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Abstract We consider the problem of computing the sensitivity of uncertain biochemical networks in
the presence of input perturbations around a stable steady state. The uncertain system parameters are
assumed to take values in a hyperrectangle. Recent literature has shown that, for systems admitting the
BDC-decomposition, this analysis can be efficiently carried out by means of vertex algorithms, namely
by considering exclusively the vertices of the hyperrectangle in the parameter space. Here we consider
a broader class of systems: totally multilinear systems, where any minor of the Jacobian matrix is a
multilinear function of the uncertain parameters. For this broader class, we prove that analogous vertex
results hold for assessing robust nonsingularity and for providing robust sensitivity bounds. We also
discuss vertex-type approaches to robustly assess the assumed stability of the steady state.

Keywords: Biochemical networks, Chemical reaction networks, BDC decomposition, Sensitivity
analysis, Influence matrix, Mapping Theorem.

1. INTRODUCTION

In this paper we consider the steady-state sensitivity analysis
for a vast class of uncertain nonlinear dynamical systems, in-
cluding the interesting special case of biochemical reaction net-
works. It is known that this type of analysis can be approached
by considering the linearised system and computing the input-
output steady-state characteristic.

For systems with parametric uncertainty the problem can be
faced by solid methods coming from robustness analysis; see
for instance the book by Barmish (1994). In particular, the
problem can be solved through the solution of nonlinear sys-
tems with parametric rank-one uncertainties as in the work by
Polyak and Nazin (2004); Mohsenizadeh et al. (2014).

This fact has been recently exploited by Giordano et al. (2016)
and Blanchini and Giordano (2019) to deal with structural
influence analysis; however, this work only considers uncertain
Jacobian matrices having a linear structure of the form

A = ∑
k

δkAk,

where Ak are rank-1 matrices: the Jacobian matrix can be
decomposed as A=BDC, where D is a diagonal matrix carrying
the δk on the diagonal, while B and C are constant matrices such
that Ak = BkC>k , where Bk denotes the kth column of B and C>k
the kth row of C.

Motivated by a significant class of biochemical systems, we
show that these results can be extended to the class of matrices
? Blanchini and Colaneri are supported by PRIN grant.

that depend polynomially on the uncertain coefficients δk and
are totally multilinear, namely, the determinant of every subma-
trix is a multilinear function of the parameters.

We finally point out several properties of the class of multilinear
systems. They are amenable for robust stability tests based on
the mapping theorem, cf. the book by Barmish (1994). Based
on an earlier idea by Garofalo et al. (1993), we propose a vertex
type of test (well known for systems with affine uncertainties) to
check whether a given positive definite function, either smooth
or convex, is a Lyapunov function.

2. PRELIMINARIES

Consider the class of systems
ẋ(t) = Sg(x(t))+Eu(t), (1)

where g is a vector function whose components g j are mono-
tonic in all variables. The model in Equation (1) is quite general
and includes (bio)chemical reaction networks and gene net-
works, as well as compartmental systems and generic flow sys-
tems in engineering. In the case of chemical reaction networks,
S is a stoichiometric matrix representing a structure, while g is
the reaction rate function.
Definition 1. Function f is called BDC-decomposable if its
Jacobian, computed at any point x, has the form

∂ f
∂x

= BD(x)C, (2)

where B and C are constant matrices and D(x) = diag(δ ) is a
diagonal matrix of strictly positive functions δ = [δ1 . . .δq]

>.
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All systems of the form (1) are BDC-decomposable (Blanchini
and Giordano 2014, Giordano et al. 2016, Blanchini and
Giordano 2019). Matrices B, D(x) and C can be built as
follows. B is a selection of (possibly repeated) columns of S,
D(x) includes the absolute values of all the nonzero partial
derivatives, δk = |∂gh/∂x j|; correspondingly in the kth row of
C only one element, say the jth, is nonzero and equal to 1 if δk
is a derivative with respect to x j.

We henceforth assume rectangular bounds of the form
δ ∈D = {d : δ

− ≤ d ≤ δ
+}, (3)

where the inequalities hold componentwise. We also consider
the set of vertices of D , which is

D̂ =
{

d : dk ∈ {δ−k ,δ+
k }
}
. (4)

Example 1. The chemical reaction network

/0
g1−⇀ X1, /0

g2−⇀ X2,

X1 +X2
g12−⇀ X3, X1 +X3

g13−⇀ /0, X3
g3−⇀ /0,

where all the reaction rate functions gk are increasing in all their
variables, correspond to the system of equations

ẋ1 = g1−g12(x1,x2)−g13(x1,x3)

ẋ2 = g2−g12(x1,x2)

ẋ3 = g12(x1,x2)−g13(x1,x3)

Then the Jacobian matrix can be decomposed as

J =

[−1 −1 −1 −1 0
−1 −1 0 0 0

1 1 −1 −1 −1

]
α 0 0 0 0
0 β 0 0 0
0 0 γ 0 0
0 0 0 ρ 0
0 0 0 0 ε




1 0 0
0 1 0
1 0 0
0 0 1
0 0 1

 ,
where we have set

α :=
∂g12

∂x1
, β :=

∂g12

∂x2
, γ :=

∂g13

∂x1
, ρ :=

∂g13

∂x3
, ε :=

∂g3

∂x3
.

3. STEADY-STATE SENSITIVITY ANALYSIS

Consider the system
ẋ(t) = f (x(t),u(t)), y(t) = Hx(t),

with state vector x ∈ Rn, input u ∈ R and output y ∈ R. We
assume that the system is at a stable steady state, say x̄ ∈ Rn,
corresponding to the constant scalar input ū (i.e., f (x̄, ū) = 0).

More in general, the variable u can be an input signal or a
parameter. We wish to assess how the steady-state output value
ȳ→ ȳ+w changes due to variations of the input value ū→ ū+v.

For small perturbations, we can consider the linearisation of the
system around the stable equilibrium. Assuming ∂ f

∂u = E this
boils down to considering the system

ż(t) = BDCz(t)+Ev(t), w(t) = Hz(t), (5)
where z = x− x̄. Then the input-output sensitivity is

Σ(δ ) =
∂w
∂v

=−H(BDC)−1E =

det
[
−BDC −E

H 0

]
det[−BDC]

(6)

Since singularity of BDC would invalidate the expression of Σ,
first of all we need to check robust nonsingularity of BDC.
Theorem 1. (Giordano et al. 2016, Blanchini and Giordano
2019.) Matrix BDC is nonsingular for all δ ∈ D if and only
if the determinant det[−BDC] has the same sign (either positive
or negative) for all δ ∈ D̂ , namely on all the vertices of D .

Since the equilibrium needs to be stable, det[− ∂ f
∂x ] > 0 must

hold. Therefore we work under the following assumption.
Assumption 1. For all δ ∈D , det[−BDC]> 0.

The next result by Blanchini and Giordano (2019) shows that
exact bounds can be computed for Σ.
Theorem 2. Under Assumption 1, denote by

Σ
− = min

δ∈D̂
Σ(δ ), Σ

+ = max
δ∈D̂

Σ(δ )

Then the sensitivity can be lower- and upper-bounded as
Σ
− ≤ Σ(δ )≤ Σ

+, ∀δ ∈D ,

and the bounds are tight.

Theorem 2 provides a vertex result along the lines of those
by Barmish (1994). In fact, we can compute the maximum
and the minimum of Σ(δ ) in the whole parameter space D by
considering its minimum and maximum on the vertices of D .
These bounds have been shown to hold also for large variations,
as long as the bounds (3) are valid for all the derivatives.
Remark 1. Assuming robust nonsingularity of the system Ja-
cobian matrix is necessary. For instance, in the scalar case with
B = [1 1], and C = [1 − 1]> (i.e., BDC = δ1− δ2), with E =
H = 1 and with bounds 0.1≤ δ1,δ2 ≤ 1, we have Σ(δ ) = (δ2−
δ1)
−1, which is unbounded and not even defined for δ1 = δ2.

4. MAIN RESULTS

We assume that the linearised system has the form
ż(t) = A(δ )z(t)+Ev(t), w(t) = Hz(t), (7)

where now the Jacobian A(δ ) is a polynomial matrix in δ ,
whose entries Ai j(δ ) are multilinear functions of δ1, . . . ,δq.
We remind that a function is multilinear if it is linear in each
variable (note that, in the case of BDC-decomposable systems,
the Jacobian entries are linear functions of δ1, . . . ,δq).
Definition 2. Matrix A(δ ) is totally multilinear if its determi-
nant and any minor (i.e., the determinant of any submatrix of
A(δ )) are multilinear functions of δ1, . . . ,δq.

Chemical reaction networks with mass-action kinetics fall
within the category of totally multilinear systems.
Example 2. Consider the chemical reaction network in Exam-
ple 1, where now the reaction rate functions are assumed to
follow mass-action kinetics. Hence, we denote as

p := g12 = k12x1x2, q := g13 = k13x1x3, r := g3 = k3x3,

and
s :=

1
x1
, t :=

1
x2
, w :=

1
x3
,

Then, the Jacobian matrix

J =

[−(p+q)s −pt −qw
−ps −pt 0

(p−q)s pt −(q+ r)w

]
is totally multilinear.

The results in Theorem 1 and Theorem 2 remain valid also for
the class of systems of the form (7), which is larger than the
class of BDC-decomposable systems. In fact, we can prove the
next theorems, which are entailed by multilinearity.
Theorem 3. (Robust nonsingularity check.) Assume that A(δ )
is totally multilinear. Then it is nonsingular for all δ ∈ D if
and only if det[−A(δ )] has the same sign (either positive or
negative) for all δ ∈ D̂ , namely on all the vertices of D .
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Proof: If A(δ ) is totally multilinear, then det[−A(δ )] is multi-
linear. Recall that a multilinear function defined on a hyperrect-
angle takes its maximum and minimum values on the vertices
of the hyperrectangle (see Barmish (1994)). Then, necessity
is immediate because, if the function is positive (respectively
negative) at all the vertices, it cannot be zero inside the whole
hyperrectangle. Sufficiency can be proved by contradiction.
Assume that the function takes values of opposite sign on two
different vertices: det[−A(δ (1))] > 0 and det[−A(δ (2))] < 0,
with δ (1),δ (2) ∈ D̂ ; then, since the determinant is a continuous
function of the matrix entries, there must exist some δ (3) ∈ D
such that det[−A(δ (3))] = 0. �

Theorem 4. (Robust sensitivity bounds.) Assume that A(δ ) is
totally multilinear and that det[−A(δ )] > 0 for all δ ∈ D . The
sensitivity

Σ(δ ) =
∂w
∂v

=−H[A(δ )]−1E =

det
[
−A(δ ) −E

H 0

]
det[−A(δ )]

is lower- and upper-bounded as
Σ
− ≤ Σ(δ )≤ Σ

+, ∀δ ∈D ,

where
Σ
− = min

δ∈D̂
Σ(δ ), Σ

+ = max
δ∈D̂

Σ(δ ),

and the bounds are tight.

Proof: We begin by noticing that both the numerator n(δ ) :=

det
[
−A(δ ) −E

H 0

]
and the denominator d(δ ) := det[−A(δ )] of

the sensitivity are multilinear functions of δ1, . . . ,δq, because
A(δ ) is totally multilinear. We prove the result for the lower
bound (the proof for the upper bound is identical). We have that
n(δ )/d(δ ) ≥ k for all δ ∈ D if and only if ρ(δ ,k) := n(δ )−
kd(δ ) ≥ 0 for all δ ∈ D . In view of multilinearity of n and d,
ρ(δ ,k) is also multilinear in the variables δ1, . . . ,δq. Therefore,
the condition is equivalent to ρ(δ ,k) ≥ 0 for all δ ∈ D̂ , which
is in turn equivalent to the vertex condition n(δ )/d(δ ) ≥ k for
all δ ∈ D̂ . Then, k must be equal to the smallest value that the
function n(δ )/d(δ ) actually takes on the vertices δ ∈ D̂ , hence
k = Σ−, and the bound is tight. �

5. SOME REMARKS ABOUT STABILITY ANALYSIS

In our sensitivity analysis, we have assumed stability of the
steady state. We now discuss vertex-type approaches to robustly
check whether this assumption is actually satisfied.

For systems of the form (7), the well-known mapping theorem
holds; see, e.g., the book by Barmish (1994). Then, we can
write the characteristic polynomial

p(s,δ ) = det[sI−A(δ )]
and check its stability for a given value δ ∗. The zero exclusion
theorem ensures that robust stability holds if the value-set

V ( jω) = {s = p( jω,δ ), δ ∈D}
does not include the origin. Drawing this set in the complex
plane is hard.

However, the mapping theorem ensures that V ( jω) is in the
convex hull of the vertex points p( jω, δ̂ ), namely,

V ( jω)⊂ C ( jω) = conv
{

s = p( jω, δ̂ ), δ̂ ∈ D̂
}
. (8)

A sufficient criterion for robust stability can therefore be based
on the following procedure:

1. check stability for an arbitrary value δ ∗ ∈D
2. check the exclusion for the convex hull: 0 6∈ C ( jω).

The stability analysis at step 1 can be based on Lyapunov
functions and to this aim we propose the following theorem.
Theorem 5. Let V (z) be a positive definite radially unbounded
function, which is either smooth or convex. Then it is a Lya-
punov function for system (7), in the sense that

D+V (z,δ )≤−βV (z), for all δ ∈D ,

if and only if

D+V (z, δ̂ )≤−βV (z), for all δ̂ ∈ D̂ .

Proof: If V (z) is smooth, the proof is simple, because for any z
ψ(z,δ ) := ∇V (z)A(δ )z

is a multilinear function of δ1, . . . ,δq, hence it takes its
maximum value on the vertices of D̂ . Therefore, denoting
by ψ+(z) = max

δ∈D̂ ψ(z,δ ), we have that, if D+V (z,δ ) ≤
−βV (z) for all δ ∈ D̂ , then

D+V (z,δ ) = ∇V (z)A(δ )z+∇V (z)Ev
≤ ψ

+(z)+∇V (z)Ev≤−βV (z) for all δ ∈D .

For quadratic functions the result was shown by Garofalo et al.
(1993).

For non-smooth but convex functions, including the polyhedral
Lyapunov functions considered by Al-Radhawi and Angeli
(2016) and Blanchini and Giordano (2014), the proof can be
carried out along the same lines, but it is more involved since
we need to resort to the subgradient. �
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