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1. INTRODUCTION 

Q-learning is a reinforcement learning method, originally 

developed by Watkins (1989), that observes system responses 

to given actions and uses this data to learn an optimal policy. 

Recent studies have used Q-learning to learn the model-free 

optimal feedback control in simulated environments (e.g. 

Lewis et al., 2012; Rizvi and Lin, 2017). Q-learning is studied 

in both continuous time problems and discrete-time problems. 

Q-learning and recent literature is reviewed in more detail e.g. 

by Rizvi and Lin (2017) and Kiumarsi et al (2014). However, 

only few Q-learning studies use data from real-time 

applications (e.g. ten Hagen and Kröse, 2003; Radac and 

Precup, 2018).  This study focuses on discrete-time systems 

and real-time Q-learning applications. 

It is known, that the analog-to-digital conversion causes 

quantization error in the measurements (Bennett, 1948; Gray 

and Neuhoff, 1998). Multiple studies are conducted on model-

based control and system identification with quantized 

measurements (Curry, 1970; Delchamps, 1990; Wang et al., 

2010). Schoukens et al. (1988) and Roinila et al. (2010) among 

others, study excitation signals in identification applications. 

According to them, identification results could be improved 

with an excitation signal that has a large amplitude to yield 

larger signal-to-noise-ratio or by choosing the excitation 

within the frequency range of the system. However, 

quantization in model-free optimal control has not been widely 

studied yet. Zhao et al. (2015) have studied quantization in 

finite horizon optimization problem. They model the 

quantization error into the Q-learning algorithm and solve 

model-free the optimal control problem.  

In this paper, the infinite horizon optimal control problem is 

solved using quantized control input and measurements. A 

new method for quantization error reduction is developed 

using only the exploration noise and the sample time. The rest 

of the paper is organized as follows. Q-learning for partially 

observable linear systems is reviewed in Section 2. The 

physical system studied, Quanser QUBE-Servo 2, is presented 

in Section 3. In Section 4, the connection between the 

quantization error, the exploration noise and the sample time 

is studied and a method for reducing the quantization error is 

developed. The method is illustrated both in a simulated and a 

real-time environment in Section 5. Conclusions are given in 

Section 6. 

2. Q-LEARNING FOR  PARTIALLY OBSERVABLE 

LINEAR SYSTEMS 

Linear time-invariant system model is given by Franklin et al. 

(1998) as 

{
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘
, (1) 

where 𝑥𝑘 ∈ ℝ𝑛𝑥, 𝑢𝑘 ∈ ℝ𝑛𝑢, and 𝑦𝑘 ∈ ℝ𝑛𝑦 are the state, the 

control input and the output at time 𝑘 and 𝑛𝑥, 𝑛𝑢, and 𝑛𝑦 are 

the number of states, inputs and outputs. 

Matrices 𝐴, 𝐵, 𝐶, and 𝐷 are the state transition, the input, the 

output, and the feedthrough matrices of appropriate 

dimensions. Lewis and Vamvoudakis (2011) and Rizvi and 

Lin (2017, 2019) denote a partially measurable state 𝑥𝑘 as 

𝑥𝑘 = [𝑀𝑢 𝑀𝑦]�̅�𝑘 . (2) 

The new state �̅�𝑘 is formed from a vectors �̅�𝑘 and �̅�𝑘 

containing old controls and old measurements as 

�̅�𝑘 = [�̅�𝑘
𝑇 �̅�𝑘

𝑇]𝑇

�̅�𝑘 = [ 𝑢𝑘−1 𝑢𝑘−2 … 𝑢𝑘−𝑛]𝑇

�̅�𝑘 = [ 𝑦𝑘−1 𝑦𝑘−2 … 𝑦𝑘−𝑛]𝑇
. (3) 

where 𝑛 ≤ 𝑛𝑥 is the observability index. Matrices 𝑀𝑢 and 𝑀𝑦 

in (2) are defined using the observability, controllability and 

Toeplizt matrices 𝑉𝑛, 𝑈𝑛 and 𝑇𝑛 as 

𝑀𝑦 = 𝐴𝑛(𝑉𝑛
𝑇𝑉𝑛)−1𝑉𝑛

𝑇 , 𝑀𝑢 = 𝑈𝑛 − 𝑀𝑦𝑇𝑛

𝑉𝑛 = [(𝐶𝐴𝑛−1)𝑇 ⋯ (𝐶𝐴)𝑇 𝐶𝑇]𝑇

𝑈𝑛 = [𝐵 𝐴𝐵 ⋯ 𝐴𝑛−1𝐵]

(4𝑎) 
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𝑇𝑛 =

[
 
 
 
 
0 𝐶𝐵 𝐶𝐴𝐵 ⋯ 𝐶𝐴𝑛−2𝐵
0 0 𝐶𝐵 ⋯ 𝐶𝐴𝑛−3𝐵
⋮ ⋮ ⋱ ⋱ ⋮
0 ⋯ ⋯ 0 𝐶𝐵
0 0 0 0 0 ]

 
 
 
 

(4b) 

2.1  Optimal model-based  control  

Originating from the Bellman’s optimality principle (Bellman, 

1957), the optimal control for system (1) is the control that 

minimizes the Hamilton-Jacobi-Bellman (HJB) equation. It is 

given by Sutton et al. (2018) and Lewis et al. (2012) as 

𝑉∗(𝑥𝑘) = min
𝑢𝑘

(𝑟(𝑥𝑘 , 𝑢𝑘) + 𝑉∗(𝑥𝑘+1)), (5) 

where and the one-step cost 𝑟(𝑥𝑘 , 𝑢𝑘) is given as  

𝑟(𝑥𝑘 , 𝑢𝑘) = 𝑥𝑘
𝑇𝑄𝑥𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 = 𝑦𝑘
𝑇𝑄𝑦𝑦𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘, (6) 

where 𝑄, 𝑄𝑦 and 𝑅 are the state, the output and the control 

weighting matrices of appropriate dimensions and 𝑄 =
𝐶𝑇𝑄𝑦𝐶 and 𝑢𝑘 = ℎ(𝑥𝑘) is the control policy. 

Assuming the system (1) is controllable, Franklin et al. (1998) 

solve the optimal control policy as 

𝑢𝑘 = ℎ(𝑥𝑘) = 𝐾∗𝑥𝑘 , (7) 

where 𝐾∗ ∈ ℝnu×nx is the optimal control gain matrix given as 

𝐾∗ = −(𝑅 + 𝐵𝑇𝑋𝐵)−1𝐵𝑇𝑋𝐴, (8)  

and 𝑋 is the algebraic Riccati equation solution  

𝑋 = 𝐴𝑇𝑋𝐴 − 𝐴𝑇𝑋𝐵(𝑅 + 𝐵𝑇𝑋𝐵)−1𝐵𝑇𝑋𝐴 + 𝑄. (9) 

2.2  Q-learning for partially observable linear systems 

According to Watkins (1989) the optimal Q-function can be 

defined for any optimal control problem as 

𝑄∗(𝑥𝑘 , 𝑢𝑘) = 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝑉∗(𝑥𝑘+1). (10) 

Inserting (10) into (5) shows that the optimal policy also 

minimizes the optimal Q-function. The resulting equation can 

be inserted back into (10). It yields the Q-Bellman optimality 

equation  

𝑄∗(𝑥𝑘 , 𝑢𝑘) = 𝑟(𝑥𝑘 , 𝑢𝑘) + min
𝑢𝑘

(𝑄∗(𝑥𝑘+1, 𝑢𝑘+1)). (11) 

The Q-function for linear systems is solved by Lewis and 

Vamvoudakis (2011) and Rizvi and Lin (2017, 2019) as 

𝑄(�̅�𝑘 , 𝑢𝑘) = 𝑧�̅�
𝑇𝑇𝑧�̅� = 𝑟(𝑦𝑘 , 𝑢𝑘) + 𝑧�̅�+1

𝑇𝑇𝑧�̅�+1, (12) 

𝑊𝑇𝜙(𝑧�̅�) = 𝑟(𝑦𝑘 , 𝑢𝑘) + 𝑊𝑇𝜙(𝑧�̅�+1), (13) 

where 𝑟(𝑦𝑘 , 𝑢𝑘) is given in (6) and 𝑧�̅� is formed with the new 

state �̅�𝑘 in (3) and with the current policy 𝑢𝑘 as 

𝑧�̅� = [
�̅�𝑘

𝑢𝑘
] ∈ ℝ𝑛�̅�  and 𝑛�̅� = 𝑛(𝑛𝑢 + 𝑛𝑦) + 𝑛𝑢. (14)  

The symmetric kernel matrix 𝑇 in (12) is defined as 

𝑇 = [
𝑀𝑢

𝑇 0

𝑀𝑦
𝑇 0

0 𝐼

] [
𝐴𝑇𝑋𝐴 + 𝑄 𝐴𝑇𝑋𝐵

𝐵𝑇𝑋𝐴 𝐵𝑇𝑋𝐵 + 𝑅
] [

𝑀𝑢 𝑀𝑦 0

0 0 𝐼
]

= [

𝑡11 𝑡12

𝑡21 𝑡22
⋯

𝑡1𝑛�̅�

𝑡2𝑛�̅�

⋮ ⋱ ⋮
𝑡𝑛�̅�1 𝑡𝑛�̅�2 ⋯ 𝑡𝑛�̅�𝑛�̅�

] = [

𝑇𝑢𝑢 𝑇𝑢�̅� 𝑇𝑢𝑢

𝑇�̅�𝑢 𝑇�̅��̅� 𝑇�̅�𝑢

𝑇𝑢𝑢 𝑇𝑢�̅� 𝑇𝑢𝑢

] . (15)

 

where 𝑇𝑢𝑢 ∈ ℝ𝑛𝑢𝑥𝑛𝑢 , 𝑇𝑢𝑢 ,  𝑇𝑢�̅�, 𝑇�̅��̅� ∈ ℝ𝑛𝑥𝑛 , 𝑇𝑢𝑢 ∈ ℝ𝑛𝑥𝑛𝑢 and 

𝑇�̅�𝑢 ∈ ℝ𝑛𝑥𝑛𝑦 are matrix elements of 𝑇. The matrix 𝑇 is  

expressed in (13) in a vector form using its scalar elements as 

𝑊 = [𝑡11, 2𝑡12,⋯ , 2𝑡1𝑛�̅�
, 𝑡22, ⋯ ,2𝑡2𝑛𝑧

, ⋯ , 𝑡𝑛�̅�𝑛�̅�
]
𝑇
. (16) 

The quadratic basis vector 𝜙(𝑧�̅�) ∈ ℝ(𝑛�̅�(𝑛�̅�+1)/2) is given as 

𝜙(𝑧�̅�) = [𝑧1̅
2, 𝑧1̅𝑧2̅,⋯ , 𝑧1̅𝑧�̅��̅�

, 𝑧2̅
2, 𝑧2̅𝑧3̅, ⋯ 𝑧2̅𝑧�̅��̅�

, ⋯ , 𝑧�̅��̅�
2 ]

𝑇
, (17) 

where 𝑧�̅� is the 𝑚th element of 𝑧�̅�. 

Rizvi and Lin (2017, 2019) solve the model-free discrete-time 

Linear Quadratic Regulator (LQR) problem by identifying the 

kernel matrix 𝑇 in (15) from data using (12) or (13). The 

optimal policy that minimizes (12) is derived as 

𝑢𝑘 = −(𝑇𝑢𝑢)−1[𝑇𝑢𝑢 𝑇𝑢�̅�] �̅�𝑘 . (18) 

This is equal to inserting (2) and (8) into (7).  

2.3  Policy and value iteration to solve the LQR problem  

Policy and value iteration (PI and VI) algorithms run policy 

and value updates until the optimal policy is found. They are 

initialized at 𝑗 = 0. The initial policy is chosen randomly, but 

it must be stabilizing for PI. Here, the value update step 

updates the weight matrix 𝑊. Lewis et al. (2012) denote the 

weight matrix 𝑊 in (16) as �̂�𝑗+1so that 

�̂�𝑗+1
𝑇 φ𝑘 = 𝜇𝑘. (19) 

where the data and the regression vector 𝜇𝑘 and φ𝑘 are given 

for PI as 

φ𝑘 = 𝜙(𝑧�̅�) − 𝜙(𝑧�̅�+1)

𝜇𝑘 = 𝑟(𝑦𝑘 , 𝑢𝑘)
. (20) 

and for VI using the old weight matrix �̂�𝑗 as  

φ𝑘 = 𝜙(𝑧�̅�)

𝜇𝑘 = 𝑟(𝑦𝑘 , 𝑢𝑘) + �̂�𝑗
𝑇𝜙(𝑧�̅�+1)

. (21) 

The weight �̂�𝑗+1 is updated with recursive least squares (RLS) 

and the policy update step updates the policy 𝑢𝑗+1,𝑘 with (18). 

The updated control policy is applied in the system during 

learning with an added exploration noise 𝜖𝑘. Lewis et al. 

(2012), among others, add it to the control input to ensure the 

persistence of excitation (PE) condition and the convergence 

of the kernel matrix �̂�𝑗+1. The value and policy updates are 

repeated until the weight �̂�𝑗+1 convergences so that ‖�̂�𝑗+1 −
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�̂�𝑗‖ ≤  𝜀𝑗, where 𝜀𝑗 is a small constant. Lewis and 

Vamvoudakis (2011) use a discounting factor 𝛾 in (5) to 

reduce the noise bias effects, but Rizvi and Lin (2017) prove 

that choosing 𝛾 < 1 does not guarantee the closed-loop system 

stability so therefore discounting is not used here. 

2.4 Recursive least squares value update 

Franklin, et al (1998) define the one-step RLS update as 

𝐿𝑖+1 = 𝜆−1𝑃𝑖φ𝑘(𝑎
−1 + 𝜆−1φ𝑘

𝑇𝑃𝑖φ𝑘)
−1

�̂�𝑗+1,𝑖+1 = �̂�𝑗+1,𝑖 + 𝐿𝑖+1(𝜇𝑘 − φ𝑘
𝑇�̂�𝑗+1,𝑖)

𝑃𝑖+1 = 𝜆−1(𝐼 − 𝐿𝑖+1φ𝑘
𝑇)𝑃𝑖

, (22) 

where 𝐿𝑖+1, 𝑃𝑖+1 and �̂�𝑗+1,𝑖+1   are the update, the covariance 

and the weight matrices at index 𝑖 + 1 and 𝜆 is a RLS 

discounting factor. For regular RLS 𝜆 = 1 and 𝑎 = 1.  

For the value update, the index 𝑖 is set as 𝑖 = 0 and the weight 

�̂�𝑗+1,𝑖 is set as the previous weight �̂�𝑗 and the covariance 

matrix 𝑃0 is set as 𝑃0 = 𝛿𝐼, where 𝛿 is a large scalar (Franklin 

et al., 1998). Each update step 𝑖 the weight �̂�𝑗+1,𝑖+1 is updated 

with (22) using new measurements. The regression φ𝑘 and 

data vector 𝜇𝑘 are formed from the measured data using (20) 

or (21) and (3), (14) and 𝑢𝑘+1is calculated with (18) using 

the current policy. Updates stop when the weight �̂�𝑗+1 has 

converged so that ‖�̂�𝑗+1,𝑖+1 − �̂�𝑗+1,𝑖‖ ≤  𝜀𝑖, where 𝜀𝑖 is a 

small constant.  (Rizvi and Lin, 2017, 2019). 

3. THE QUANSER QUBE-SERVO 2 SYSTEM  

Apkarian et al. (2016) derive a continuous-time system model 

for the Quanser QUBE-Servo 2 experiment (Fig. 1). The state 

𝑥 is chosen as 𝑥 = [𝜃 𝜔]𝑇 , where 𝜃 is the angular position 

of the disk load (𝑟𝑎𝑑) and 𝜔 = �̇� is the angular velocity 

(𝑟𝑎𝑑 𝑠⁄ ). With voltage as the input 𝑢 and angular position 𝜃 as 

the output 𝑦, the marginally stable system model with 

numerical parameters is  

{
�̇� = [�̇�

�̈�
] = [

0 1
0 −10.0485

] 𝑥 + [
0

239.2509
] 𝑢

𝑦 = [1 0]𝑥
. (23)  

Block diagram in Fig. 1 shows the system connected to the 

computer. The data acquisition device (DAQ) works as an 

interface and it communicates via MATLAB. The DAQ uses 

an encoder and a decoder to process data. The angular position 

𝜃 is measured as encoder counts using a chosen sample time 

𝑑𝑡 (𝑠). The quadrature decoder generates 2048 counts per 

revolution (Apkarian et al, 2016). Therefore, one count 

corresponds to 2𝜋 2048⁄ 𝑟𝑎𝑑 ≈ 0.0031 𝑟𝑎𝑑. This resolution 

leads to uniformly quantized output. Xu et al. (2015) and Zhao 

et al. (2015) define the quantized output 𝑦𝑘
𝑞
 and control 𝑢𝑞𝑘

𝑞
 as 

𝑦𝑘
𝑞

= 𝑞(𝑦𝑘) = ∆𝜃 ∙ (⌊𝑦𝑘 ∆𝜃⁄ ⌋  + 1 2⁄ )

𝑢𝑞𝑘
𝑞

= 𝑞(𝑢𝑞𝑘) = ∆𝑢 ∙ (⌊𝑢𝑞𝑘 ∆𝑢⁄ ⌋ + 1 2⁄ )
 , (24) 

where ⌊𝑦𝑘 ∆𝜃⁄ ⌋ and ⌊𝑢𝑞𝑘 ∆𝑉⁄ ⌋ are floor functions of 𝑦𝑘 ∆𝜃⁄  and 

𝑢𝑞𝑘 ∆𝑢⁄  and the output quantization interval ∆𝜃  is  

 

Fig. 1. Block diagram of the Quanser QUBE-Servo 2 system  

 

Fig. 2. Sample time and quantization 

∆𝜃= 0.0031 𝑟𝑎𝑑. For simulations, the input quantization 

interval ∆𝑢 was chosen as ∆𝑢= 0.0001 𝑉. Quantized control 

𝑢𝑞𝑘 in (24) and Fig.1 is computed with (18) using a quantized 

state �̅�𝑞𝑘 = [�̅�𝑞𝑘
𝑇 �̅�𝑞𝑘

𝑇 ]
𝑇
, where �̅�𝑞𝑘 and �̅�𝑞𝑘  are given as 

�̅�𝑞𝑘 = [ 𝑢𝑞(𝑘−1) 𝑢𝑞(𝑘−2) … 𝑢𝑞(𝑘−𝑛)]𝑇

�̅�𝑞𝑘 = [ 𝑦𝑘−1
𝑞

𝑦𝑘−2
𝑞

… 𝑦𝑘−𝑛
𝑞

]
𝑇 . (25) 

4. REDUCING THE QUANTIZATION ERROR 

According to Xu et al. (2015) and Zhao et al. (2015), the 

quantization in (24) causes error in the Bellman equation in 

(12). A dither signal could be added between the system and 

the analog-to-digital converter to reduce the quantization error 

(Schuchman, 1964; Widrow and Kollar 2008). Here, the 

exploration noise is a dither signal, but it is only possible to 

insert it into the control input. A method to reduce the 

quantization error with the exploration noise is developed. 

4.1 Quantization, sample time and exploration noise 

The sample time, exploration noise and their connection to the 

quantization noise is studied. Each test starts from the same 

initial position and the data is collected for 20 time steps.  The 

control gain is chosen as 𝐾 = −[0.5 0.5 0.5 0.5] and the 

input saturation is set as [−7 𝑉, 7𝑉]. The exploration noise is 

added to the control input and it is an uniform random noise 

between [– 𝐴𝜖  𝑉, 𝐴𝜖 𝑉], where 𝐴𝜖 is the exploration noise 

amplitude. Fig. 2. shows 3 tests, where  𝐴𝜖 = 1 and the sample 

time 𝑑𝑡 is 0.002 𝑠, 0.01 𝑠 or 0.1 𝑠. 
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Fig. 3. Quantized output variance as a function of the 

exploration noise amplitude with different sample times  

 

Fig. 4. SNR with different sample times and noise amplitudes 

 

Fig. 5. MSE with different sample times and noise amplitudes 

 

Fig. 6. Norm of the error between the optimal and the learned 

gain 𝐾∗ and 𝐾𝑉𝐼  with different exploration noise amplitudes 

and sample times  

 

Fig. 7. Norm of the error between the optimal and the learned 

gain 𝐾∗ and 𝐾𝑃𝐼  (NaN values with dt = 0.002 s) 

According to Gray and Neuhoff (1998), the quantization 

interval ∆ is ordinarily small when the number of quantization 

levels is large. Quantization levels are the values the quantized 

output can have and here the number of quantization levels is 

infinite. However, the number of quantization levels in Fig. 2 

are 4, 44 and 7910 from top to bottom respectively. It is seen 

(see Fig. 2 top) that the value of the quantized output might not 

change between samples if the amount of quantization levels 

is small, or, put differently, the quantization interval ∆𝜃 is 

large compared to values the actual output can have. Widrow 

and Kollar (2008) mention that the quantization noise can be 

assumed white, but small sample times demand smaller 

quantization intervals for this assumption to be valid. 

The variance of the quantized output is computed using 

different sample times and exploration noise amplitudes and 

the results are shown in Fig. 3. The figure shows that the 

variance is increased when the exploration noise amplitude 

and the sample time increase. The number of quantization 

levels increases when the variance increases, since the output 

can obtain values from a larger range. This is also seen in Fig. 

2. 

Gray and Nehoff (1998), and Widrow and Kollar (2008) give 

the signal-to-quantization-noise ratio (SNR) as 

𝑆𝑁𝑅 = 10 log10(var(𝑌) 𝐸[(𝑞(𝑌) − 𝑌)2]⁄ ) (26) 

with Y as the output signal and 𝑞(𝑌) the quantized signal. The 

signal-to-quantization-noise ratio is computed for the different 

datasets (Fig. 4). The ratio increases when the noise amplitude 

and sample time increase. This means that the quantization 

noise can be reduced in comparison to the actual signal when 

the sample time and exploration noise amplitude are increased. 

Gray and Neuhoff (1998) define the mean-squared error 

(MSE) for a small quantization interval ∆ approximately as 

∆2 12⁄ . For the given system output it should be 

approximately (0.0031 𝑟𝑎𝑑)2 12⁄ = 8.0083 ⋅ 10−7 𝑟𝑎𝑑. Fig 

4 shows the MSEs between the quantized and actual outputs 

of the different datasets. In fact, all of the MSEs are close to 

the computed value. Even though changing the sample time 

and the exploration noise reduces the quantization noise in 

comparison to the actual signal (as was seen in Fig. 3 and Fig. 

4), the absolute size of the quantization interval ∆𝜃  and the 

absolute size of the quantization error is not reduced. 

4.2 Choosing the sample time and exploration noise  

The initial gain and the kernel matrix are chosen stabilizing for 

both PI and VI. To assure the stability, they are not selected 

randomly here, but instead a small gain is computed using (2), 

(7) and (8) with the discretized model (23) and 𝑅 = 1 and 

𝑄 = [
5 0
0 0

], if 𝑑𝑡 ≥ 0.01 or 𝑄 = [
0.1 0
0 0

], if 𝑑𝑡 < 0.01. PI 

and VI learning algorithms are initialized with 𝑄𝑦 = 1 and 

𝑅 = 1. 

A simulator with input and output quantization and input 

saturation is used with different exploration noise amplitudes 

and sample times. The norm of the error between the final 

learned gain 𝐾𝑃𝐼 or 𝐾𝑉𝐼  and the optimal gain 𝐾∗ is computed 

for each sample time and noise amplitude (Fig. 6 and Fig. 7). 

The error becomes smaller with larger noise amplitudes and 

sample times in this application. This result is expected due to 

results in Fig. 3 and Fig. 4 as the quantization error becomes 

proportionally smaller compared to the signal.  
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While in the simulated environment the performance can be 

improved by increasing the sample time and noise amplitude, 

in the real-time system control should be within ± 10 𝑉. The 

time constant 𝜏 of the system is approximately 𝜏 = 0.13 𝑠 and 

the system developers use a sample time 𝑑𝑡 =
0.002 𝑠 (Apkarian et al., 2016). Applying larger noise 

amplitudes long term could also harm the system. The 

exploration noise is chosen as an uniform random noise 𝜖𝑘 ∈
[−5 𝑉, 5𝑉] and the sample time as 𝑑𝑡 = 0.01 𝑠. This choice is 

supported by the earlier results, but it is also chosen so that it 

is physically possible to use it in the real-time system. 

5. CONTROL RESULTS WITH THE CHOSEN 

EXPLORATION NOISE AND SAMPLE TIME 

PI and VI are used in a simulated model without disturbances 

(original simulator) and in a simulated model with added input 

and output quantization and other disturbances (modified 

simulator). The exploration noise, the sample time and the 

initial stabilizing gain 𝐾0 were chosen in Section 4.2. 

Convergence limits 𝜀𝑖 and 𝜀𝑗 were chosen as 𝜀𝑖 = 𝜀𝑗 = 10−7 

for the original simulator and 𝜀𝑖 = 𝜀𝑗 = 10−5 for the modified 

simulator. PI and VI are initialized with 𝑄𝑦 = 1 and 𝑅 = 1. 

The results with the original and modified simulator are shown 

in Fig.8. It shows the control gain 𝐾�̂� at each time 𝑘. The gain 

𝐾�̂� is the gain at iteration 𝑗 defined as 𝐾�̂� =

−(𝑇𝑢𝑢,𝑗)
−1[𝑇𝑢𝑢,𝑗 𝑇𝑢�̅�,𝑗]. Table 1 lists the converged gains 

𝐾∞. The first row of the table, the reference gain, is computed 

using (2) and (8) in (7) with 𝑄 = 𝐶𝑇𝑄𝑦𝐶. Near optimal 

control is learned during every run, so the success rate for both 

algorithms in a simulated environment is 100 %. 

Then, Gaussian random noise was added before the 

quantization in the modified simulator to model the 

measurement noise and other disturbances. Three different 

variances were tested (Fig. 9) and only the largest one lead to 

unstable learning. Value iteration tolerates the noise more than 

policy iteration in this application. 

Results on how the real-time system worked with the chosen 

exploration noise and sample time during 200 s run are given 

in Fig. 10 and Fig. 11. It is seen, that while the learning 

algorithms were stable in the simulated environment each run, 

in the real-time environment they can become unstable. 

Learning in the real-time environment was deemed successful 

if it remained stable within 200 s, while it might have not 

reached the optimal value. The real-time learning was run 30 

times for both policy and value iteration. Success rate within 

these runs for policy iteration was 5 30⁄ ≈ 17 % and for value 

Table 1.  Learned gains when simulator is used 

Algorithm Output feedback gain 𝐾∞ 

LQR ref. [−0.1395 −0.0706 −6.6362 5.7039] 

PI RLS orig. [−0.1395 −0.0706 −6.6377 5.7054] 

PI RLS mod. [−0.1358 −0.0683 −6.4770 5.5655] 

VI RLS orig. [−0.1395 −0.0706 −6.6382 5.7058] 

VI RLS mod [−0.1387 −0.0708 −6.6064 5.6820] 

 

Fig. 8. Learned gain when no disturbances (left) and when 

quantization and saturation are present (right) 

 

Fig. 9. Disturbances added to the system.  

 

Fig. 10. Unsuccessful real-time learning 

 

Fig. 11. Successful real-time learning 

iteration 10 30⁄ ≈ 33 %. One explanation for the difference 

between these percentages is that PI needs a stabilizing policy, 

but the disturbances in the real-time environment cause error 

in the policies, making the system marginally stable or 

unstable.  
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In this case, the frequency of the exploration noise could be 

designed to be in the frequency range of the system. It would 

increase the signal-to-quantization-noise ratio as shown in 

some identification studies earlier (e.g. Roinila et al, 2010). 

Besides this, it is important to develop algorithms that are 

adaptive and reactive so that changes in the environment are 

also considered during control. Vincent and Sun (2012) define 

a reactive system as a system that can sense the environment 

and react to the changes by an adaptive control algorithm.  

6. CONCLUSIONS 

Larger exploration noise amplitudes and sample times lead to 

larger variance in the quantized output and increase the signal-

to-quantization-noise ratio and therefore reduce the effects of 

the quantization noise in the Q-learning algorithms. The new 

method was proven to work in the simulated environment, but 

it was not reliable in the real-time environment as it would still 

lead to instability on some of the test runs. 

In small-scale real-time applications the exploration noise 

amplitude can be increased, if the larger amplitude does not 

cause danger or damage. However, the control voltage is often 

constrained and the large variance in the control input can 

damage the system. Similarly, larger sample time can make the 

Q-learning algorithm react to changes slower as each control 

action is implemented after one time step. Therefore, future 

research must find new ways to reduce the quantization error, 

e.g. by studying the frequency domain characteristics of the 

exploration noise. 
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