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Abstract: For the issue of relocalization, this paper proposed a deep-learning-based method
for outdoor large-scale environment. In the first step, we projected a 3D Light Detection and
Ranging(LiDAR) scan onto three 2D images from top to bottom. Then a densenet-based neural
network structure was designed to regress a 4-DOF robot pose. These images are then stacked
together, fed into the proposed DCNN architecture, and the output is the predicted robot pose.
Extensive experiments have been conducted in practice with a real mobile robot, verifying the
effectiveness of the proposed strategy. Our network can obtain approximately 3.5m and 4◦

accuracy outdoors.
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1. INTRODUCTION

In the past few decades, the research towards outdoor
self-driving robots has picked up a staggering pace (see
Lingemann et al. [2005], Csorba [1997]). The ability to
acquire accurate pose information of the robot in real-
time is the premise and basis for the robot to perform
various tasks. Relocalization is crucial for an outdoor robot
in navigation as well as other tasks.

Most strategies proposed over the past years for robot
relocalization outdoors are basically based on Feature
Point Matching (see Rusu et al. [2008], Rusu et al. [2010]).
Methods based on local point cloud feature extraction
were proposed in Belongie et al. [2001] and Tombari et al.
[2010], these methods are used for scene recognition (see
Steder et al. [2011]) and closed-loop detection through
similarity metrics. The feature extraction method based on
the global point cloud extracts the global descriptor of the
point cloud from the point cloud in the global coordinate
system (see Aldoma et al. [2011], Wohlkinger and Vincze
[2011], Muhammad and Lacroix [2011]). Compared with
the word bag method, the descriptor does not need to
perform local keypoint detection, so the calculation is
faster.

PoseNet (see Kendall et al. [2015]) was proposed in 2015
and was considered as a state-of-the-art method to regress
a robot pose. In Kendall et al. [2015], a network structure
based on GoogLeNet (see Szegedy et al. [2015]) was
used to estimate a 6-DOF pose. However, it suffers from
insufficient illumination and costs a heavy computational
? This work was supported by the National Natural Science Foun-
dation of China under Grant U1913201 and Grant 61503056.

Fig. 1. System overview of the proposed strategy. We
converted 3D LiDAR scan into three 2D images, and
stacked them together, which was used as the input
of a DCNN to predict a robot pose.

burden. Similar idea is also introduced in Kuse and Shen
[2019], which is able to recover from complicated kidnap
scenes and failures in real-time.

To get the robot pose when robot restarts from any point
in a large-scale outdoor environment while consuming less
computing resources, we proposed a convolutional neural
network (DCNN) architecture based strategy for the task
of relocalization in this paper. Recently, DCNN based
methods have lead to breakthroughs in several vision tasks,
such as classification (see Simonyan and Zisserman [2014],
He et al. [2016a]), detection (see Ren et al. [2017], Redmon
et al. [2016]) and segmentation (see Long et al. [2015],
Chen et al. [2017a], Ronneberger et al. [2015]). Majority
of these methods are based on camera images and few
methods have focused on using 3D LiDAR scans (see Wu
et al. [2017], Zhou and Tuzel [2017]).

Our proposed network structure takes a stacked image as
the input and regresses a 4-DOF robot pose relative to
a scene. Fig.1 demonstrates the proposed strategy frame-
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work. It consists of a 3D LiDAR scan preprocessing algo-
rithm and a dense blocks (see Huang et al. [2016]) based
robot pose estimation. The laser preprocessing method is
designed to convert one frame of 3D LiDAR scan into
three 2D-images, these images are then stacked into a
multi-channel image, which passed through our proposed
DCNN for pose regression(as shown in Fig.1). The DCNN
is designed to extract features from multi-channel images.
The last convolutional block is followed by fully connected
layers, and the output presents the predicted robot pose.
Our main contributions are as follows:

• A method to project 3D LiDAR scan into stacked
multi-channel images.
• A DCNN structure to regress robot pose outdoors.

The rest of this paper is organized as follows. Section II
reviews related work. Our method is presented in Section
III. Experimental results are given in Section IV. The
conclusions are drawn in the last.

2. RELATE WORKS

Recent years have witnessed the efforts made by re-
searchers to optimize the performance of robot relocal-
ization outdoors. Multiview 2D projection (M2DP) was
proposed in He et al. [2016b], which projects the point
cloud in the global coordinate system to the 2D plane and
extracts a 192-dimensional feature vector. The similarity
between the two scenes is judged by the cosine between the
192-dimensional vectors of the two scenes. Giseop Kim et
al. proposed the Scan Context (see Kim and Kim [2018])
algorithm, which was based on the non-histogram global
descriptor of the laser point cloud as the basis for judging
the similarity of the scenes. Dube et al. [2017] proposed
the SegMatch algorithm, which extracted and described
the segmentation block in a 3D point cloud, then matched
it with the segmentation block in the traversed scenes,
and used the steps of geometric verification to find the
closed-loop candidate. ORB-SLAM2 (see Mur-Artal et al.
[2015]) based robot outdoor relocalization algorithm was
used and improved in Mur-Artal and Tardós [2017a], Engel
et al. [2014], Yang et al. [2016], Mur-Artal and Tardós
[2017b]. Orb-slam based algorithms could extract more
observation features and those algorithms have better ro-
bustness. However, Orb-slam based algorithms not only
consume a lot of computing resources but also are affected
by insufficient illumination.

Most of the Deep Learning-based robot relocalization
methods are vision-based (see Kuse and Shen [2019], Zhou
et al. [2017]). Other machine learning techniques were em-
ployed for the loop-closure problem (see Yin et al. [2018],
Chen et al. [2017b]). The PointNet architecture proposed
by Qi et al. Charles et al. [2017] is a popular choice for
learning from unordered pointcloud. A multi-layer per-
ceptron was proposed to learn features from individual
points and then use an asymmetric function to combine
features learned from points, as a global representation.
PointNet++ (see Qi et al. [2017]) was also proposed by
them as an extending PointNet. The extension included
hierarchical learning, where a set of points were sampled
from the input point set and then points in the neigh-
borhood of the centroids are grouped together, which is
then followed by the PointNet architecture. Paper Dewan

Fig. 2. Three RGB-images converted from a set of 3D
LiDAR scan. These three pictures are all projections
of the scan from top to bottom but represent different
heights. We just keep point clouds within 1.5m above
and below the LiDAR. (a), (b) and (c) represent those
point cloud data in the range of[0.5, 1.5), [−0.5, 0.5),
[−1.5,−0.5] from the LiDAR respectively.

and Burgard [2019] proposed a deep convolutional neural
network for the semantic segmentation of a LiDAR scan
into four classes, their architecture was based on dense
blocks and efficiently utilizes depth separable convolutions
to limit the number of parameters while still maintaining
state-of-the-art performance. Paper Kendall et al. [2015]
introduced a novel algorithm named PoseNet based on
a convolutional neural network, this strategy regressed a
6-DOF camera pose from a single RGB image. A novel
Deep Learning-based relocalization method to extract the
features of LiDAR data was introduced in Cao et al. [2017],
this method classified these features in order to reduce
the randomness of the relocalization, and this method
could avoid some limitation of manual features compared
with other methods based on matching the manual feature
points.

3. STRATEGY PROCEDURE

This section presents the proposed deep-learning-based
algorithm in detail. This part is used to predict the
global robot pose outdoors. We demonstrate the method to
convert 3D LiDAR scan firstly, then, the network structure
is introduced. The cost function designed for training the
DCNN is also described.

3.1 3D LiDAR Scan Projection

3D LiDAR scan is used as the observation data in the
outdoor robot research field widely. Its robustness and the
characteristic that is not affected by insufficient illumi-
nation make it used extensively. As we know, the HDL-
64E lidar sensor gets up to 2.2 million points per second,
the HDL-32E lidar sensor gets 1.39 million points per
second, and the VLP-16 lidar sensor gets 0.3 million points
per second. So many point clouds contain enough feature
points to complete the outdoor relocalization tasks of the
robots, but processing such a large amount of point cloud
data consumes huge computing resources. So the first step
of our method is to project the scan onto 2D images and
each such image encodes a specific modality. These images
are then stacked together and passed through our proposed
DCNN for robot relocalization outdoors.

The VLP-16 Lidar sensor features up to 16 lasers across a
30◦ vertical field of view and a 360◦ horizontal field of view.
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Table 1. Configuration of the DCNN

conv-blocks Kernel1 Kernel2 Kernel3
Nunber of
Channerls

conv-blocks0 7 * * 9
conv-blocks1 7 5 * 64
conv-blocks2 5 5 * 128
conv-blocks3 5 5 3 256
conv-blocks4 3 3 3 512
conv-blocks5 3 3 3 512

The height of our robot is 1.5m, so we just keep the point
data within the field of [−1.5, 1.5] in verticality. As shown
in Fig.2, a single-set 3D LiDAR scan is converted into
three RGB-images (a), (b), (c), which represent the height
of [0.5, 1.5), [−0.5, 0.5), [−1.5,−0.5] relative to LiDAR
respectively. All of these RGB-images have the size of
448 ∗ 448 ∗ 3, which means Width*Height*Channel. (a),
(b) and (c) were stacked into one image with nine channels
in turn. This 9-channel image is used as the input of the
DCNN.We have tested the results when one frame of laser
data is processed into multiple RGB images. The results
show that when the image processed by one frame of laser
is less than 3, there are many missing features of the point
cloud, and the prediction pose accuracy is low. When the
image processed by a frame of laser is higher than 3,
the pose predicted by the network will be saturated with
precision.

3.2 CNN based Pose Regression

Network structure We proposed a convolutional DCNN
architecture for the task of robot relocalization outdoors.
In the reason that convolutional layers can be interpreted
as transforming inputs into feature representation effec-
tively, we designed a convolutional neural network to map
multi-channel images to robot poses. Our network is com-
prised of an encoder for learning the features required
for the task and fully connected layers for mapping the
learned distributed features representation to the sample
tag space. Our architecture is similar to other DCNN
architecture proposed for the task of semantic segmen-
tation (see Jegou et al. [2017], Shelhamer et al. [2017]),
which is based on dense blocks and is shown in Fig.3.
Our network structure consists of 6 convolutional blocks,
conv − blocks0 includes one convolutional layer and one
pooling layer, conv − blocks1 and conv − blocks2 include
two convolutional layers and one pooling layer, conv −
blocks3, conv − blocks4 and conv − blocks5 include three
convolutional layers and one pooling layer. The output of
the last fully connected layers was a vector with the size
1 ∗ 4 including pose and orientation.

The configuration of the DCNN is outlined in TABLE 1.
The input of the network is a 9-channel image converted
from a 3D LiDAR scan. As shown in Fig.3, there are
six convolutional blocks, each of which is normalized and
has a rectified linear unit (leaky-ReLU Xu et al. [2015])
activation. We connected all the blocks to each other,
specifically, each block will accept all the blocks in front
of it as its additional input. In order to ensure that the
input of each block is the same as the size of the feature
map of its extra input, we pass the input of each block
through a resize module. The resize module consists of a
convolutional layer and a pooling layer. Following the last

Table 2. Parameters of two scenes

DUT Scene Features Road Length Training Test

Area A Architecture 470m 4607 965

Area B Vegetation 420m 4396 685

Total Area * 1590m 12830 4630

convolutional layer, three fully connected layers are used
to extract the global feature and regress the robot pose.

Cost Function The cost function is designed to train the
DCNN so that its predicted poses are close to the ground
truth. In this paper, the network outputs a pose vector
Vo, given by a 3D robot position [x, y, z] and orientation
represented by angle θ:

Vo = [x, y, z, θ] (1)

We chose yaw angles as our orientation representation
because arbitrary 1D values is a simpler process than the
4D values normalization and normalization required of
rotation matrices. Specifically, the cost function contains
two parts: a pose error and an angle error.

3.2.2.1. Pose Error Pose error is formulated as the
Euclidean distance between the predicted positions and
the ground truths. The function aims to minimize the
Euclidean distance between the ground truth and the
predicted position by the network. The error function is
shown as follows:

Lerr =
1

n

n∑
i=1

{||x̂− x||22 + ||ŷ − y||22 + λ||ẑ − z||22} (2)

where || · ||22 is the 2-norm, n is the batch size, and λ
is a factor to balance the weight of x, y and z for the
reason that the robot does not have too much positional
fluctuation in the vertical direction.

3.2.2.2. Orientation Error The method to calculate the
orientation error in this paper is followed. The way is
shown in Formula.3, we used the form of angle to calculate
the error between the predicted value and the ground
truth.

Θ =
1

n

n∑
i=1

β||θ̂ − θ||22 (3)

where || · ||22 is the 2-norm, n is the batch size, θ means
the angle representing the orientation, and β is a factor to
balance the weight of positions and orientations.

4. EXPERIMENT RESULTS

4.1 Experimental Scene and Equipment

As shown in Fig.5, a large-scale scene was selected to prove
the performance of our algorithm. As shown in Table.2,
the area marked by the blue dotted line and yellow dotted
line indicate the Area A and the Area B respectively.
The Total Area means the all paths labeled by black lines.
Fig.6 shows the robot we used in the experiment, we choose
a mobile robot mounted with a VLP-16 3D laser scanner.
The VLP-16 Lidar sensor features up to 16 lasers across
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Fig. 3. The architecture of the CNN network in the proposed strategy. The network structure is based on dense-blocks
and consists of fourteen convolutional layers with three fully connected layers. The output of the network is the
4-DOF posture including pose and orientation.

Fig. 4. Illustration of the way to calculate the errors be-
tween the predicted pose and the ground truth. Point
R (xr,yr,zr) and point P (xp, yp, zp,) represent the
real robot position and the predicted robot position
respectively, arrow Oreal and Opre represent the real
robot orientation and the predicted robot orientation
respectively. Lerr means the euclidean distance be-
tween the predicted position and the ground truth, θ
means the robot yaw angle.

a 30◦ vertical field of view and 360◦ horizontal field of
view. The maximum linear and angular velocities of the
robot are 1.0m/s and 1.0rad/s respectively. The densenet-
based-model was trained using data collected from a true
environment and tested on a real mobile robot in the
same environments. We chose TensorFlow (see Abadi et al.
[2015]) to implement our complete network architecture.
Our dataset consists of 12830 scans for training and 4630
scans for testing. We used Huber loss and used Adam
optimizer with learning rate 1e−3 with decay of 2e−4 and
batch size of 16. Our network was trained using an Nvidia
GTX2080ti GPU.

Fig. 5. Areas we choose to test our method and PoseNet.
The area marked by the blue dotted line and yellow
dotted line indicate the Area A and the Area B
respectively. The Total Area means the all paths
labeled by black lines.

4.2 Results in Real Environments

To prove the effectiveness of our strategy, we conducted
repeated experiments with an IPC(Industrial Personal
Computer) (Intel Core TM Dual Core i7H-6500 and 6GB
RAM) without the GPU in the areas (shown in Fig.6). We
tested the effectiveness of our strategy and compared our
method with PoseNet both in daytime and nighttime.

Table 3. Results in Real Environment

Training
Set

Testing
Set

Average Error
in Daytime

Average Error
in Nighttime

PoseNet 12830 4630 3.86m, 3.84◦ Disabled

Ours 12830 4630 3.24m, 3.67◦ 3.78m

TABLE.3 shows the compares results of PoseNet and our
method in the Total Areas. The 3D LiDAR scans used
in our method and the images used to train PoseNet
correspond to each other on the time stamp, so we had

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9860



Fig. 6. The setup of the mobile robot equipped with a
VLP-16 Lidar sensor. The computer is IPC(Industrial
Personal Computer) (Intel Core TM Dual Core i7H-
6500 and 6GB RAM) without the GPU, the GPS is
NovATel OEM718D.

the same number of training sets to train PoseNet and our
model. Finally we collected the same number of test sets
to test the both models. The results show that our model
has higher precision than the PoseNet during the daytime
period and can still maintain the same accuracy at night,
while the PoseNet cannot be used at night.

5. CONCLUSION AND FUTURE WORK

This paper proposed a method to relocalize robots
in Large-Scale outdoor Environment based on Deep-
Learning. Firstly, a laser scan data preprocessing method
is proposed to project a 3D LiDAR scan onto three 2D
images from top to bottom, and a densenet-based neural
network structure was designed to regress a 4-DOF robot
pose. Through extensive evaluation in real environment,
we demonstrated that ample pose information was pre-
served in such networks and it is feasible to relocalization
relying on the projection of 3D LiDAR scan.

The reason why our strategy can realize relocalization is
because the topology of the environment contained in the
high-dimensional point cloud is mapped to the robot pose
space by the neural network. The laser data preprocessing
step does not destroy the topology of the point cloud.
The regression characteristics of the neural network make
sure that the point cloud features can be mapped into the
continuous robot pose space.

In future work, we will consider the issue of sensor fusion.
We consider using fused data from cameras and 3D lasers
as the input of neural networks, which will increase the
input characteristics of neural networks. We will continue
to improve the accuracy of relocalization and will strive to
simplify the structure of the neural network.
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