
Data-Based Nonaffine Optimal Tracking
Control Using Iterative DHP Approach ⋆

Mingming Ha, ∗ Ding Wang, ∗∗,∗∗∗ Derong Liu ∗∗∗∗

∗ School of Automation and Electrical Engineering, University of
Science and Technology Beijing, Beijing 100083, China (e-mail:

hamingming_0705@foxmail.com.
∗∗ Faculty of Information Technology, Beijing University of

Technology, Beijing 100124, China (e-mail: dingwang@bjut.edu.cn)
∗∗∗ Beijing Key Laboratory of Computational Intelligence and

Intelligent System, Beijing University of Technology, Beijing 100124,
China

∗∗∗∗ School of Automation, Guangdong University of Technology,
Guangzhou 510006, China (e-mail: derong@gdut.edu.cn)

Abstract: In this paper, a data-based optimal tracking control approach is developed by
involving the iterative dual heuristic dynamic programming algorithm for nonaffine systems.
In order to gain the steady control corresponding to the desired trajectory, a novel strategy
is established with regard to the unknown system function. Then, according to the iterative
adaptive dynamic programming algorithm, the updating formula of the costate function and
the new optimal control policy for unknown nonaffine systems are provided to solve the
optimal tracking control problem. Moreover, three neural networks are used to facilitate the
implementation of the proposed algorithm. In order to improve the accuracy of the steady control
corresponding to the desired trajectory, we employ a model network to directly approximate
the unknown system function instead of the error dynamics. Finally, the effectiveness of the
proposed method is demonstrated through a simulation example.

Keywords: Adaptive dynamic programming, data-based optimal tracking control, iterative
dual heuristic dynamic programming, neural network.

1. INTRODUCTION

The optimal tracking control is a significant topic of the
control community. Its objective is to make the controlled
systems track the desired trajectories. Nowadays, adaptive
dynamic programming (ADP) methods (Jiang and Zhang
(2018); Liu et al. (2017); Liu et al. (2018); Wang et al.
(2017); Wang et al. (2020); Wang and Liu (2018); Wei
et al. (2017);) are widely used to solve optimal control
problems. Some works (Kiumarsi and Lewis (2015); Luo
et al. (2016); Qin et al. (2014); Wang et al. (2012); Zhang
et al. (2008); Zhu et al. (2016)) have been reported to solve
the tracking control problem by using ADP in the last
decades. For the affine nonlinear system xk+1 = f(xk) +
g(xk)µx(xk), where xk is the system state, µx(xk) is the
control input and f(·) and g(·) are system functions, there
exist abundant works to solve the optimal tracking control
problem. The heuristic dynamic programming (HDP) al-
gorithm was employed to make the discrete-time nonlinear
affine systems track the desired trajectories in Zhang et al.
(2008). Meanwhile, the rigorous convergence analysis is
provided. Additionally, Wang et al. (2012) investigated
the finite-horizon neuro-optimal tracking control by trans-
⋆ This work was supported in part by Beijing Natural Science
Foundation under Grant JQ19013, and in part by the National
Natural Science Foundation of China under Grant 61773373 and
Grant 61533017.

forming the controlled affine systems into the augmented
systems. However, these two methods (Wang et al. (2012);
Zhang et al. (2008)) need to establish the model of the
error dynamics, which reduces the accuracy of the model.
On the other hand, the system functions f(·) and g(·)
need to be obtained to compute the steady control input
µd(dk) corresponding to the reference trajectory, such as
µd(dk) = g+(dk)(dk+1 − f(dk)), where dk is the desired
trajectory and g+(·) is the generalized inverse of g(·). From
then on, for affine systems with input constraints, the pol-
icy evaluation and the policy improvement are applied to
solve the tracking problem by Kiumarsi and Lewis (2015).
For continuous-time nonlinear systems, by using the rein-
forcement learning, Modares and Lewis (2014) trained the
learning algorithm to learn the optimal tracking control
input and studied the convergence and stability problems
of whole the system. The model-free optimal tracking
controller is designed by introducing the reinforcement
learning in Luo et al. (2016), which learns the optimal
tracking control policy from the real system data samples.
Nevertheless, the proposed algorithm needs to be given an
initial admissible control policy and a series of activation
functions in neural networks need to be manually designed.
Almost all previous research works are aimed at the
affine nonlinear systems. However, for nonaffine systems

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 4312

or unknown systems, few of study investigates the optimal
tracking control problem. There are two main difficulties:
(1) How do we obtain µd(dk) for unknown nonaffine

systems?
(2) How do we solve the optimal control law in the

iterative dual heuristic dynamic programming (DHP)
scheme for nonaffine systems?

In this paper, we focus on these difficulties and solve
the data-based optimal tracking control problem. Further-
more, some superior results are obtained. The rest paper
is organized as follows. In Section 2, the tracking control
problem is first transformed to the regulation problem by
constructing a new augmented system. Then, a new op-
timal control policy and the new iterative DHP updating
rules are provided in Section 3. In Section 4, the data-
based iterative DHP algorithm and the solution of µd(dk)
are presented. Finally, a simulation example is used to
verify the effectiveness of the proposed method.

2. PROBLEM STATEMENT

Consider the following nonaffine systems:
xk+1 = F(xk, µx(xk)), k ∈ N, (1)

where xk ∈ Rn is the n-dimensional state vector, µx(xk) ∈
Rm is the m-dimensional control vector, N = {0, 1, 2, . . . }
and F(·) is differentiable with respect to its arguments.
For the optimal tracking control problem, its objective is
to find the optimal control policy µ∗

x(xk), so as to make
the nonaffine system track a desired trajectory. Next, we
define the desired trajectory in the following form:

dk+1 = κ(dk), (2)
where dk+1 ∈ Rn and κ(·) : Rn → Rn is a differentiable
function in dk. Define the tracking error vector as follows:

ek = xk − dk. (3)

In addition, we define the steady control corresponding
to the desired trajectory as µd(dk) and assume that the
control input exists and satisfies

dk+1 = F(dk, µd(dk)). (4)
µd(dk) can be obtained by solving (4). In order to facilitate
analysis, we assume that µd(dk) can be denoted as follows:

µd(dk) = φ(dk). (5)
In other words, µd(dk) is the solution of (4). We can obtain
it by using the analytic method or various numerical
methods.
Then, we define a new control input in the following:

µe(ek) = µx(xk)− µd(dk). (6)

According to (1)–(6), we obtain a new augmented system
as {

ek+1 = F(ek + dk, µe(ek) + φ(dk))− κ(dk)

dk+1 = κ(dk).
(7)

Therefore, the augmented system (7) can be rewritten as
Xk+1 = F (Xk, µe(ek)), (8)

where F : R2n → R2n, Xk = [eTk , d
T
k]

T and µe(ek) are
the 2n-dimensional state vector and m-dimensional control
input of the new system, respectively. Since F and κ are
differentiable, F is also differentiable in its arguments. It

is assumed that the system (8) is controllable on the set
Ω and F is Lipschitz continuous on Ω.
In order to solve optimal tracking control problems, we
define the following performance index and need to find a
control sequence to minimize it

J (Xk, µe(ek)) =

∞∑
l=k

U(Xl, µe(el)), (9)

where U(Xl, µe(el)) is the positive definite utility function
and satisfies U(0, 0) = 0. Inspired by the works of Kiumarsi
and Lewis (2015), Wang et al. (2012) and Zhang et al.
(2008), the utility function is selected as follows:

U(Xl, µe(el)) =
[
eTl dTl

] [Q 0
0 0

] [
el
dl

]
+ µT

e (el)Rµe(el)

= eTl Qel + µT
e (el)Rµe(el)

= U(el, µe(el)), (10)
where Q ∈ Rn×n and R ∈ Rm×m are the symmetric
positive definite matrices.
In view of the form of (10), the performance index of the
augmented system can be simplified as

J (ek, µ(ek)) =

∞∑
l=k

{eTl Qel + µT
e (el)Rµe(el)}. (11)

Therefore, the main part of system (8) can be considered
as:

ek+1 = G(ek, µe(ek)). (12)
It is assumed that G(0, 0) = 0 holds.
Furthermore, the performance index is rewritten as

J (ek, µe(ek)) = eTkQek + µT
e (ek)Rµe(ek)

+

∞∑
l=k+1

{eTl Qel + µT
e (el)Rµe(el)}

= eTkQek + µT
e (ek)Rµe(ek)

+ J (ek+1, µe(ek+1)). (13)

According to Bellman’s optimality principle, the optimal
value function J ∗ satisfies the following equation

J ∗(ek) = min
µe(ek)

{U(ek, µe(ek)) + J ∗(ek+1)}. (14)

The optimal control policy µ∗
e(ek) should satisfy

µ∗
e(ek) = arg min

µe(ek)
{U(ek, µe(ek)) + J ∗(ek+1)}. (15)

Then, the optimal tracking control of the original system
is given by

µ∗
x(xk) = µd(dk) + µ∗

e(ek), (16)
where µd(dk) is obtained by the equation (5).

3. THE OPTIMAL TRACKING CONTROL BASED
ON ITERATIVE DHP ALGORITHM

This section includes two subsections. In the first subsec-
tion, the value iterative algorithm is elaborated and a new
optimal control policy for nonaffine systems is obtained.
Then, the novel iterative DHP algorithm for nonaffine
tracking systems is derived in the second subsection.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4313

3.1 Derivation of the Iterative ADP Algorithm

Due to the fact that it is difficult to solve the Bellman’s
equation directly, we present the value iteration algorithm
to obtain the numerical solution.
We initialize the value function as J0(·) = 0. The corre-
sponding control input is denoted as follows:
µe0(ek) = arg min

µ(ek)
{eTkQek + µT

e (ek)Rµe(ek) + J0(ek+1)}

= 0. (17)
Furthermore, the value function is updated as follows:

J1(ek) = min
µk

{eTkQek + µT
e (ek)Rµe(ek) + J0(ek+1)}

= eTkQek + µT
e0(ek)Rµe0(ek) + J0(ek+1)}

= eTkQek. (18)

Therefore, the value iteration algorithm can be imple-
mented between the control policy
µei(ek) = arg min

µe(ek)
{eTkQek + µT

e (ek)Rµe(ek) + Ji(ek+1)}

(19)
and the value function
Ji+1(ek) =min

µk

{eTkQek + µT
e (ek)Rµe(ek) + Ji(ek+1)}

= eTkQek + µT
ei(ek)Rµei(ek) + Ji(G(ek, µei(ek))),

(20)
where i = 1, 2,
It is noteworthy that how we obtain the solution of (19) for
nonaffine systems. For affine systems, the optimal control
law can be gotten by letting ∂(eTkQek + µT

e (ek)Rµe(ek) +
Ji(ek+1))/∂ek = 0. However, it is not available for non-
affine systems. Therefore, it is necessary to develop a
novel method to obtain the optimal control policy. We use
the gradient-based method to find µei(ek) and minimize
Ji+1(ek). First, we randomly initialize µei(ek) as µ

(0)
ei (ek).

Then, the updating rule of µei(ek) is a gradient-based
adaptation rule formulated by

µ
(j+1)
ei (ek) = µ

(j)
ei (ek)− αµ

∂(eTkQek + µT
ei(ek)Rµei(ek))

∂µei(ek)

− αµ
∂Ji(ek+1))

∂µei(ek)

= µ
(j)
ei (ek)− 2αµRµ

(j)
ei (ek)

− αµ

(
∂ek+1

∂µ
(j)
ei (ek)

)T
∂Ji(ek+1)

∂ek+1
, (21)

where αµ ∈ (0, 1) is the learning rate with respect to µe(ek)
and j, unlike i, is the iteration step of (21).
Next, by introducing a theorem, we will discuss how to
obtain ∂ek+1/∂µ

(j)
ei (ek) in (21) without modeling the error

dynamics.
Theorem 1. Define the control input of the original system
as µx(xk) in (1) and the control input of the new system as
µe(ek) in (12) , then ∂ek+1/∂µe(ek) and ∂ek+1/∂ek satisfy
the following equations:

∂ek+1

∂µe(ek)
=

∂xk+1

∂µx(xk)
,
∂ek+1

∂ek
=

∂xk+1

∂xk
. (22)

Proof. To the best of our knowledge, according to (4),
φ(dk) is related to dk and the system function F(·).

Also, according to the augmented system (7), the term
∂ek+1/∂µe(ek) satisfies the following condition:

∂ek+1

∂µe(ek)
=

∂(F(ek + dk, µe(ek) + φ(dk))− κ(dk))

∂µe(ek)

=
∂F(ek + dk, µe(ek) + φ(dk))

∂(µe(ek) + φ(dk))
. (23)

On the other hand, based on the original system (1), we
have

∂xk+1

∂µx(xk)
=

∂F(xk, µx(xk))

∂µx(xk)

=
∂F(ek + dk, µe(ek) + φ(dk))

∂(µe(ek) + φ(dk))
. (24)

Then, ∂ek+1/∂µe(ek) = ∂xk+1/∂µx(xk) holds. Similarly,
∂ek+1/∂ek = ∂xk+1/∂xk also holds.
The proof is completed.

According to (21) and Theorem 1, the updating rule of
µei(ek) can be rewritten as follows:

µ
(j+1)
ei (ek) = µ

(j)
ei (ek)− 2αµRµ

(j)
ei (ek)

− αµ

(
∂xk+1

∂(µ
(j)
ei (ek) + φ(dk))

)T
∂Ji(ek+1)

∂ek+1
.

(25)

3.2 Derivation of Iterative DHP Algorithm

First, we assume that the value function Ji(ek) is smooth
so that ∂Ji(ek)/∂ek exists. According to (25), we find that
the control law µi(ek) at each step of iteration has to be
computed by ∂Ji(ek+1)/∂ek+1, which is not an easy task.
Therefore, in the following, we will present the iterative
DHP algorithm to implement the iterative ADP algorithm.
Define the costate function as follows:

λi(ek) =
∂Ji(ek)

∂ek
. (26)

First, we start with an initial costate function λ0(·) = 0.
Then, for λi+1(ek) = ∂Ji+1(ek)/∂ek, according to (20),
the following equation can be deduced

λi+1(ek) =
∂U(ek, µei(ek))

∂ek
+

∂Ji(ek+1)

∂ek

=
∂eTkQek
∂ek

+

[
∂µei(ek)

∂ek

]T
∂µT

ei(ek)Rµei(ek)

∂µei(ek)

+

[
∂ek+1

∂ek

]T
∂Ji(ek+1)

∂ek+1

+

[
∂µei(ek)

∂ek

]T[
∂ek+1

∂µei(ek)

]T
∂Ji(ek+1)

∂ek+1

= 2Qek + 2

[
∂µei(ek)

∂ek

]T

Rµei(ek)

+

[
∂ek+1

∂ek
+

∂ek+1

∂µei(ek)

∂µei(ek)

∂ek

]T

λi(ek+1).

(27)
Next, using Theorem 1, we eventually obtain

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4314

 !"#$%&%!#'

($)*&+,-+$"$.!-#

/'!"0.&.,$#12!11!-#

344 344

544

644

Fig. 1. The flowchart of the optimal tracking control
algorithm

λi+1(ek) = 2Qek + 2

[
∂µei(ek)

∂ek

]T

Rµei(ek)

+

[
∂xk+1

∂xk
+

∂xk+1

∂µxi(xk)

∂µei(xk)

∂ek

]T

λi(ek+1).

(28)

Therefore, in the iterative DHP algorithm, the costate
function sequence {λi} and the control sequence {µei} are
updated by implementing the iteration between (25) and
(28). From (25) and (28), the control policy can directly be
computed by the costate function and the costate function
can be obtained by solving the system model rather than
the error dynamic model.

4. DATA-BASED ITERATIVE DHP
IMPLEMENTATION

Three subsection are included in this section, namely,
the model neural network (MNN), the critic neural net-
work (CNN) and the action neural network (ANN). First,
the model network is used to approximate the unknown
nonaffine system and the new approach to obtain µd(dk)
is introduced. Second, the training process of the critic
network is shown. Finally, the construction of the action
network is elaborated in the last subsection. On the other
hand, the flowchart of the proposed algorithm is displayed
in Fig. 1.

4.1 The Model Network

For unknown nonaffine systems, the model network needs
to be established to estimated the system state. We employ

the three-layer neural network to construct the model
network. The output of the model network is formulated
as follows

x̂k+1 = wT
m2δ(w

T
m1xmk + b1) + b2, (29)

where wm1 and wm2 are the weight matrices, b1 and b2
are threshold vectors, xmk = [xT

k , µ
T
x(xk)]

T and δ(·) is the
activation function.
Define the approximate error as

Em =
1

2
(x̂k+1 − xk+1)

T(x̂k+1 − xk+1). (30)

The gradient descent algorithm is used to update weights
and thresholds. The updating rules are denoted as follows:

wm1 := wm1 − θ

[
∂Em

∂wm1

]
,

wm2 := wm2 − θ

[
∂Em

∂wm2

]
,

b1 := b1 − θ

[
∂Em

∂b1

]
,

b2 := b2 − θ

[
∂Em

∂b2

]
, (31)

where θ ∈ (0, 1) is the learning rate and the symbol
:= denotes the assignment operation. When the training
process is finished, weights and thresholds are not updated.
Since the system function is unknown, it is difficult to
solve (4). Therefore, the expression of the model network
is utilized to obtain µd(dk). (4) can be rewritten as follows:

d̂k+1 = wT
m2δ(w

T
m1dmk + b1) + b2, (32)

where dmk = [dTk , µ
T
d (dk)]

T. Then, the various numerical
methods can be applied to obtain solution of (32). It is
noteworthy that the model performance directly deter-
mines the accuracy of µd(dk). Therefore, thresholds are
added in the model network to improve the modeling
precision.

4.2 The Critic Network

According to the iterative DHP algorithm, the critic net-
work is used to approximate the costate function. The
input of the critic network is the tracking error vector ek.
The output is denoted as

λ̂i+1(ek) = wT
c2δ(w

T
c1ek). (33)

Define the approximation error as follows:

Ec =
1

2
(λ̂i+1(ek)− λi+1(ek))

T(λ̂i+1(ek)− λi+1(ek)),

(34)
where λi+1(ek) is computed by (28).
Similarly, the updating rules of the weight matrices are
given by using the gradient descent algorithm

wc1 := wc1 − η

[
∂Ec

∂wc1

]
,

wc2 := wc2 − η

[
∂Ec

∂wc2

]
, (35)

where η ∈ (0, 1) is the learning rate of the critic network.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4315

4.3 The Action Network

In the action network, the output is formulated as
µ̂ei(ek) = wT

a2δ(w
T
a1ek). (36)

Define the approximation error in the following:

Ea =
1

2
(µ̂ei(ek)− µei(ek))

T(µ̂ei(ek)− µei(ek)). (37)

The optimal control policy µei(ek) at each iteration step
can be obtained through iteration updating. According to
(25) and (26), the updating rule is given as follows

µ
(j+1)
ei (ek) = µ

(j)
ei (ek)− 2αµRµ

(j)
ei (ek)

− αµ

(
∂xk+1

∂(µei(ek) + φ(dk))

)T

λi(ek+1).

(38)
The updating rules for weights are obtained

wa1 := wa1 − ζ

[
∂Ea

∂wa1

]
,

wa2 := wa2 − ζ

[
∂Ea

∂wa2

]
, (39)

where ζ ∈ (0, 1) is the learning rate of the action network.

5. SIMULATION STUDIES

In this section, the performance of the proposed tracking
algorithm is demonstrated through a simulation example.
The example derived from Luo et al. (2016) with some
modifications is considered as

xk+1 =

[
tanh(x1k) + 0.05 tanh(x2k)
−0.3 tanh(x1k) + tanh(x2k)

]
+

[
0

sin(usk)

]
, (40)

where x0 = [0.9,−0.8]T.
First, the model network needs to be constructed. In
order to improve the accuracy of the model network, we
set the number of hidden layer neurons as 40. In the
implementations, we use the MATLAB neural network
toolbox. The learning rate is θ = 0.02. Additionally, the
initial values of weight matrices and threshold vectors are
set by default. Then, 1000 data samples generated by the
nonaffine system are used to train the model network for
150 iteration steps. Fig. 2 demonstrates the performance of
the model network by using 500 data samples to test. Here,
training and testing data samples are randomly selected
in x ∈ [−1, 1] and µx ∈ [−1, 1]. In this example, we
employ the performance error measure as em = abs(x̂k+1−
xk+1) to help us clearly verify the performance of the
model network, where abs(·) denotes the absolute values
of elements in x̂k+1 − xk+1.
Next, we define the desired trajectory as follows:

dk+1 =

[
0.9963d1k + 0.0498d2k
−0.2492d1k + 0.9888d2k

]
, (41)

where d0 = [0.1, 0.2]T. We use the proposed method to
make the unknown system (40) track the desired trajec-
tory. For this purpose, we construct the critic and action
networks with structures 2–8–2 and 2–8–1, correspond-
ingly. The learning rates are set as η = ζ = 0.05 and the

0 50 100 150 200 250 300 350 400 450 500

Testing data samples

0

2

4

6

T
es

tin
g

er
ro

r
e m

1

×10-3

0 50 100 150 200 250 300 350 400 450 500

Testing data samples

0

1

2

3

4

T
es

tin
g

er
ro

r
e m

2

×10-3

Fig. 2. The testing error of the model network

0 50 100 150 200 250 300

Time steps

-0.5

0

0.5

1

T
he

 s
ys

te
m

 s
ta

te
 x

1

The state of the original system

The reference trajectory

0 50 100 150 200 250 300

Time steps

-1

-0.5

0

0.5

T
he

 s
ys

te
m

 s
ta

te
 x

2

The state of the original system

The reference trajectory

Fig. 3. The state trajectory of the original system and the
reference trajectory

weights are initialized randomly. In the DHP algorithm,
the weight matrices in the utility function are chosen as
Q = 0.1I2×2 and R = I1×1 and the learning rate in the
updating rule of µei(ek) is also set as αµ = 0.05.
After learning is completed, the action network is regraded
as the tracking controller to control the nonaffine sys-
tem (40). The convergence curves of the state and the
tracking error are shown in Figs. 3 and 4, respectively.
The results demonstrate that the state vector reaches the
desired trajectory fast, within 30 time steps. The curves
of the control inputs corresponding to the original and
augmented system are shown in Fig. 5.
Additionally, it is worth mentioning that µd(dk) needs
to be obtained in the learning process. According to the
approach described in Section 4.1, the steady control
corresponding to the desired trajectory can be computed
by the expression of the model network. Here, we employ
the function ”fsolve” in MATLAB to solve µd(dk). The
curves of µd(dk) by solving (4) and (32) are displayed in
Fig. 6, which verifies the effectiveness of the developed
approach.

6. CONCLUSION

In this paper, for unknown nonaffine systems, the new
updating rule of the costate function based on DHP is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4316

0 50 100 150 200 250 300

Time steps

-0.5

0

0.5

1

T
he

 tr
ac

ki
ng

 e
rr

or
 e

1

0 50 100 150 200 250 300

Time steps

-1

-0.5

0

0.5

T
he

 tr
ac

ki
ng

 e
rr

or
 e

2

Fig. 4. The tracking error

0 50 100 150 200 250 300

Time steps

-0.1

0

0.1

0.2

T
he

 c
on

tr
ol

 in
pu

t
µ

x

0 50 100 150 200 250 300

Time steps

-0.1

0

0.1

0.2

T
he

 c
on

tr
ol

 in
pu

t
µ

e

Fig. 5. The control input of the original system and the
augmented system

0 50 100 150 200 250 300

Time steps

-8

-6

-4

-2

0

2

4

6

8

T
he

 s
te

ad
y

co
nt

ro
l o

f t
he

 d
es

ire
d

tr
aj

ec
to

ry

×10-3

µ̂d

µd

Fig. 6. The steady control input corresponding to the
desired trajectory of the proposed approach and its
real value

proposed. Additionally, the steady control corresponding
to the desired trajectory is obtained by solving the ex-
pression of the model network. It should be noted that
the developed approach to estimate µd(dk) is actually a
model-based technique. On the other hand, the optimal
control µei(ek) at each iteration step for nonaffine systems

is given. The simulation example also verifies the perfor-
mance of the proposed methods. However, µd(dk) requires
the high-precision model network, which directly influence
the effectiveness of the tracking controller. We will make
further discussion in future works.

REFERENCES
Jiang, H. and Zhang, H. (2018). Iterative adp learning al-

gorithms for discrete-time multi-player games. Artificial
Intelligence Review, 50, 75–91.

Kiumarsi, B. and Lewis, F.L. (2015). Actor-critic-
based optimal tracking for partially unknown nonlinear
discrete-time systems. IEEE Transactions on Neural
Networks and Learning Systems, 26, 140–151.

Liu, D., Wei, Q., Wang, D., Yang, X., and Li, H. (2017).
Adaptive Dynamic Programming with Applications in
Optimal Control. Springer, Cham, New York.

Liu, D., Xu, Y., and Wei, Q. (2018). Residential energy
scheduling for variable weather solar energy based on
adaptive dynamic programming. IEEE/CAA Journal
of Automatica Sinica, 5, 36–46.

Luo, B., Liu, D., Huang, T., and Wang, D. (2016). Model-
free optimal tracking control via critic-only q-learning.
IEEE Transactions on Neural Networks and Learning
Systems, 27, 2134–2144.

Modares, H. and Lewis, F.L. (2014). Optimal tracking con-
trol of nonlinear partially-unknown constrained-input
systems using integral reinforcement learning. Automat-
ica, 50, 1780–1792.

Qin, C., Zhang, H., and Luo, Y. (2014). Online optimal
tracking control of continuous-time linear systems with
unknown dynamics by using adaptive dynamic program-
ming. International Journal of Control, 87, 1000–1009.

Wang, D., Ha, M., and Qiao, J. (2020). Self-learning
optimal regulation for discrete-time nonlinear systems
under event-driven formulation. IEEE Transactions on
Automatic Control, 65, 1272–1279.

Wang, D., He, H., Zhong, X., and Liu, D. (2017). Event-
driven nonlinear discounted optimal regulation involv-
ing a power system application. IEEE Transactions on
Industrial Electronics, 64, 8177–8186.

Wang, D. and Liu, D. (2018). Learning and guaranteed
cost control with event-based adaptive critic implemen-
tation. IEEE Transactions on Neural Networks and
Learning Systems, 29, 6004–6014.

Wang, D., Liu, D., and Wei, Q. (2012). Finite-horizon
neuro-optimal tracking control for a class of discrete-
time nonlinear systems using adaptive dynamic pro-
gramming approach. Neurocomputing, 78, 14–22.

Wei, Q., Liu, D., Liu, Y., and Song, R. (2017). Opti-
mal constrained self-learning battery sequential man-
agement in microgrid via adaptive dynamic program-
ming. IEEE/CAA Journal of Automatica Sinica, 4, 168–
176.

Zhang, H., Wei, Q., and Luo, Y. (2008). A novel infinite-
time optimal tracking control scheme for a class of
discrete-time nonlinear systems via the greedy hdp
iteration algorithm. IEEE Trans. Syst. Man Cybern.
Part B Cybern., 38, 937–942.

Zhu, Y., Zhao, D., and Li, X. (2016). Using reinforcement
learning techniques to solve continuous-time non-linear
optimal tracking problem without system dynamics.
IET Control Theory and Applications, 10, 1339–1347.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4317

