Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Robust Cascade LMI Design of MIMO
Control System for Plasma Position,
Current, and Shape Model with
Time-Varying Parameters in a Tokamak

Artem E. Konkov* Yuri V. Mitrishkin ** Pavel S. Korenev ***
Mikhail I. Patrov ****

* Faculty of Physics, Lomonosov Moscow State University,
Institute of Control Sciences of Russian Academy of Sciences,
Moscow, Russia
(e-mail: konkov@physics.msu.ru,).

** Faculty of Physics, Lomonosov Moscow State University,
Institute of Control Sciences of RAS, Moscow, Russia
(e-mail: yorm@mail.ru)

* Institute of Control Sciences of RAS, Moscow, Russia
(e-mail: pkorenev92@mail.Tu)
>+ Joffe Institute of RAS, St. Petersburg, Russia
(e-mail: michael. patrov@mail.ioffe.ru)

Abstract: A new robust hierarchical plasma magnetic control system with time-varying pa-
rameters and cascade circuits for the Globus-M2 tokamak (Ioffe Institute) has been synthesized
by means of the linear matrix inequalities (LMI) method. Each control cascade has a separate
objective: placing poles of the closed-loop system in the D-region to guarantee robust perfor-
mance, restriction of the Hs,-norm of the transfer function between external disturbances and
the plant outputs of the closed-loop system, tracking PF-currents, CS-current, plasma current,
plasma position, gaps between the plasma separatrix and the first wall. Control cascades were
synthesized for an array of plant linear models corresponding to reconstructed plasma equilibria
at different time points of the tokamak discharges. The LMIs allow the synthesis of one LTI
controller, providing the required performance and system stability margin for each model from
a given array. Tracking cascades use new MIMO PID controllers adjusted by means of the LMIs.
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1. INTRODUCTION

The development of tokamaks (Wesson and Campbell,
2011) started in 1950s made them leading in the con-
trolled thermonuclear fusion research. As tokamaks de-
veloped, plasma control systems were elaborated as toka-
maks necessary components, without which the operation
of modern tokamaks is impossible. The plasma control
systems provide the tokamak performance, reliability, and
survivability, as well as allow to reach their most eco-
nomical regimes. Different approaches were used in mag-
netic control systems for plasma position, current, and
shape: control channel decoupling, PID control, predictive
model, Ho, optimization theory, quadratic programming
for saturation of control currents, adaptation of the plasma
position to match the plasma shape, control with non-
stationary controllers, hierarchical control, etc. See the
survey Mitrishkin et al. (2018b,c).

Nevertheless, despite the fact that there is great progress in
the development of plasma magnetic control systems they
are far from complete for reliable use in future tokamak
reactors like ITER and thermonuclear power plants (for
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instance in DEMO). In order to ensure their round-the-
clock operation, the further elaboration is required with
the applications of new structures of magnetic plasma
control systems and new modern plasma control methods.

This work presents a new effective structure of plasma
magnetic control system for the spherical Globus-M2 toka-
mak. The proposed control system makes use of two
MIMO PID controllers in the cascades for plasma posi-
tion, current and shape, and the second inner cascade for
rejection of a multivariable external disturbance with a
MIMO output controller. All controllers are designed with
application of the LMI method which currently undergoes
fast development in mathematical and numerical science
and finds applications for plasma control in tokamaks. See
e.g. Ariola et al. (2014); Pavlova et al. (2017); Konkov
et al. (2018).

The LMI approach has essential advantages over other
methods for the design of robust control systems. For
instance in comparison with the H., optimization theory
the LMIs do not require using weighting functions like
in the solutions of mixed sensitivity control problems
(Skogestad and Postlethwaite, 2005), robust loop shaping
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control (McFarlane and Glover, 1990) or fixed-structure
Hoo control (Apkarian et al., 2014). In applications of the
Quantitative Feedback Theory (QFT) (Garcia-Sanz, 2017)
one uses the boundaries caused by plant uncertainties
in the Nichols amplitude-phase diagram to design the
feedback and feedforward robust controllers by trial and
error approach to meet the specifications at the set of
predetermined frequencies, see Mitrishkin et al. (2018a,
2019). Instead of weighting functions D-regions are used
which are more obvious in the robust controller’s design
procedure. Moreover, the MIMO PID tuning method does
not need decoupling of control channels and has the
universal structure of statements of control problems.

The controlled plant and the transition to the LPV model
in the state space form are described in Section 2. Section
3 presents cascades of the hierarchical control system.
Sections 4 and 5 show the design of the cascades with
the robust dynamic output-feedback controller and MIMO
PID controllers. Section 6 gives the simulation results in
Simulink of the designed control system.

2. PLASMA MODEL

The plant under control is the plasma in the Globus-M2
tokamak (Gusev et al., 2013), its output signals are as
follows (37 outputs in total): vertical Z and horizontal
R plasma positions, current in the central solenoid I.g, 5
currents in the PF-coils

top bot T
Iy = [Ipfl Ipr Ipr Lpys ICC} )

currents in vertical I,¢. and horizontal Ipf. field coils,
plasma current I, poloidal magnetic flux ¥ measured by
21 magnetic loops of the Globus-M2 tokamak, and 5 gaps
between the separatrix and the first wall, see figure 1,
9=191 92 95 94 95)".

The plasma models used for the controller synthesis are
based on the Kirchhoff’s law for currents in the tokamak,
plasma motion equations, and the expression for gaps
between the plasma and the first wall. The equations are
linearized around the magnetohydrodynamic equilibria at
various t-points of plasma discharge reconstructed from
the tokamak’s experimental data:

(1) TEOOR+ S (167 + e ()50 =50,
a{iR()(su %%()MH %()5z+%ﬁ( B)ow = 0,
6;;2()51 %%()53 %FZZ()az %f;}z()éw_m(sz
gi( t)ol + gf%( t)OR + gg( t)0Z + g)g( #)ow = dg,
%y;(t)éf gfz( t)oR + gg( )07 + gw( t)ow = 8%,

ez By

meo = e, w=|F].
Here I = [Ihfc7IUfC,ICS7Igf,IE7I]T is the vector of
toroidal currents in the tokamak coils, the vacuum vessel,
and the plasma, U is the vector of the voltages applied
to the coils, ¥, is the vector of magnetic fluxes encircled
by the currents, M is the inductivity matrix, R. is the
diagonal matrix of resistances in the circuits, R, Z are
horizontal and vertical coordinates of the plasma axis, 3,

and [; are the poloidal beta and the internal inductance
of the plasma (Wesson and Campbell, 2011), g is the
vector of the gaps between the plasma separatrix and the
first wall of the tokamak and ¥ is the vector of poloidal
magnetic fluxes measured by tokamak’s magnetic loops.
All variations depend on time.
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Fig. 1. Gaps between the separatrix and the first wall
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Minor plasma disruptions are characterized by steep
changes in 3, and [;, so the vector £ = dw may be
considered as the disturbance vector.
Defining the state vector ' = [6I1,82,6Z]", the control
vector © = 60U and the output vector

Y =[0Inse, 0Lyge, 01cs, 81,5, 01,,0R, 6Z,6g" 60 ™]",
the linear model can be expressed in the state-space form
with time varying parameters:

B(t)u(t)+
+ G L) + E'0E), (1)
£(t

y(t) = C(t)'(t) + F'(1)E(),
where
g, 0Pz _ OFz0Fn 0% '
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0 0
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At the further variable transformation x = 2’ — G'¢,

E=AG' +FE -G, F = CG +F'in (1) the clear physical
meaning of the state variables is lost, but a simpler, more
suitable model for the controller design is obtained.

Control cascades are synthesized on an array of 50 models.
The models correspond to the time points t1, ..., t5 from
175 to 200 ms (with 0.5 ms step) of the divertor phase of
the discharge No. 37239 of the Globus-M2 tokamak. De-
noting models in the array by the index A,, = A(t,,), B, =
B(t,), etc., n = 1,...,50, the resulting LTI model of the
array with index n in new coordinates is written as follows:

{x'(t) = Apx(t) + Bru(t) + E&(t), @)
y(t) = Cnx(t) =+ an(t),
where z € R?*, w € RS, y € R%7, and ¢ € R2.

3. HIERARCHICAL CONTROL SYSTEM
STRUCTURE

The block diagram of the hierarchical plasma control
system is presented in figure 2; it contains four MIMO
control cascades. Each cascade achieves its own control
objective. The first cascade contains two current inverters
and six rectifiers, they are actuators, see Kuznetsov et al.
(2019); Mitrishkin et al. (2016). The second cascade with a
robust dynamic output-feedback controller K (s) is shown
in figures 2 and 3 in blue. It has two objectives: it reduces
the norm of the transfer function between the external
disturbance £ and the outputs (currents 61, positions § 7,

6: (6[,7, 5g)rcf

8 x 6
8:(0R,6Z,01cs,0Ipf)res| MIMO PID 6: (61,,09)
Cext(s) _
2: ((SIth,(slqu)
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C) MIMO PID Inverters o ||
Cint(s)
-1 + Rectifiers > Tokamalk
2: (05,,0l;)
—_—
8 x 21
K(s) |« 21 : (W)
8: (OR,07Z,061.5,0I,7)

Fig. 2. Block diagram of plasma magnetic control system

0R, and gaps dg), and places the poles of the closed-loop
system in the D-region. This is necessary to improve the
performance of the control system: to reduce the oscillation
index and transition time. This controller is synthesized for
the entire array of models (2) describing plant dynamics
at various time points of the discharge. That guarantees a
proper margin of robust stability of the control system.
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Fig. 3. Block diagrams of cascades of the control system

The third and fourth cascades shown in figures 2 and 3, red
and purple, respectively, contain MIMO PID controllers
with the same structure. The third cascade provides track-
ing of variations of plasma positions 67, § R and currents
in the coils 01.s, 01,5 in line with the references. The fourth
cascade provides tracking for variations of the plasma
current 0, and the gaps dg; it generates references for
the third cascade. Due to this, with the help of the fourth
cascade, the control system provides coordinated control
of gaps and plasma position on the one hand, and plasma
current and currents in the coils on the other hand.

4. SYNTHESIS OF ROBUST DYNAMICAL
OUTPUT-FEEDBACK CONTROLLER

The method is based on the Bounded Real Lemma and the
generalized Lyapunov Theorem, see Duan and Yu (2013);
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it is necessary to combine them into one LMI system. The
approach used here for the output-feedback controller is
based on Bakka and Karimi (2012). First, one needs to sep-
arate the plant outputs to y; = 0¥ which are for feedback-
loops outputs, and 2z; = [6Z R 1. Idgf oI, 5gT]T
which is the vector of interest, i.e. the purpose for
H o-control:

i = Ax + Buy + EE,

21 = Crz + Fi§,

y1 = Coz + Fa€.
The controller is defined as

¢ = AkC+ Brys,

ui(s) = K(s)yi(s), K(s) {ul = Cr¢ + Dyys.

The closed-loop system shown in blue in figure 3 has the
following form:

T T T
[ | =Aa +Bug, z1=0Cgy + D,
¢
4.5 A+ BDCy BCy | E+ BDpFy
iil ByCo Ag By F;
Ccl Dcl
o o | A

The Lyapunov matrix P must be represented as mutually
inverse matrices

(Y N L (X M
P—[NTQJ’ P _[MTQQ]’

where (21 and (25 are arbitrary matrices, see Scherer et al.
(1997). Then the following notations are introduced

A=NAM" + NB,CoX + YBC,MT+
+Y (A+ BDyCs) X,

B=NB+YBDy, C=CyM'+DyCyX, D=Dy,

N AT o N
6, = AX+BC’+(AX+BC) . Oy = AT £ A+ BDCy,

N N T
Oy =Y A+ BCy + (YA n BCQ)

to form the following LMI terms for H..-control and
placement of the poles of a closed-loop system in D-region:

©, ©, E+ BDF, XC} + CTFf
x O3 YE+ BF, CI+CyD"
—I F

* * *

X1
* *

%o = Gy HY Gy HY Gs HY Gy HY|,

1
E3 = _idlag (6;176176;176176517627651762) )

AX + BC A+ BDC

Y4a=Lp® + Mp ® . .
A YA+ BC

. R

AX +BC A+ BDC

+ Mg ® . .
A YA+ BC

E5 - |:€1P1 N{r €2P2 Ng 63P3 N:;r €4P4 N;ri|

where €1_4, G1_4, Hi_4, Pi_4, and Ny_4 are obtained
from the lemma in Khargonekar et al. (1990). Lp and Mp

are the matrices of the characteristic function of the D-
region represented by the intersection of the circle with
the center at the point (0,0) and the radius r, and the
half-plane with the parameter «, see Duan and Yu (2013),

D={s|scC™, Lp+sMp+5My <0},

2 0 0] 100
L]D): O —Tr 0 ,M]D): 001
0 0—r| 000

Thus the final LMI system is formulated as follows
X I %1 Yo 2y X5
>0, =<0, =<0.
[I Y} B [EE 3] ~ [Eg 23]
The solution of this system for all models from (2) allows
to obtain matrices X, Y, A, B, C, and D. After obtaining
the matrices M and N from the factorization problem

MNT =T — XY, one can determine the matrices of the
controller

A = N1 (/1 — NBLCyX — YBC,MT—

~ Y (A+BDyC3) X) (M") ",

B =N~ (B _ YBDk> ,

Ci = (C-DCeX) (MT) ", Dy =D.

5. MIMO PID CONTROLLER DESIGN

The method in Boyd et al. (2016) allows synthesizing
the MIMO tracking control system with a new type of
controllers. The MIMO PID controller is used in the third
and fourth cascades, shown in figures 2 and 3 in red and
purple. The MIMO PID controller is defined as

1 s
u(s) = C(s)e(s), C(s)=Kp+ SKI + . 1KD,
where u(s) € C™ is the Laplace transform of the plant
inputs vector, e(s) € C? is the error between the references
r(s) and the outputs y(s) of the plant. The PID coefficients
are non-diagonal matrices

Kp ERqu, Kp ERqu, Kp € R™*9,

The following closed-loop responses and matrix transfer
functions will be used for the design of controllers:

e(s) = S(s)r(s),

S(s) = (1+ P(s)C(s)
7(s) = P&)C() (14 PICG)

Qs) = C(s)(I+ P(5)C(s))

The matrix (P(0)K;)”" is the matrix of the static and
low-frequency sensitivity; it is defined as

5| (o)
s=0

the Q-parameter is necessary for control restrictions, it is
caused by engineering constraints of the actuators.

Now it is possible to formulate the problem of the synthesis
of the MIMO PID controller as an SDP problem. Next,
the transition is done from the transfer functions to the
matrix values of the transfer functions at the selected
frequencies, and, accordingly, from the H.,-norms of the

-1

—1
, S(s) ~ s(P(O)KI) for small |s|,
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matrix transfer functions to the spectral norms of the
numerical matrices:

min [|(P(0)K7) ™"z, min [|(P(0)K7) ™"z,
st 15(8)]lco < Smaxs st |Skll2 < Smaxs
—
||T(S)Hoo S TrﬂaX7 ||Tk||2 S Tmax7
1Q(8)][oc < Qmax- [Qkll2 < Qumax-

where k =1,...,N, P, = P(jwg), wi € [w1, ...

) WN];
Ch=Kp+ K+ 1% g, (3)
JWk Tjwi + 1
The transition (—) from the transfer functions to the
values of these transfer functions at the selected frequen-
cies is the main idea of the method; it allows to reduce the
problem to the matrix inequalities form

max W,
s.t. (P(0)Kp)"(P(0)Kp) = 1,
(I+Pk0k)H(I+Pka) (1/S82,.)1, @
= (1/ max)(Pka) (PyCy),
(I + P.Cp)" (I+Pk0k) (1/Q%..)Cac,.

This system of matrix inequalities contains three unknown
matrices Kp, K;, and Kp included in Cj in (3), and
the target p. The matrix inequalities in system (4) are
not linear with respect to the unknown matrices of the
controller; moreover, the left-hand sides of the inequalities
are not convex. To obtain a solution for (4), it must
be reduced to the LMI system by means of a convex-
concave procedure, described in detail in Lipp and Boyd
(2015). The solution of the original system (4) is found by
iteratively solving the equivalent LMI system, approaching
the optimal value of pi,,4, at each iteration.

The following signals were used in the synthesis of cascades
Py(s) and Ps(s), see figure 3: ug(s) = ra(s), ua(s) = r1(s),
z9 and z3 are vectors with other signals of the plant, r2(s)
and 73(s) are references for outputs

oR

0z ol
we)= |07 | €€ wme =[] ecn

0lps

Sensitivity functions of these cascades are
—1
ea(s) = Sa(s)ra(s), Sa(s) = (I + Pi(s)Cini(s))
e3(s) = S3(s)rs(s),  Ss(s) = (1 n pg(s)cm(s)) B

The transfer functions T'(s) and Q(s) for these cascades are
obtained similarly. System (4) is solved with parameters
Smaxs Tmax, @max, IV, and 7 for each cascade, while there
is one solution for all models from (2). Thus, matrix
inequalities in (4) are sequentially solved first for Cj,; €
C8*8, and then for C.,; € C¥%6, see them in figure 3.

6. SIMULATION RESULTS

The LMIs for the control design are solved using CVX with
SDPT3 4.0 solver interfaced with MATLAB, see CVX Re-
search (2012); Grant and Boyd (2008). The simulation was
carried out in Simulink using an LPV block for the plant
model, models switching starts from 175 ms. The results
are presented in figure 4, which contains variations of gaps
0g1—5, plasma current 01,, poloidal beta d3,, and internal

0.6F T T T
§ 0.4}
502

0
—~0.4
g
L
§0.2
o
0
0
\%/ 0.5
o
()
o
-1k
0
F-02
L
s -0.4
o
0.6
1F
g
L
— 0.5
D
ge)
0
0
=)

e

&

oS

o

-0.05 { . {
0

=)

o)

G

=015

10}
<«
<
5F
=
o
0 1 1
0.16 0.17 0.18 0.19 0.2

t(s)

Fig. 4. The simulation results of the control system of the
plasma for discharge No. 37239 when minor disruption
occur. Red lines are references.
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plasma inductance 6l; when the minor disruption occurs,
and the control system moving the separatrix to a new
location. The following parameters were used: for second
cascade v = 102, o = 103, » = 5 - 10%; for third cascade
Smax = 1.6, Tmax = 1.8, Qmax = 5/0min (P(O)); for fourth
cascade Smax = 1.2, Tiax = 1.4, Qmax = 10/0min (P(O))

7. CONCLUSION

The new robust control systems have been designed for
dynamic plants with variable parameters and applied in
modelling to the plasma in the spherical tokamak Globus-
M2. Robust control systems were synthesized by the LMI
method for the array of linear plasma models with time-
invariant parameters. That made it possible to apply
the transfer function and frequency response methods to
each model. Then the time-varying plasma models were
obtained by the Simulink LPV block in simulations.
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