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Abstract: Autonomy is increasingly demanded of industrial manipulators. Robots have to be capable
of regulating their behavior to different operational conditions, without requiring high time/resource-
consuming human intervention. Achieving an automated tuning of the control parameters of a manipu-
lator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator
controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune firstly the low-
level controller parameters (i.e., robot dynamics compensation), then the high-level controller parameters
(i.e., the joint PID gains), providing a two-stage robot controller auto-tuning methodology. In both
the optimization phases, the algorithm adapts the control parameters through a data-driven procedure,
optimizing a user-defined trajectory tracking cost. Safety constraints ensuring, e.g., closed-loop stability
and bounds on the maximum joint position errors, are also included. The performance of the proposed
approach is demonstrated on a torque-controlled 7-degree-of-freedom FRANKA Emika robot manipu-
lator. The 4 robot dynamics parameters (i.e., 4 link-mass parameters) are tuned in 40 iterations, while the
robot control parameters (i.e., 21 PID gains) are tuned in 90 iterations. Comparable trajectory tracking-
errors results with respect to the FRANKA Emika embedded position controller are achieved.

Keywords: Industrial robots, robot control, robot dynamics, parameter optimization, parameter
identification, system identification.

1. INTRODUCTION

1.1 Context

Nowadays, robots are required to adapt to (partially) unknown
situations, being able to optimize their behaviors through con-
tinuous interactions with the environment. In such a way, robots
can achieve a high level of autonomy, allowing them to face
unforeseen situations (Makridakis, 2017). Such capabilities are
also needed for industrial manipulators, requiring reconfigura-
bility, adaptability and flexibility. Indeed, the manipulator has
to autonomously adapt to new tasks and working conditions,
avoiding as much as possible the human intervention, i.e., time-
and resources-consuming tasks (Bruzzone et al., 2018).

In order to achieve this autonomy, the manipulator has to
be able to self-adapt for the task at hand. Machine learning
techniques are extremely effective at tackling such a problem,
and many approaches have been investigated in recent years to
improve the level of autonomy of manipulators through auto-
tuning methodologies.

1.2 State-of-the-art machine learning techniques for control
tuning

Controller design and tuning is one of the most investigated
topics in robotics. Standard model-based methodologies require
identification of the robot dynamics, with data gathered from
time-consuming ad-hoc experiments (Jin and Gans, 2015; Sw-
evers et al., 2007). Furthermore, when estimating a model of the

manipulator, it is hard to determine a priori the model accuracy
required to meet a given closed-loop performance specification
(Formentin et al., 2016; Piga et al., 2018).

In recent years, machine learning is emerging as an alterna-
tive paradigm for data-driven robot control design (Antsaklis

Fig. 1. The FRANKA Emika manipulator used as a test plat-
form is shown.
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and Rahnama, 2018; Arulkumaran et al., 2017). Programming-
by-demonstration approaches are proposed in (Mollard et al.,
2015; Rozo et al., 2013), in which the human is physically
teaching a specific task to the manipulator. Additionally, au-
tonomous learning of robot tasks are also deeply investi-
gated (Pinto and Gupta, 2016).

Machine learning techniques are commonly used to tackle dif-
ferent control learning problems. On the one hand, data-driven
modelling of the robot dynamics are employed, and advanced
controllers are designed based on the estimated model of the
robot and of the interacting environment (Bansal et al., 2017;
Calandra et al., 2015; Finn et al., 2016; Piga et al., 2019;
Venkatraman et al., 2016). On the other hand, machine learning
techniques are also employed for auto-tuning of the robot con-
trol parameters. For example, (Modares et al., 2015) proposes a
reinforcement learning approach to assists a human operator to
perform a given task with minimum workload demands, while
optimizing the overall human-robot performance; (Jaisumroum
et al., 2016) investigates a neural network approach to self-tune
the robot controller in object balancing applications; (Roveda
et al., 2018) presents an iterative reinforcement learning ap-
proach which combines dynamics compensation (i.e., friction)
and control parameters tuning for force tracking applications;
(Balatti et al., 2018) proposes a sensor-based strategy to self-
tune the impedance control for interaction tasks.

1.3 Paper contribution

This paper addresses automated tuning of robot control param-
eters in trajectory tracking applications with unknown manipu-
lator dynamics. This topic has attracted the attention of many
researchers in the last years, proposing auto-tuned PID-like
controllers based on Neural Networks (Hernández-Alvarado
et al., 2016), fuzzy PID controllers optimized by genetic algo-
rithms (Zhao et al., 2016), Jacobian transpose robust controllers
for finite-time trajectory tracking control in a task-space under
dynamic uncertainties (Galicki, 2016), iterative learning con-
trollers enhanced by a disturbance observer (Hsiao and Huang,
2017). In general, these approaches are commonly based on
computationally demanding algorithms. Furthermore, control
tuning is in general too time- and cost-consuming to be afford-
able in industrial environments, and safety constraints are not
explicitly taken into account.

In order to develop an easily-applicable and efficient approach
that can be implemented in real industrial plants, this pa-
per presents a Bayesian optimization (BO)-based algorithm
for data-driven self-tuning of the robot control parameters. A
simple PID trajectory control loop with feedback linearization
(compensating for the manipulator dynamics) and feedforward
action is implemented as a control strategy. The aim of the BO
algorithm is twofold: (i) choosing the equivalent link-mass pa-
rameters used by the feedback linearization and the feedforward
action, and (ii) optimizing the joint-level PID control gains.
Joint position and velocity errors over the trajectory are used
to define a performance index guiding the parameters tuning. A
penalty is given to the sets of parameters leading to tracking
errors exceeding a given threshold or to unstable/unsafe be-
haviours, also resulting in a safety stop. Firstly, the equivalent
link-mass parameters are optimized in order to compensate
for the robot dynamics. Then, the PID gains are optimized to
maximize the trajectory tracking performance. While the first
optimization can be referred to the system dynamics identifi-
cation methodology, the second optimization can be referred

to the data-driven control design methodology. As a test plat-
form, the 7 DoFs FRANKA Emika manipulator shown in Fig. 1
has been used. High-performance control tuning is reached in
less than 130 trials (40 iterations to tune the robot dynamics
parameters - i.e., 4 link-mass parameters - and 90 iterations
to tune the robot control parameters - i.e., 21 PID gains), and
comparable performance with the FRANKA Emika embedded
position controller is achieved.

For the sake of completeness, it is worth mentioning other
works applying BO in robotics applications. In particular, (Drieß
et al., 2017) employs constrained BO to select three force-
controller parameters for combined position/interaction tasks;
(Cully et al., 2015) describes a trial-and-error algorithm that
allows robots to adapt their behaviour in presence of damage;
(Yuan et al., 2019) proposes a methodology to achieve au-
tomatic tuning of optimal parameters for whole-body control
algorithms, iteratively learning the parameters of sub-spaces
from the whole high-dimensional parametric space through in-
teractive trials. Our contribution differs from the works men-
tioned above since it is tailored to industrial manipulators with
unknown dynamics and adopting a widely-used control archi-
tecture (feedback linerizator + feedforward action + PID).

1.4 Paper layout

The paper is structured as follows. Section 2 is devoted to the
problem formulation, where the model of the robot dynamics
and the considered control architecture are described. Section 3
provides the details of the BO algorithm for the control param-
eters tuning. The experimental results obtained in controlling
the FRANKA Emika manipulator are reported in Section 4.
Conclusions and future works are given in Section 5.

2. PROBLEM SETTING

Fig. 2 shows the proposed control scheme and tuning strat-
egy, where the parameters of the joint-level PID controller
and the equivalent link-mass parameters used by the feedback
linearization and feedforward controller are optimized through
BO in order to achieve high performance trajectory tracking.

2.1 Robot dynamics

To implement the PID trajectory tracking controller with feed-
back linearization in Fig. 2, the following differential equations
describing the manipulator dynamics are used (Siciliano and
Villani, 2000):

B(q,m)q̈+C(q, q̇,m)+g(q,m)+h f ,q(q̇) = τττ−J(q)T hext
(1)

where B(q,m) is the robot inertia matrix; q is the robot joint
position vector; m is the robot link-mass vector; C(q, q̇,m)
is the robot Coriolis vector; g(q,m) is the robot gravitational
vector; h f ,q(q̇) is the robot joint friction vector; J(q) is the robot
Jacobian matrix; hext is the robot external wrench vector; and τττ

is the robot joint torque vector. Dot notation is used in this paper
to indicate time derivatives, i.e., q̇ and q̈ are the first- and the
second-order time derivatives of q.

The inertia parameters of the manipulator (i.e., the link-mass
vector m), affecting the inertia matrix B(q,m), the Coriolis
vector C(q, q̇,m), and the gravitational vector g(q,m), are
unknown. External wrench hext is null (i.e., no interaction
during trajectory tracking task) and friction h f ,q(q̇) is not
included in the feedback linearization.
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Fig. 2. Proposed architecture of control parameters self-tuning for the trajectory tracking application.

2.2 Control architecture

According to Fig. 2, the overall control action is defined as
τττ = τττFF + τττPID + τττFL, (2)

where τττFF and τττPID implement the feedforward and feedback
control action, respectively, and τττFL is the action of the feed-
back linearization controller, namely

τττFF =B(q,m)q̈d , (3a)

τττPID =Kpeq +Kd ėq +Ki

∫
eq, (3b)

τττFL =C(q, q̇,m)+g(q,m), (3c)

with qd being the joint position reference vector and eq = qd−q
the joint position error vector.

Note that τττPID aims to improve the performance of the trajec-
tory tracking in closed-loop, while τττFL compensates for the
Coriolis and gravity terms in (1). In order to achieve high
trajectory tracking performance, it is important to tune the PID
control gains Kp, Kd , Ki and the link-mass parameters m in
(3a) and (3c).

2.3 Objective function

The proposed two-stage methodology aims to optimize the
robot dynamics parameters and the robot control parameters
separately, in order to have two optimization problems: the
first related to the system dynamics identification problem, the
second related to the data-driven control design problem. In
such a way, the complexity of the optimization is split into two
optimization problems, decreasing the number of parameters to
be optimized. In fact, due to the high-complexity of the robot
dynamic model (i.e., high number of dynamics parameters) and
the high number of the control parameters (considering the
PID structure, an n joint manipulator is characterized by 3 x n
control gains), it is convenient to separate the two optimization
problems from both conceptual and computational points of
view.

In the first optimization stage, under the assumption that no
external forces are applied to the robot and by neglecting

friction effects at the joint-level, the robot dynamics in (1)
reduces to:

B(q,m)q̈+C(q, q̇,m)+g(q,m) = τττ. (4)
The controller is designed with feedback linearization and
feedforward action (without PID term) in order to decouple the
joint-level robot DoFs, reducing (2) to:

τττ = τττFL + τττFF = C(q, q̇,m)+g(q,m)+B(q,m)q̈d . (5)
Substituting (5) into (4) leads to:

q̈ = q̈d . (6)
Thus, in the ideal case, the actual joint accelerations are equal
to the target feedforward accelerations. Based on (6), the per-
formance of the feedback linearization with feedforward action
is measured in terms of the following closed-loop objective
function:

JFL(m) =
n

∑
i=1

(ëmax
i + ëmean

i )+L, (7)

where n is the number of robot DoFs, ëmax
i and ëmean

i are the
maximum and the average, respectively, of the absolute value
of the i-th joint acceleration error over the execution time T ,
i.e.,

ëmax
i = max

t∈[0, T ]
|ëq,i(t)|, (8)

ëmean
i =

1
T

∫ T

0
|ëq,i(t)|dt, (9)

where eq,i denoting the i-th element of the vector eq, namely,
the joint position error of the i-th joint, and ëq,i denoting its
acceleration-level term.

The term L in (7) is introduced to penalize violations of signal
constraints, which may reflect safety and hardware require-
ments. In this paper, the penalty term L is defined in terms of a
(smooth) barrier function, which penalizes trajectories exceed-
ing a maximum joint position error ē and unstable behaviors. In
particular:

L = 100e−ξ/T if |eq,i(ξ)|> ē, (10a)

L = 1000e−t̄/T if test interrupted, (10b)
where ξ ≤ T is the time when the constraint on the maximum

joint position error is violated, and t̄ ≤ T is the time when test is
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interrupted because of a user-defined safety stopping criterion.
The penalty L allows us to take into account the time in which
constraint violations or safety issues arise (earlier constraint
violations and unsafe events are penalized more).

The cost (7) is then minimized w.r.t. the link-mass parameters
m through BO reviewed in Section 3.

Remark 1. Since the proposed feedback linearization struc-
ture (3c) only considers link-masses, the number of parameters
to be tuned in the first stage is smaller than the number of
PID gains. However, in general, the feedback linearization may
include other terms modeling, for instance, friction, joint and
link elasticity, etc. �

In the second optimization stage, once the link-mass parameters
m are computed, the trajectory tracking error is minimized. The
overall performance of the trajectory tracking problem can be
defined by the user to reflect its goals and requirements. In this
paper, the performance is measured in terms of joint position
and velocity errors over the trajectory execution time T , and it
is defined by the following cost:

JFB =
n

∑
i=1

(emax
i + ėmax

i + emean
i + ėmean

i )+L, (11)

where the penalty L is defined as in (10). Eq. (11) has the same
structure as (7), but uses the position-level errors emax

i and emean
i

(the maximum and the average, respectively, of the absolute
value of the i-th joint position error over the execution time T )

emax
i = max

t∈[0, T ]
|eq,i(t)|, (12)

emean
i =

1
T

∫ T

0
|eq,i(t)|dt, (13)

and velocity-level errors ėmax
i and ėmean

i , computed similarly to
position errors, are considered.

The cost (11) is then minimized w.r.t. the PID gains Kp, Kd , Ki
through BO.

3. BAYESIAN OPTIMIZATION FOR PARAMETERS
TUNING

Using the controller structure described in Section 2.2, the cost
functions JFL in (7) and JFB in (11) depend on tunable design
parameters, namely, the link-mass parameters m and the PID
gains Kp, Kd , Ki, respectively.

Let us consider the generic cost function J and its related design
parameters. By collecting all these design parameters in a
vector θθθ, the tuning task reduces to the minimization of the cost
J(θθθ) with respect to θθθ, within a space of admissible values ΘΘΘ.
However, a closed-form expression of the cost J as a function of
the design parameter vector θθθ is not available. Furthermore, this
cost cannot be evaluated through numerical simulations as the
robot dynamics are assumed to be partially unknown. Instead, it
is possible to perform experiments on the robot and measure the
cost Ji achieved for a given controller parameter vector θθθi, and
thus run an optimization algorithm driven by measurements of
J. Nonetheless, the peculiar nature of the optimization problem
at hand restricts the class of applicable optimization algorithms.
Indeed,

(i) the measured cost Ji consists of noisy observations of the
“true” cost function, namely Ji = J(θθθi)+ ni, with ni de-
noting measurement noise and possibly intrinsic process
variability;

(ii) no derivative information is available;
(iii) there is no guarantee that the function J(θθθ) is convex;
(iv) function evaluations may require possibly costly and time-

consuming experiments on the robot.

Features (i), (ii) and (iii) rule out classical gradient-based al-
gorithms and restrict us to the class of gradient-free, global
optimization algorithms. Within this class of algorithms, BO
is generally the most efficient in terms of number of function
evaluations (Brochu et al., 2010; Jones et al., 1998) and it is
thus the most promising approach to deal with (iv).

In BO, the cost J is simultaneously learnt and optimized by
sequentially performing experiments on the robot. Specifically,
at each iteration i of the algorithm, an experiment is performed
for a given controller parameter θθθi and the corresponding cost
Ji is measured. Then, all the past parameter-cost observations
Di = {(θθθ1,J1),(θθθ2,J2), . . . ,(θθθi,Ji)} are processed and a new
parameter θθθi+1 to be tested at the next experiment is computed
according to the approach discussed in the following.

3.1 Surrogate model

The underlying idea behind BO is to construct a surrogate
probabilistic model describing the relation between the input
parameter vector θθθ and the corresponding cost J. The model is
a stochastic process defined over the feasible parameter ΘΘΘ.

For each feasible parameter θθθ ∈ ΘΘΘ, a prior model provides the
probabilistic distribution p(J(θθθ)) of the cost J(θθθ). Then, the
posterior distribution p(J(θθθ)|D i) given the available dataset D i
is computed via Bayesian inference, i.e.,

p(J(θθθ)|D i) =
p(D i|J(θθθ))p(J(θθθ))

p(D i)
. (14)

Such a probabilistic representation describes the experimenter’s
uncertainty for configurations that have not yet been tested.
This is the key feature distinguishing BO from classic response
surface algorithms, that fit a deterministic surrogate of the cost
function to the observations (Jones et al., 1998). Intuitively,
the probabilistic model p(J(θθθ)|D i) should assign low variance
for parameters θθθ that are “close” to some previously observed
parameters, with a mean value close to the corresponding
observations. Conversely, it should assign high variance for
parameters that are “far” from all observations.

The most widely used probabilistic model used for BO is
the Gaussian Process (GP) (Rasmussen and Williams, 2006),
which is a flexible and non-parametric model allowing one
to describe arbitrarily complex functions. In a GP modelling
framework, the prior model for cost J(·) is a Gaussian Process
with mean µ(·) : ΘΘΘ→ R and covariance function κ(·, ·) : ΘΘΘ×
ΘΘΘ→ R. The latter describes prior assumptions on the correla-
tion between two values J(θθθ1) and J(θθθ2), and implicitly models
smoothness of J w.r.t. θθθ.

3.2 Acquisition function

BO exploits the model’s uncertainty information on the poste-
rior distribution p(J(θθθ)|D i) to determine the most promising
point to be tested in the next iteration. Specifically, next point
θθθi+1 is chosen taking into account the trade off between ex-
ploitation, choosing points where the value of the performance
index J(θθθ) is expected to be optimal, and exploration, choosing
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points in unexplored regions of the feasible set ΘΘΘ where the
variance of J(θθθ) is high (Brochu et al., 2010).

Such a trade-off criterion is formalized by an acquisition func-
tion A : ΘΘΘ → R that should take high values for parameters
θθθ which are expected to improve the best objective function
observed up to the i-th iteration. Next point θθθi+1 is chosen as

θθθi+1 = argmax
θθθ∈ΘΘΘ

A(θθθ). (15)

A popular choice for the acquisition function is the expected
improvement, defined as

A(θθθ) = EI(θθθ) = E
[
max{0,J−i −J(θθθ)}

]
, (16)

where J−i is the best value of the performance cost achieved up
to iteration i-th, i.e.,

J−i = min
j=1,...,i

J j,

and the expectation in (16) is taken over the posterior distribu-
tion p(J(θθθ)|D i).

The acquisition function EI(θθθ) is thus the expected value of
the objective value improvement (with respect to the best in
the dataset D i) that could be achieved for the point θθθ. Besides
having this intuitive interpretation, expected improvement was
found to perform well in practice, providing a good balance
between exploration and exploitation (Brochu et al., 2010).
Furthermore, it has an analytic expression in terms of the
posterior mean and variance of the GP process (Jones et al.,
1998) and can thus be optimized using standard gradient-based
techniques.

3.3 Algorithm outline

The overall BO procedure for autotuning of the controller pa-
rameters θθθ is summarized in the following. First, an initial
dataset of observations Dnin is constructed by performing nin
initial experiments with different parameters θθθ j ∈ ΘΘΘ and mea-
suring the corresponding performance J j, for j = 1, . . . , i. The
initial parameters may be just randomly chosen within in the
admissible range ΘΘΘ.

The algorithm is then iterated. At each iteration i the posterior
distribution p(J(θθθ)|D i) is updated with the available dataset
D i. Then, the acquisition function A(θθθ) is computed based on
p(J(θθθ)|D i) and optimized to determine the next point θθθi+1 to
be tested. Note that this inner optimization step does not require
additional experiments.

An experiment is performed with parameter θθθi+1 and the cor-
responding performance index Ji+1 is measured. Finally, the
dataset D i+1 is constructed by augmenting D i with the latest
measurements. This sequence continues until a termination cri-
terion is met. The criterion could be simply a maximum num-
ber of iterations or, for instance, be based on the performance
achieved in the best experiment.

4. EXPERIMENTAL RESULTS

4.1 Setup description

The FRANKA Emika manipulator has been used as test plat-
form, implementing a 1-kHz torque control. The number of
link-mass parameters m characterizing the feedback τττFL and
the feedforward τττFF actions is equal to 4. These parameters
are related to links 1, 2 and 5, and to the end-effector. The

number of PID gains is equal to 21 (namely, 3 parameters per
joint). Thus, in total, 25 parameters have to be tuned: link-mass
parameters are related to the first optimization stage, PID gains
are related to the second optimization stage. Robot dynamics
has been computed using the C++ KDL library (Smits et al.,
2013). BO has been performed using the C++ limbo (Cully
et al., 2016) and the NLopt (Johnson, 2019) libraries.

4.2 Use case trajectories

The following three trajectories are considered to assess the
performance of the proposed approach:

• sinusoidal joint trajectory (Traj. #1)

qi(t) = q0
i +Ai (1− cos(2πfi t)) ,

where f = [0.05 0.075 0.075 0.1 0.1 0.1 0.1] Hz,
A = [30 10 10 10 10 10 10]◦, and i = 1, . . . ,7 identifies
the joint. The execution time for the trajectory is T = 20 s;

• circular Cartesian trajectory (Traj. #2) in the y− z plane

y(t) = y(t−dt)+ r (1− cos(φ(t))) ,
z(t) = z(t−dt)+ r sin(φ(t)),

where r = 0.05 m, v = 0.1 m/s, and φ(t) = v
r +φ(t−∆t)∆t

are the radius, the tangential velocity, and the angular
position of the circular path, respectively. Other Carte-
sian DoFs are kept constant in the reference Cartesian
trajectory. Franka embedded inverse kinematics is used to
compute the reference joint trajectory. The sampling time
∆t is equal to 1 ms and the execution time of the trajectory
is T = 7 s;

• sinusoidal Cartesian trajectory (Traj. #3)

x(t) = x0 +Ax (1− cos(2π fx t)) ,

y(t) = y0 +Ay (1− cos(2π fy t)) ,

z(t) = z0 +Az (1− cos(2π fz t)) ,

with fx = fy = fz = 0.1 Hz, Ax = 0.2 m, Ay = 0.05 m, and
Az =−0.15 m. The execution time is T = 10 s.

4.3 Performance evaluation

Each optimization has been performed 3 times for each case-
study trajectory, obtaining comparable results. For the sake of
exposition, only one experimental test for each trajectory will
be described.

In the BO algorithm, the following constraints are imposed:

• link-mass parameters m belong to the intervals m1 ∈
[0.5, 1.5] kg, m2 ∈ [2, 6] kg, m3 ∈ [3.25, 13] kg, m4 ∈
[0.375, 3] kg;

• PID gains Kp, Kd and Ki belong to the intervals Kp, j ∈
[0, 5000] Nm/rad with j from joint 1 to 4; Kp, j ∈
[0, 3000] Nm/rad with j from joint 5 to 6; Kp,7 ∈
[0, 2000] Nm/rad, Kd, j ∈ [0, 100] Nms/rad with j from
joint 1 to 4; Ki, j ∈ [0, 20] Nms/rad with j from joint 5 to
7, Ki, j ∈ [0, 100] Nm/rad/s with j from 1 to 7.

The equivalent link-mass parameters m and the PID gains Kp,
Kd and Ki are tuned through the two-stage procedure described
in Section 2.3.
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Two-stage tuning: link-mass parameters optimization
Traj. #1 Traj. #2 Traj. #3

Masses

JFL

Fig. 3. Achieved results for the three trajectories: link-mass parameters m (first row column, m1 blue line, m2 red line, m3 yellow
line, m4 purple line); and objective function JFL (second row) vs BO iterations. Optimal iteration is highlighted by a red circle.

Two-stage tuning: PID gains optimization
Traj. #1 Traj. #2 Traj. #3

Kp,1

JFB

Fig. 4. Achieved results for the three trajectories: PID gains Kp,1 (first row); and objective function JFB (second row) vs BO
iterations. Optimal iteration is highlighted by a red circle.
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Two-stage tuning: performance comparison
Traj. #1 Traj. #2 Traj. #3

Fig. 5. Trajectory tracking errors for joint 7 (highest tracking errors) achieved by the FRANKA Emika controller (blue line) and
by the two-stage tuning procedure (red line).

At the first stage, the equivalent link-mass parameters m char-
acterizing the feedback linearization and the feedforward action
are tuned by minimizing the performance cost JFL in (7). The
PID gains are not optimized at this stage. In particular, PID
derivative and integral gains are set to zero, while the propor-
tional gains Kp, j are set to low values (specifically, 75 Nm/rad
for all joints j = 1, . . . ,7) just to avoid drifts due to over/under
compensations of the robot dynamics.

The BO is initialized with nin = 10 initial experiments with
randomly generated parameters m, and terminated after 40
iterations. Tests are interrupted if the joint position error eq,i(t)
is larger than ē = 5◦ or safety constraints are violated. The
achieved results are summarized in Fig. 3, which shows the
evolution of the link-mass parameters m characterizing the
feedback and feedforward actions, as well as the performance
index JFL vs the BO iterations.

The tests are stopped 9 times (out of 40) for the sinusoidal joint
trajectory; 8 times for the circular Cartesian; and 23 times for
the sinusoidal Cartesian trajectory. As it can be also inferred
from the cost JFL in Fig. 3, the experiments are stopped mainly
in the first 10 initial iterations.

At the second stage, once the link-mass parameters are op-
timized, the PID controllers are designed. The BO is initial-
ized with nin = 20 initial experiments with randomly gener-
ated PID parameters, and terminated after 90 iterations. Tests
are interrupted if the joint position error eq,i(t) is larger than
ē = 1.5◦ or safety constraints are violated. The achieved results
are summarized in Fig. 4. For the sake of visualization, only
the proportional gains for joint 1 are plotted, together with the
performance cost JFB over the algorithm’s iterations.

The tests are stopped 58 times (out of 90) for the sinusoidal joint
trajectory, 48 times for the circular Cartesian, and 26 times for
the sinusoidal Cartesian trajectory. As it can be also inferred
from the cost JFB in Fig. 4, the experiments are stopped mainly
in the first iterations.

4.4 Comparison with embedded position controller

The performance of the controller designed through the pro-
cedure presented in this paper are compared with the perfor-
mance obtained with the FRANKA Emika embedded position
controller.

Fig. 5 shows the joint trajectory errors achieved by the pro-
posed controller design methodology for joint 7 is shown, i.e.,
the most critical; similar tracking errors are obtained for other
joints. The maximum tracking error is less then 0.25◦. The same
figure also shows the error achieved with the FRANKA Emika
embedded joint position controller. Although the FRANKA
Emika controller achieves slightly better performance, the ad-
vantage of the proposed approach is in its limited number of
experiments required to auto-tune a high-performance control.
Trajectory tracking performance of the proposed algorithm can
be improved including advanced dynamics compensation (e.g.,
friction or joint elasticity terms) into the control law and/or
designing more advanced trajectory tracking controllers (e.g.,
optimal control).

5. CONCLUSIONS

A two-stage BO based approach tailored for auto-tuning of
low-level robot trajectory tracking controller with unknown dy-
namics has been presented. The employed control architecture,
consisting in a feedback linearization, a feedforward action,
and PID controllers at the joint level, is widely used on in-
dustrial manipulators, therefore, easily implementable. Firstly,
the robot dynamic parameters are tuned to compensate for the
robot dynamics. Then, the PID gains are tuned in order to
optimize the trajectory tracking performance. Safety constraints
and maximum joint position errors are also taken into account.

The proposed methodology is evaluated in real experiments,
using a torque-controlled FRANKA Emika manipulator. The
25 parameters defining the overall controller (i.e., 4 link-mass
parameters and 21 PID gains) are optimized in the two stafe
approach and comparable performance with respect to the
FRANKA Emika embedded controller are achieved. The pro-
posed procedure allows to optimize the control parameters in a
limited number of iterations (i.e., 40 iterations for the first stage,
90 iterations for the second stage), resulting in an efficient and
effective auto-tuning methodology.

The main limitation of the presented work is the lack of knowl-
edge transfer from trajectory to trajectory. Current and future
works are devoted to fill this gap, by learning the relationship
between the optimal controller parameters and the trajectory to
be tracked. In addition, more advanced controllers will be con-
sidered, together with the use of additional dynamics parame-
ters in the first optimization stage (e.g., friction parameters).
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Kinematics and dynamics library (2001).

Swevers, J., Verdonck, W., and De Schutter, J. (2007). Dynamic
model identification for industrial robots. IEEE control
systems magazine, 27(5), 58–71.

Venkatraman, A., Capobianco, R., Pinto, L., Hebert, M., Nardi,
D., and Bagnell, J.A. (2016). Improved learning of dynamics
models for control. In International Symposium on Experi-
mental Robotics, 703–713. Springer.

Yuan, K., Chatzinikolaidis, I., and Li, Z. (2019). Bayesian opti-
mization for whole-body control of high degrees of freedom
robots through reduction of dimensionality. IEEE Robotics
and Automation Letters.

Zhao, J., Han, L., Wang, L., and Yu, Z. (2016). The fuzzy
pid control optimized by genetic algorithm for trajectory
tracking of robot arm. In 2016 12th World Congress on
Intelligent Control and Automation (WCICA), 556–559.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8852


