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Abstract: Controlled environment agriculture (CEA) is used for efficient food production.
Efficiency can be increased further by interconnecting different CEA systems (e.g. plants and
insect larvae or fish and larvae), using products and by-products of one system in the other.
These interconnected systems define an overall system that can be described by models
of interacting species. It is necessary to identify system parameters (e.g. initial species
concentration, harvest rate, feed quality, etc.) such that the resources are not exhausted. For
such systems with interacting species, modelled by the Lotka-Volterra equations, a set-based
approach based on the recent results of the theory of barriers to exactly determine the so-called
admissible set (also known as viability kernel) and the maximal robust positively invariant set
is presented. Using an example of a larvae-fish based production system, steps to obtain special
trajectories which are the boundaries of the admissible set are shown. This admissible set is used
to prevent the under and over population of the species in the CEA. Furthermore, conditions of
the system parameters are stated, such that the existence of these trajectories can be guaranteed.

Keywords: Nonlinear systems, Continuous time systems, System analysis, Constraint
satisfaction problems, Sets, Controlled environment agriculture

1. INTRODUCTION

In recent years the general interest in sustainable ecosys-
tems has increased, because of environmental changes and
publicly well known challenges concerning, for example
conservation of biodiversity, overexploitation of marine
ecosystems, and exhaustion of fossil resources. It has also
been recognised that human interventions yield ecological
stresses with irreversible consequences. For instance, the
loss of species or destruction of habitat. Therefore, sus-
tainable management of ecological systems becomes more
and more important as described in De Lara and Doyen
(2008).

Food production industry is one of the biggest contribu-
tor to this ecosystem imbalance (Barnosky et al., 2011;
Funabashi, 2018). Modern farming techniques such as
controlled environment agriculture (CEA), also used in
space research, are evaluated to improve the productivity
and address the sustainability aspects through the use of
different organisms (e.g. plant, fishes, insects) interacting
through resource exchange (Conrad et al., 2017). Such
studies are new in CEA and can utilize methods and
tools developed for conventional farming and ecosystem
management.
? This project has received funding from the European Social Fund
(ESF).

The Lotka-volterra equations for describing the species
interaction and the viability theory for finding the viability
kernel to prevent species exhaustion, are widely used in
the marine- and terrestrial ecosystem studies. For exam-
ple, in Bayen and Rapaport (2019) the viability kernel
was found to prevent the extinction of prey, in Eisenack
et al. (2006) the viability theory was applied to design
management framework for fisheries, and for exhaustible
natural resource a viable control approach is presented via
viability theory in (Martinet and Doyen, 2007).

The aforementioned species interaction dynamics are also
used to address different aspects of agriculture and food
production. Development of protocols for food produc-
tion optimization (Fort et al., 2017), effects of organic
management practices in pest control (Schmidt et al.,
2014), optimization of harvesting policy (Zhang et al.,
2000), design of ecosystems for nitrification in aquaponics
system (Graham et al., 2007), and modeling the growth of
Hermetia illucens (predator) (Gligorescu et al., 2019) are
some of the examples applying these interaction dynamics.

In this paper we analyse the admissible set (also known
as the viability kernel) and the maximal robust positively
invariant (MRPI) set of the widely studied Lotka-Volterra
model, with state and input constraints, on a food produc-
tion system with species interaction. We use the theory of
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barriers in constrained nonlinear systems as developed in
De Dona and Lévine (2013) and Esterhuizen et al. (2019)
to analyse these sets, describing how to construct them,
and stating algebraic conditions of the system parameters
under which they exist. We use these sets to obtain infor-
mation pertaining to management strategies for sustain-
able operation of food production systems. We illustrate
our results for a fish and insect-larvae example derived
from a combination of aquaculture and insect farming
under controlled environments.

The outline of this paper is as follows. In Section 2 a brief
overview of the model and its relationship with controlled
environment agriculture is established. In Section 3 we
briefly cover the theory of barriers. Sections 4 contains
the main result of this paper with the analysis of the ad-
missible and positively invariant set for the Lotka-Volterra
equations. Section 5 presents a numerical examples and in
Section 6 we discuss our analysis. We conclude the paper
in Section 7 with a summary and ideas for future research.

2. IDEA OF SUSTAINABLE INTERCONNECTED
CONTROLLED ENVIRONMENT AGRICULTURE

In an interconnected CEA system producing different
biomass (plant, fish, insect larvae) interaction between the
connected systems is established through the exchange of
products and by-products (e.g. plant waste as feed for
larvae, larvae as feed for fish, fish waste as nutrients for
plant). In case of a single CEA system the interconnection
can be represented by the species interacting with a food
source (e.g. larvae feeding on larvae feed, plant consuming
nutrients etc.)

Dynamics of such interactions between the species or
between species and resources can be modelled using
Lotka-Volterra equations. These equations are defined as
follows

ẋ1 = αx1 − βx1x2 + u1x1,

ẋ2 = δx1x2 − γx2 + u2x2,
(1)

where x1 ∈ R≥0 denotes the number of prey (e.g. plant,
larvae) and x2 ∈ R≥0 denotes the number of predators.
(e.g. larvae, fish) The parameters α, β, γ and δ are positive
constants. As per Getz (2012), the best applicable interpre-
tation of the parameters of the Lotka-Volterra equations
for biomass production are: α, the intrinsic growth rate
of the resource (prey); β, the extraction rate per unit
resource per unit consumer (predator); δ = ηβ, where η
is the biomass conversion parameter; and γ, the intrinsic
rate of decline of the consumer in the absence of resource.
Furthermore, ui(t) ∈ [umin

i , umax
i ] ⊂ R for all t, with

umin
i ≤ umax

i i = 1, 2, are constrained inputs that model
the intervention into the predator-prey system. In our
framework of a CEA system the input is either the intro-
duction of prey or the removal (harvest) of predators. Ad-
ditionally we have to introduce the limits for the number
of prey and predators. The lower limit is naturally given
by zero, whereas for the goal of preventing extinction of a
species, this number has to be positive. We also introduce
an upper limit, since, we act in a controlled environment
with a given limit of the habitat for the species, thus,
we also want to prevent overpopulation (overproduction).
Therefore we need to consider the following constraints
x1(t) ∈ [x1, x1] ∀t, 0 ≤ x1 < x1, x2(t) ∈ [x2, x2] ∀t,

0 ≤ x2 < x2. These constraints describe the limits for
the under- and overpopulation.

As mentioned in the introduction, the viability theory
plays a decisive role for sustainable strategies related to
different ecosystems. In particular, the identification of
the viability kernel (or admissible set) for predator-prey
systems yields information to deduce harvesting strategies
which prevent the extinction of a species. In detail, this set
describes the population number of predators and prey
such that there exists at least one intervention strategy
that results in the population remaining within the defined
limits. On the boundary of the admissible set there exist
exactly one intervention strategy that prevents under- or
over-population. The MRPI is interpretable as the popu-
lation of predators and prey for which every intervention
is sustainable. In other word, there does not exist the
possibility of crossing the limits for overpopulation or
underpopulation. In contrast to the MRPI, every popu-
lation number outside of the admissible set will lead to a
violation of the constraints and therefore to an inevitable
overpopulation or underpopulation.

3. SUMMARY OF THE THEORY OF BARRIERS

This section presents a succinct review of the theory of
barriers as presented in De Dona and Lévine (2013) and
Esterhuizen et al. (2019).

The considered nonlinear system subjected to state and
input constraints is defined as follows:

ẋ(t) = f(x(t), u(t)), x(t0) = x0, u ∈ U , (2)

gi(x(t)) ≤ 0,∀t ∈ [t0,∞[, i = 1, 2, . . . , p, (3)

where x(t) ∈ Rn denotes the state; x0 is the initial
condition at the initial time, t0; u(t) ∈ Rm denotes
the input, and U is the set of all Lebesque measurable
functions that map [t0,∞[⊂ R into U ⊂ Rm, with U
compact and convex. The functions gi, i = 1, . . . , p, are
constraint functions imposed on the state. We impose the
same assumptions on the problem data as those specified
in De Dona and Lévine (2013) and Esterhuizen et al.
(2019). Briefly, we assume that the functions f and gi
for i = 1, . . . , p are C2 with respect to their arguments
on appropriate open sets; that all solutions of the system
remain bounded on finite intervals; and that the set
{f(x, u) : u ∈ U} is convex. To lighten our notation, we
introduce the following definitions:

G ,{x : gi(x) ≤ 0, ∀i ∈ {1, 2, ..., p}}, (4)

G− ,{x : gi(x) < 0, ∀i ∈ {1, 2, ..., p}},
G0 ,{x : ∃i ∈ {1, 2, ..., p} s.t. gi(x) = 0}.

The set of indices of active constraints at x is denoted
by I(x) = {i : gi(x) = 0}. Furthermore, we denote by
Lfg(x, u) the Lie derivative of a continuously differentiable
function g : Rn → R with respect to f(x, u) at the point x.
Thus, Lfg(x, u) = Dg(x)f(x, u). The boundary of a set S
is denoted by ∂S. By R≥0 we refer to the set of nonnegative

real numbers. In the following definitions, let x(u,x0,t0)(t)
denote the solution to the differential equation at time t,
initiating at x0 at time t0, with input u ∈ U .

Definition 1. The admissible set 1 of the system (2)-(3),
denoted by A, is the set of initial states for which there
1 also called the viability kernel in Aubin (2009)
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exists a u ∈ U such that the corresponding solution
satisfies the constraints (3) for all future time.

A ,
{
x0 ∈ Rn : ∃u ∈ U , x(u,x0,t0)(t) ∈ G ∀t ∈ [t0,∞[

}
.

Definition 2. A set Ω ⊂ Rn is said to be a robust posi-
tively invariant set (RPI) of the system (2) provided that
x(u,x0,t0)(t) ∈ Ω for all t ∈ [t0,∞[, for all x0 ∈ Ω and for
all u ∈ U .

Definition 3. The maximal robust positively invariant set
(MRPI) of the system (2)-(3) contained in G, is the union
of all RPIs that are subsets of G. Equivalently 2

M ,
{
x0 ∈ Rn : x(u,x0,t0)(t) ∈ G, ∀u ∈ U , ∀t ∈ [t0,∞[

}
.

We introduce: [∂A]− , ∂A ∩ G− called the barrier and

[∂M]− , ∂M∩ G−, called the invariance barrier. These
parts of the sets’ boundaries are special, in that for any
initial condition located on the barrier (resp. invariance
barrier) there exists an input such that the resulting
curve remains on the barrier (resp. invariance barrier) and
satisfies a minimum-like (resp. maximum-like) principle.
This is summarised in the following theorem.

Theorem 1. Under the assumptions in De Dona and
Lévine (2013) and Esterhuizen et al. (2019), every integral
curve xū on [∂A]− (resp. [∂M]−) and the corresponding
input function ū satisfy the following necessary conditions.
There exists a nonzero absolutely continuous maximal
solution λū to the adjoint equation:

λ̇ū(t) = −
(
∂f

∂x
(xū(t), ū(t))

)T
λū(t),

such that

min
u∈U
{λū(t)T f(xū(t), u)} = λū(t)T f(xū(t), ū(t))

= 0 (5)(
resp. max

u∈U
{λū(t)T f(xū(t), u)} = λū(t)T f(xū(t), ū(t))

= 0
)
, (6)

for almost all t. Moreover, if xū intersects G0 in finite time,
we have: λū(t̄) = (Dgi∗(z))T , where

min
u∈U

max
i∈I(z)

Lfgi(z, u) = Lfgi∗(z, ū(t̄)) = 0 (7)(
resp. max

u∈U
max
i∈I(z)

Lfgi(z, u) = Lfgi∗(z, ū(t̄)) = 0
)
, (8)

t̄ denotes the time at which G0 is reached, and z ,
x(ū,x̄,t0)(t̄) ∈ G0.

In addition to using the necessary conditions to analyse the
predator-prey model (for which we will exactly describe
the special control ū, and present conditions under which
certain parts of the set A exists), we will also use them
to construct the sets as follows: first, identify points of
ultimate tangentiality on G0, via (7) (resp. (8)). Second,
determine the input realisation associated with [∂A]−
(resp. [∂M]−) using the Hamiltonian minimisation (resp.
maximisation) condition (5) (resp. (6)). Third, integrate
the system dynamics and the adjoint equations backwards
in time from the points of ultimate tangentiality to obtain
the barrier curves.

2 shown in Esterhuizen et al. (2019), Proposition 2

Since the conditions in Theorem 1 are necessary, it may
happen that some integral curves obtained through this
method (or parts of them) do not define parts of the
boundary of A or M and may have to be ignored. Thus,
in general we refer to trajectories obtained from these
conditions as candidate barrier and candidate invariance
barrier trajectories.

4. SET-BASED ANALYSIS OF THE
LOTKA-VOLTERRA EQUATIONS

In this section we present the analysis of the aforemen-
tioned sets. We also derive conditions under which candi-
date barrier trajectories exist.

Consider the Lotka-Volterra equations (1), the system’s
axes form two trivial robustly invariant manifolds, with
the direction of flow along them determined by the signs
of α+umax

1 and −γ+umax
2 . We use the necessary conditions

of Theorem 1 to show that the constrained Lotka-Volterra
model has a non-trivial MRPI if and only if umin

i = umax
i ,

i = 1, 2. We use the well-known fact that with a constant
input the integral curves of the Lotka-Volterra model trace
out periodic orbits, for example, see Lemma 1 in Bayen
and Rapaport (2019).

Proposition 2. The Lotka-Volterra model as in (1) with
x(t) ∈ G ⊂ [0,∞[×[0,∞[ for all t, with G as defined in

(4), and u(t) ∈ U , [umin
1 , umax

1 ] × [umin
2 , umax

2 ], has an
MRPI that includes points not on the axes, if and only if
U is a singleton.

Proof. Suppose the system has an MRPI as described,
labelled M, and let us concentrate on the invariance bar-
rier trajectories on [∂M]−. From Theorem 1, any curve on
[∂M]− satisfies the Hamiltonian maximisation condition
(6) for almost all t. Suppose now that there exists a ũ ∈ U
such that λū(t̂)T f(xū(t̂), ũ) < 0 where t̂ is an arbitrary
Lebesgue point of ū. Then, we could specify the constant
input u(t) ≡ arg minλū(t̂)T f(xū(t̂), u), which would result
in a periodic orbit that intersects MC, contradicting the
fact that M is robustly invariant. We conclude that for
any trajectory on [∂M]−, we have λū(t)T f(xū(t), u) = 0
for all u ∈ U for almost all t. In particular,

max
u∈U

λū(t)T f(xū(t), u) = min
u∈U

λū(t)T f(xū(t), u) = 0, (9)

for almost all t.

Let û(t) = (û1(t), û2(t))T , arg maxu λ
ū(t)T f(xū(t), u)

and ǔ(t) = (ǔ1(t), ǔ2(t))T , arg minu λ
ū(t)T f(xū(t), u).

From the form of the Hamiltonian we see that the functions
ûi and ǔi are always saturated, that is ûi(t) ∈ {umin

i , umax
i }

and ǔi(t) ∈ {umin
i , umax

i }, i = 1, 2. From (9) we can
conclude that:

λū1 (t)xū1 (t)(umin
1 − umax

1 ) + λū2 (t)xū2 (t)(umin
2 − umax

2 ) = 0,

for almost all t. We now argue that λū1 (t) and λū2 (t) are
nonzero for almost all time. Indeed, suppose λū1 (t) = 0 over

an interval of time. Then, λ̇ū1 (t) = 0 over this same interval,
which gives −δx2(t)λū2 (t) = 0, and thus, because the state
is assumed to be positive, λū2 (t) = 0 over this same interval.
But this is impossible because λū(t) 6= 0, from Theorem 1.
A similar argument holds for λū2 . Therefore, (9) holds if
and only if umax

1 = umin
1 and umax

2 = umin
2 for almost all t.
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Turning our attention to the set [∂M]0, by a similar
argument we require that

min
u∈U

max
i
Lfgi(z, u) = max

u∈U
max
i
Lfgi(z, u) = 0 (10)

for points on [∂M]0. Thus, either i) Dgi∗1 = 0 and umax
2 =

umin
2 ; or ii) Dgi∗2 = 0 and umax

1 = umin
1 ; or iii) umax

1 = umin
1

and umax
2 = umin

2 , where Dgi∗ = (Dgi∗1, Dgi∗2), must hold
on [∂M]0. Focusing on case i), we see that this condition

only holds if x1 = γ−u2

δ , (with u2 = umax
2 = umin

2 ) and
thus the condition only holds at an isolated point on the
active constraint gi∗ . In order for this point to be robustly
invariant, we would require ẋ1 = 0, which can only be
true if umax

1 = umin
1 . A similar argument for case ii) leads

to umax
2 = umin

2 for points on [∂M]0. This completes the
proof.

Though the constrained Lotka-Volterra model as specified
above cannot have a nontrivial MRPI, it can have an
admissible set, as we will show. We continue our analysis
with the same constraints on u, ui(t) ∈ [umin

i , umax
i ], and

we let the state be constrained to a box: xi(t) ∈ [xi, xi] for
all t, with 0 < xi < xi.

4.1 Points of ultimate tangentiality for the admissible set

We label the state constraints as follows: g1(x) = x1 − x1,
g2(x) = −x1 +x1, g3(x) = x2−x2, g4(x) = −x2 +x2, and

the i-th ultimate tangentiality point zi , (zi1, zi2)T ∈ R2.
First, we consider the constraints for the prey, i.e. g1(x)
and g2(x). Invoking condition (7) we get:

min
u∈U

Lfg1(z, u) = min
u∈U
{αx1 − βx1z12 + u1x1} = 0,

min
u∈U

Lfg2(z, u) = min
u∈U
{−αx1 + βx1z22 − u1x1} = 0,

from where we get the two points z1 = (x1,
α+umin

1

β ) for g1

and z2 = (x1,
α+umax

1

β ) for g2. Now we focus on the predator

constraints, g3(x) and g4(x). Again invoking condition (7)
we get:

min
u∈U

Lfg3(z, u) = min
u∈U
{δz31x2 − γx2 + u2x2} = 0,

min
u∈U

Lfg4(z, u) = min
u∈U
{−δz41x2 + γx2 − u2x2} = 0,

from where we identify z3 = (
γ−umin

2

δ , x2) for g3 and

z4 = (
γ−umax

2

δ , x2) for g4.

4.2 Input realisation associated with the barrier

Invoking condition (5) to determine the input associated
with the barrier, we get:

min
u∈U

{
λ(t)T f(x(t), u)

}
= min

u∈U
{λ1 (αx1 − βx1x2 + u1x1)

+ λ2 (δx1x2 − γx2 + u2x2)} = 0

for almost every t, with λ , (λ1, λ2)T . We get:

ū1(t) =

{
umin

1 if λ1(t) ≥ 0

umax
1 if λ1(t) < 0,

(11)

and

ū2(t) =

{
umin

2 if λ2(t) ≥ 0

umax
2 if λ2(t) < 0.

(12)

The adjoint equation is

λ̇ =

(
−α+ βx2 − u1 −δx2

βx1 −δx1 + γ − u2

)
λ, (13)

with the final conditions (from λ(t̄) = (Dgi∗(z))T ), λ(t̄) =
(1, 0)T , (−1, 0)T , (0, 1)T , (0,−1)T associated with z1, z2,
z3 and z4, respectively.

We note that there are four lines in the state space
(that intersect the four points of ultimate tangentiality)
where the control ū switches, summarised in the following
Proposition.

Proposition 3. Switches in ū occur as follows:

• If xū(t) ∈ {(x1, x2) : δx1 − γ + umax
2 = 0} and

λ2(t) < 0, then ū1 switches from umax
1 to umin

1 .
• If xū(t) ∈ {(x1, x2) : δx1 − γ + umin

2 = 0} and
λ2(t) > 0, then ū1 switches from umin

1 to umax
1 .

• If xū(t) ∈ {(x1, x2) : α − βx2 + umax
1 = 0} and

λ1(t) < 0, then ū2 switches from umin
2 to umax

2 .
• If xū(t) ∈ {(x1, x2) : α − βx2 + umin

1 = 0} and
λ1(t) > 0, then ū2 switches from umax

2 to umin
2 .

Proof. From condition (5), we see that if λ1(t) = 0, then
λ2(t)(δx1(t)x2(t)−γx2(t) + ū2(t)x2(t)) = 0, and using the
fact that λ2(t) 6= 0 and x2(t) 6= 0, we see that if λ2(t) < 0
then a switch in ū1(t) occurs on the line segment given
by {(x1, x2) : δx1 − γ + umax

2 }. Because λ2(t) < 0, we

have λ̇1(t) > 0, implying λ1(t) < 0 on an interval before
t, implying ū1(t) = umax

1 before t. This same argument
carries over to the remaining three cases.

4.3 Existence of candidate barrier trajectories

As already mentioned in Section 3 the conditions stated in
Theorem 1 are necessary. Therefore, some integral curves
or parts of them may need to be ignored since they do
not define the boundary of the sets. In particular, integral
curves evolving outside the constrained state space need
to be ignored. The next proposition gives conditions under
which a point of ultimate tangentiality is indeed associated
with a candidate barrier trajectory evolving backwards
into G−.

Proposition 4. There exists a candidate barrier trajectory
associated with A, partly contained in G− and ending at
the point of ultimate tangentiality

z1 ⇔ (δx1 − γ + umax
2 ) > 0, z2 ⇔

(
δx1 − γ + umin

2

)
< 0,

z3 ⇔
(
α− βx2 + umin

1

)
< 0, z4 ⇔ (α− βx2 + umax

1 ) > 0.

Proof. Consider g1 and the corresponding point of ulti-
mate tangentiality z1 along with the final adjoint λ(t̄) =

(1, 0)T . From (13) it follows that λ̇2(t̄) = βx1λ1(t̄) > 0,
which implies that λ2(t) < 0 and ū2(t) = umax

2 over a time
interval before t̄. Because λ2(t) < 0 over this interval, the
integral curve associated with ū will evolve backwards into
G− if and only if ẋ2(t̄) > 0, which gives us the statement
in the first bullet point. Similar arguments carry over to
the other three points, which completes the proof.

5. NUMERICAL EXAMPLE

This example is based on the recent trend in aquaculture
to feed fish with insect larvae-based food for efficient fish
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Fig. 1. Clarification of the proof of Proposition 4: knowing
that λ2(t) < 0 before the barrier intersects z1, we
must have ẋ2(t̄) > 0.

production. The environments of the species are often
decoupled. Nevertheless, we assume that the fish are
continuously supplied with larvae on which to feed. The
prey are represented by the larvae of Hermetia illucens
insects and the predators by Oreochromis niloticus fish.
The goal of this example is to show the application of
the proposed set-based method for sustainable production
of larvae and fish. First, we impose state constraints to
prevent underpopulation of both species with g2(x) ,
−0.5 + x1 and g4(x) , −0.5 + x2. The input bounds are
u1 ∈ [10, 20] and u2 ∈ [−10,−20]. The model parameters
α, β, γ and δ are derived from the parameters k1, k4

(Diener et al., 2009), k2, k3, k5 (Terpstra, 2015) and η1

(Rana et al., 2015; Stamer et al., 2014) as listed in Table
1. Since α and γ are vastly smaller than β and δ as well

Table 1. Lotka-Volterra model parameters for
fish (Oreochromis niloticus) and larvae (Her-

metia illucens) production system

parameter and meaning value unit

k1 larval growth from egg to adult 30 [d]

k2 fish growth from egg to adult 225 [d]

k3 larvae consumption rate of fish 22 [gd−1]

k4 weight of adult larva 0.120 [g]

k5 weight of adult fish 700 [g]

η1 conversion eff. of larval food 0.55 [-]

α 1/k1 0.0014 [h−1]

β k3/(k4k5) 10.8 [kgh−1]

δ η1β 5.94 [kgh−1]

γ 1/k2 1.85 × 10−5 [h−1]

as the input bounds, they do not play a decisive role for
the dynamics. Hence, we set them to zero. We identify:
z2 ≈ (0.5, 1.852)T and z4 ≈ (1.543, 0.5)T . By integrating
backwards, we find two candidate barrier trajectories
defining the boundary of A, shown in Figure 2.

Next, we additionally impose state constraints to prevent
overpopulation with g1(x) , x1 − 10 and g3(x) , x2 − 10.
We identify: z1 ≈ (10, 0.926)T and z3 ≈ (3.086, 10)T and
integrate backwards from all four points of tangentiality.
We find four candidate barrier trajectories, shown in
Figure 3. The difference to the example before is the
existence of a trajectory evolving into G− which does
not define a part of the boundary of the admissible set.
Hence, we have to ignore the dash-dotted line drawn
from z3 and ending on g1 because g2 contains points for

Fig. 2. Admissible set for a system with interacting larvae
and fish to prevent underpopulation. The grey points
indicate the switching of ū(t), associated with the
barrier trajectory initiating from z2.

which minu∈U Lfg2(x, u) > 0. Thus, the boundary of the
admissible set inside the constrained state space is defined
by the three integral curves ending on z1, z2, and z4 shown
by the continuous lines.

Fig. 3. Admissible set for a system with interacting larvae
and fish. The input realisation ū(t) associated with
the barrier trajectory initiating from z2 switches at
the grey point.

6. DISCUSSION

It is interesting to note that other works in the liter-
ature that concentrate on biological applications of the
viability kernel (or admissible set) describe its boundary,
and argue that it is made up of special integral curves
of the system. A similar statement is made in the theory
of barriers, the main observation being that these curves
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satisfy a minimum/maximum-like principle, as described
in Theorem 1. In this new paradigm it can be seen that
the description of the boundary is much simpler than the
arguments in, for example, Bayen and Rapaport (2019).

Recall that the considered predator-prey system never has
a (nontrivial) MRPI. Thus, the interpretation is that if
one can control the introduction or harvesting of species,
then this has to be done carefully, because there always
exists an input (intervention strategy) that results in over-
or under-population of a species in the future. Thus,
it is vital that the population number remains in A.
Furthermore, the unique input on the boundary of A
is always saturated, and it switches according to the
statement in Proposition 3. For a given system, similar
to the model of the CEA system presented in this work,
the proposed method can be used to set up the initial
population as well as intervention strategies through the
addition and/or removal of the species.

7. CONCLUSION

The main goal of this paper was to analyse CEA systems
with interacting species, modelled by the Lotka-Volterra
equations, to identify the admissible set (also known as
viability kernel) and the MRPI which yields information
about sustainable intervention strategies. We used the
theory of barriers to determine special trajectories that
define the boundaries of the admissible set and discovered
new aspects, such as the nonexistence of nontrivial MRPIs
in the constrained Lotka-Volterra model. Furthermore,
we obtained conditions of the systems’ parameters that
guarantees the existence of these special trajectories. We
illustrated our results based on a CEA system with larve
and fish as interacting species. Future research could focus
on extending the results to robust admissible sets, as in
Regnier and De Lara (2015), in the context of viability
theory. Another interesting idea could be to analyse the
sets of an extended Lotka-Volterra model that describes
the effects of humans feeding one species to another.
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