α, (t, x) ∈ [t0, tf ]×D} ,

S(τ) := {u ∈ U | ϕ(τ, u; t, , x) ≥ α, (t, x) ∈ [t0, tf ]×D} .

Fig. 1. Plot of θ(τ, s), θ(τ,−s) versus s
.

As a consequence of the properties of the functions
ψ(τ, u; t, x) and ϕ(τ, u; t, x) we have the following relations
among the feasible sets of CCPDE, IAτ and OAτ . That is

M(τ) ⊂ P ⊂ S(τ), for τ ∈ (0, 1).

which implies that the feasible sets M(τ) of IAτ are always
subsets of the feasible set P of CCPDE, while the feasible
sets S(τ) of OAτ are always supersets of the feasible set P
of CCPDE. Furthermore, under the relevant assumptions,
the following can be shown [7; 8]:

A) the setsM(τ) and S(τ) are closed, for each τ ∈ (0, 1).
B) For 0 < τ2 ≤ τ1 < 1, the following inclusions hold

M(τ1, x) ⊂M(τ2) ⊂ P(x) ⊂ S(τ2, x) ⊂ S(τ1). (17)

C) ⋂
τ∈(0,1)

S(τ) = P. (18)

D)

cl

 ⋃
τ∈(0,1)

M(τ)

 = P. (19)

With the above properties, the solutions of the IAτ are
always feasible to CCPDE and the solutions of CCPDE
are always feasible to OAτ . Above all, any limit-point of
a sequence of optimal solutions of IAτ (resp. OAτ ) is a
stationary point of CCPDE [7; 8]. Consequently, instead of
solving the difficult CCPDE problem directly, we solve the
relatively simpler smooth optimization problems IAτ and
OAτ , respectively, for a selected decreasing sequence of
parameters {τk} ∈ (0, 1). Numerically, a good approximate
solution to the CCPDE is said to be found if, for some pa-
rameter τk, the corresponding optimal objective functions
values J(u∗IA(τk)) and J(u∗OA(τk)) are sufficiently close.

4. A CASE STUDY

Hyperthermia treatment (HT) and planning is used as
an accompanying strategy in modern clinical cancer
therapy[5]. Hyperthermia treatment consists in the heat-
ing of a tumor tissue in order to subdue or eradicate the
growth of tumor cells from a given organ. The procedure of
HT aims at heating tumor to a given temperature without
causing damage on the healthy surrounding tissue due to
overheating.
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The heating is usually done through multiple electromag-
netic (EM) sources, where each EM source generates an
electric field G(x) with a heat capacity c, density ρ, the
phases and amplitude p. As a result, the electric fields facil-
itate a net power deposition on the tumor region given by

[5] (e.g. Q(x) = σ(ξ)
2 |G(x)|2 ,where G(x) =

∑N
j=1 pjGjx

is a linear superposition of the individual fields and σ(x)
is the electric conductivity. In general, the phases and the
power Q, corresponding to each individual antenna, are
not known in advance.
The Mathematical model:Pennes bioheat [11] equation

ρ · ct ·
∂T

∂t
− div (κ∇T ) + ω · cb · (T − Ta) = Q; in(t0, tf )×D (20)

is frequently used to compute the temperature distribution
T in the heated domain considering the power distribution
Q as an input, where D represents the part of the human
body that is relevant for therapy. Here, T - Temperature,
Ta - Arterial blood temperature, Q - Power deposition,
ρ - Tissue density, ct - Specific heat capacity of tissue,
cb - Specific heat capacity of blood, κ - Tissue thermal
conductivity, t0 is initial time, tf is final time and ω -
Perfusion of blood.

Source of uncertainty: Despite the wide use of equation
(20) in the analysis, planning and control of hyperthermia
treatment, its parameters are found not to be identical
across all patients. One major reason for this lies in the
variability of tissue properties among patients. Hence,
most parameters in equation (20) display large variations
from patient to patient [4; 12]. Furthermore, even for
a single patient, pre-clinical laboratory experiments and
measurements could not provide precise characterization
of the parameters in (20), owing to variations in the
patient’s body makeup, variability in biological tissue
properties of body organs (e.g., brain, lung or liver) under
treatment, etc. Therefore, the model parameters ρ, ct, κ, ω
and cb are known to be uncertain [12]. As a result of
these uncertainties, the predicted values of temperature
distribution T (x) on the tumor as well as the amount
of heat spilled to healthy neighboring tissues display
uncertainties [1; 3].

Optimization problem: The objective is to provide
optimal thermal dose strategy to keep the tumor region
uniformly heated to a desired temperature Td during the
treatment. At the same time, the heat injection should sat-
isfy the required temperature level with a high reliability
by avoiding over-heating of the healthy neighboring tissues
under all boundary conditions.
To demonstrate the viability of the inner-outer approxi-
mation approach, we study the following hypothetical HT
problem [3].

min
u
E[‖T − Td‖2L2(D)] +

γ

2
‖u‖2L2(D) (21)

subject to:

∂T

∂t
−∇(κ(x, ξ1, t)∇T ) + cbρb(T − Tb) = Q(x, ξ2, t),

(22)

in [t0, tf ]×D, ξ ∈ Ω a.s.,

T = g(u, ξ3, x, t) on U × Ω3 × ∂D, (23)

Pr{T (u, ξ, x, t) ≤ Tc = 2.999} ≥ α, (x) ∈ D, (24)

with

Fig. 2. Optimal state: surface temperature T with x
decreasing in each descretized time

0 ≤ u ≤ 1, (25)

κ(x, ξ1) = 1, (26)

Q(x, ξ1) = ξ1exp(−sin(x1)(x1 + t)/(sin(t) + 4))

+ 4sin(x2)sin(t), (27)

g(u, ξ2, x) = (u(x)− T )ξ2, (28)

Td = 40− 2. ∗ (x1. ∗ (x1 − 1) + (x2. ∗ (x2 − 1))), (29)

γ = 10−3, α = 0.95, D = [0, 1]× [0, 1], T (t0 = 1) = 0,
(30)

Tmin = 0, Tmax = 400C. (31)

The variables ξ1, ξ2, ξ3 are standard normally distributed
random variables. Samples for the random variables are
generated by using the multi-level Monte Carlo (MLMC)
sampling approach. Subsequently, at each step of the op-
timization algorithm, the PDE system is solved through
the finite element method (FEM) by using a Matlab im-
plementation. After discretization, the inner and outer
approximation problems are solved using the Matlab op-
timization function fmincon.m, with each run decreasing
values of τ = 10−k, k = 1, . . . , 5 .The IA ≡ OA a.s. as
τ → 0 in Fig. 1.

Fig. 2 and Fig. 3 show the optimal temperature and control
profiles for one hundred time steps in the treatment time
horizon [t0, tf ] = [1, 100] (time in seconds). Fig. 4 to Fig.
8 show the error level between the controls of IA and OA
for τ = 0.1 to τ = 0.00001, respectively, indicating that
the errors will be decreased when the τ value is reduced.
Fig. 9 displays the objective function of IA, OA and Error.
The IA and the OA are converge uniformly at τ goes to
zero from the right, in our case τ = 0.00001.

Fig. 10 and Fig. 11 display magnifications of the optimal
state temperature for time instant. The results of optimal
state of IA and OA are shown in FIg. 10 for a fixed
time t = 50sec, where τ = 10−5. Moreover, when τ is
reduced to zero, the optimal controls of inner and outer
approximation converge as indicated in Fig 8, the error
is zero. The same case for the result of optimal control
shows in Fig.12 with mesh generation that magnify plot
functions in Fig. 2 IA ≡ OA at τ = 0.00001.

5. CONCLUSION AND FUTURE WORK

This study presents a computation approach to CCPDE
problems and a preliminary investigation for optimal con-
trol of hyperthermia treatment of tumor tissues. Owing
to the natural prevalence of uncertainties, the optimal
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Fig. 3. control plot:surface temperature u(x) decrease in t

Fig. 4. Error at τ = 0.1

Fig. 5. Error at τ = 0.01

Fig. 6. Error at τ = 0.001

Fig. 7. Error at τ = 0.0001

Fig. 8. Error at τ = 0.00001

Fig. 9. Plot of objective function values JIA(τ) and
JOA(τ), for τ = 10−k, k=1,. . . ,5.

bioheat treatment is modeled as a CCPDE problem. Sub-
sequently, a hypothetical numerical example demonstrates
that such a CCPDE problem can be effectively solved
by the inner-outer approximation approach. A more re-
alistic and concrete patient data-based consideration is
left pending for future investigations. Moreover, tracking
the desired temperature level for effective thermal dose
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Fig. 10. surface of T that magnify each state in fig 1

Fig. 11. surface of T w.r.t. x for fixed time

Fig. 12. The control u with mesh generation that magnify
plot functions in fig 2 IA=OA at τ = 0.00001

tumor treatment can be further studied using the model
predictive control scheme.
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