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Abstract: In this paper, we consider the problem of estimating the L2−gain under a given
feedback law for linear discrete-time systems subject to actuator saturation. The basic idea is to
use the linear parameter varying system framework to model the saturation nonlinearity. It is
shown that the conditions can be expressed as a set of linear matrix inequalities. Furthermore,
it is proved that the conditions are guaranteed to be less conservative than several existing
solutions in the literature. One numerical example is presented to illustrate the effectiveness of
the proposed method.
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1. INTRODUCTION

In control engineering, saturation is one of the most com-
monly encountered non-linearities. It is well known that
the input saturation can degrade the system performance,
can create limit cycles, and even can cause instability.
Therefore, analyzing the system performance that can be
achieved under the input saturation is of great importance,
see for example, Hu and Lin (2001), Kapila and Grigoriadis
(2002). In this paper, we are particularly interested in
estimating the L2−gain, because it is one of the most
important performance indices of the control system.

Using the circle and Popov criteria, for the L2−gain analy-
sis of linear discrete-time systems in the presence of input
saturation, several methods have been considered in the
literature, see Hindi and Boyd (1998), Paim et al. (2002).
In Hu and Lin (2001) by combining a quadratic Lyapunov
function, and a linear differential inclusion (LDI) to model
the saturation nonlinearity, it is shown that the condition
is less conservative than that based on the circle criterion.
In addition, it is also shown that the condition obtained
based on the LDI framework can be converted into linear
matrix inequalities (LMIs) constraints, while based on the
circle criterion, the conditions are bilinear matrix inequal-
ities, which as non-convex.

In Wada et al. (2004), Ma and Yang (2008), the LDI
approach is improved by using more general Lyapunov
function. In particular, a saturation-dependent Lyapunov
function that captures the real-time information on the
severity of saturation was proposed. The conditions are
expressed as LMI constraints. However, the existing results
were obtained by using an auxiliary linear state feedback
law.

The objective of this paper is to further reduce the conser-
vativeness in the estimation of the L2−gain performance

by using an auxiliary nonlinear saturation-dependent state
feedback law. The resulting system is modeled as an LPV
system. It is proved that the conditions are guaranteed
to be less conservative than the existing results in the
literature. Furthermore, it is shown that the proposed
conditions can be reduced to a set of LMIs.

The paper is organized as follows. Section 2 describes the
problem formulation and some preliminaries concerning
the LMIs constrains. Section 3 is dedicated to the main
result of the paper. In Section 4, one numerical example is
presented. Finally, some conclusions are drawn in Section
5.

Notation: A positive-definite (semi-definite) matrix P
is denoted by P � 0 (P � 0). 0, I are, respectively,
the zero matrix and the identity matrix of appropriate
dimensions. For a given P � 0, E(P, α) represents the
following ellipsoid

E(P, α) = {x ∈ Rn : xTP−1x ≤ α}
For a given vector f ∈ R1×n, L(f) is used to denote the
following set

L(f) = {x ∈ Rn : −1 ≤ fx ≤ 1}
For symmetric matrices, the symbol (∗) denotes each of its
symmetric block.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem Formulation

Consider the following linear discrete-time system subject
to input saturation{

x(k + 1) = Ax(k) +Bsat(u(k)) + Ew(k),
z(k) = Cx(k) +Dw(k)

(1)
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where x ∈ Rn is the measured state, u ∈ R is the
control input, w ∈ Rq is the disturbance, z ∈ Rp is the
performance output. For simplicity, only the single input
case is considered. However the approach in the paper can
be straightforwardly extended to the multi-input case.

The saturation function is defined as

sat(u) =

{
1, if u ≤ 1,
u, if − 1 ≤ u ≤ 1,
−1 if u ≤ −1,

(2)

In this paper, we are interested in estimating the L2− gain
performance of the system (1) under a given linear state
feedback law

u(k) = Kx(k) (3)

It is assumed that A + BK is a Schur matrix, i.e., all
eigenvalues of A+BK are in the interior of the unit circle.
Furthermore, it is also assumed that

w ∈W = {w ∈ Rq : ‖w‖22 ≤ β} (4)

where β > 0 is a given constant.

For a given γ > 0, the system (1),(2),(3) is said to be with
a L2 performance gain less than γ, if for the zero initial
condition, the following condition

∞∑
k=0

zT (k)z(k)− γ2
∞∑
k=0

wT (k)w(k) ≤ 0 (5)

is satisfied ∀w(k) ∈W .

2.2 Preliminaries

The following lemma is taken from Hu et al. (2002). It will
be used to model the saturation non-linearity (2).

Lemma 1: For any u ∈ R, the exist −1 ≤ v ≤ 1, and
λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1, such that the saturation
function (2) is written as

sat(u) = λ1u+ λ2v (6)

The following double sum negativity problem of the form

xT (

s∑
j=1

s∑
l=1

λjλlΓjl)x ≥ 0 (7)

will be dealt several times in this paper, where the coeffi-
cients λj satisfy

s∑
j=1

λj = 1, λj ≥ 0,∀j = 1, s

Lemma 2: The double sum (7) is positive, if, see Wang
et al. (1996),{

Γjj � 0,
Γjl + Γlj � 0, ∀j,∀l = 1, s, j < l

(8)

Lemma 3: The double sum (7) is positive, if, see Tuan
et al. (2001),{

Γjj � 0,
2

s− 1
Γjj + Γjl + Γlj � 0, ∀j,∀l = 1, s, j 6= l

(9)

Lemma 4: Given matrices P,G of appropriate dimension
with P � 0. Then, see De Oliveira et al. (1999)

(G−P )TP−1(G−P ) � 0⇔ GTP−1G � GT +G−P (10)

Lemma 5: For a vector f ∈ R1×n and a matrix P � 0,
E(P, α) ⊆ L(f0) if and only if, see Hu and Lin (2001)

f0Pf
T
0 ≤

1

α
(11)

In what follows, we will make use of the following results,
concerning the LMIs.

Property 1 (Congruence): Let P and Q are matrices
of appropriate dimension, where P = PT , and Q is a full
rank matrix. It holds that

P � 0⇔ QTPQ � 0 (12)

Property 2: (Schur complement): Consider a matrix
M , with

M =

[
M11 M12

MT
12 M22

]
and M11,M22 being square matrices. Then, see Boyd et al.
(1994)

M � 0 ⇔
{
M11 � 0,
M22 −MT

12M11M12 � 0

⇔
{
M22 � 0,
M11 −M12M22M

T
12 � 0

(13)

3. MAIN RESULTS

Substituting (3) to (1), one gets

x(k + 1) = Ax(k) +Bsat(Kx(k)) + Ew(k)

Thus, using Lemma 1, there exist λ1(k) ≥ 0, λ2(k) ≥ 0,
λ1(k) + λ2(k) = 1, and −1 ≤ v(k) ≤ 1 such that

x(k + 1) = Ax(k) +B(λ1(k)Kx(k) + λ2(k)v(k)) + Ew(k)

Thus, with A = (λ1(k) + λ2(k))A

x(k + 1) = A(λ(k))x(k) + B(λ(k))v(k) + Ew(k) (14)

where {
A(λ(k)) = λ1(k)A1 + λ2(k)A2

B(λ(k)) = λ1(k)B1 + λ2(k)B2
(15)

with
A1 = A+BK,A2 = A,
B1 = 0n×1, B2 = B

Hence the linear system (1) subject to input saturation is
rewritten as a linear parameter varying (LPV) system (14),
where v(k) is considered as a control input. The problem
of computing the L2−gain for (1) becomes the problem of
selecting the control law v such that the L2−gain for (14)
is minimal.

Consider the following control law

v(k) = F (λ(k))G(λ(k))−1x(k) (16)

with {
F (λ(k)) = λ1(k)F1 + λ2(k)F2,
G(λ(k)) = λ1(k)G1 + λ2(k)G2

where F1 ∈ R1×n, F2 ∈ R1×n, G1 ∈ Rn×n and G2 ∈ Rn×n

are unknown vectors and matrices that will be treated as
decision variables.

Remark 1: In the literature, see for example Hu et al.
(2002), Wada et al. (2004), Ma and Yang (2008), only
a linear control law v(k) = FG−1x(k) was considered.
Clearly, this is a particular case of (16) with F1 = F2 = F
and G1 = G2 = G. The control law (16) takes the real
time information of the saturation into account. Hence as

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4663



shown in the example, a less conservative estimate of the
L2−gain is obtained.

Substituting (16) into (14), one obtains the following
closed-loop system

x(k + 1) = Ac(λ(k))x(k) + Ew(k) (17)

where

Ac(λ(k)) = A(λ(k)) + B(λ(k))F (λ(k))G(λ(k))−1

Define the following parameter-dependent Lyapunov func-
tion

V (k, x(k)) = x(k)T (P (λ(k)))−1x(k)
= x(k)T (λ1(k)P1 + λ2(k)P2)−1x(k)

(18)

where P1 ∈ Rn×n, P2 ∈ Rn×n are unknown positive
definite matrix.

With small abuse of notation,Ac(k),A(k),B(k), G(k), P (k)
will be used to denoteAc(λ(k)),A(λ(k)), B(λ(k)), G(λ(k)),
P (λ(k)).

The following theorem provides the main result of the
paper. It establishes the theoretical support of the algo-
rithm proposed to obtain an estimation of the L2−gain
performance for the system (14), (16).

Theorem 1: Consider the system (14), (16). For given
scalars α > 0, β > 0, assume that there exist positive de-
fine matrices P1, P2, matrices F1, F2, G1, G2 and a positive
scalar γ satisfying the following matrix inequalities

P (k + 1) A(k)G(k) + B(k)F (k) E 0
(∗) G(k) +G(k)T − P (k) 0 G(k)TCT

(∗) (∗) I DT

(∗) (∗) (∗) γ2I

 � 0

(19) 1

α+ β
F (k)

F (k)T G(k) +G(k)T − P (k)

 � 0 (20)

then, ∀x(0) such that x(0)TP (0)−1x(0) ≤ α, one has
x(k)TP (k)−1x(k) ≤ α + β, ∀k ≥ 1, and the following
inequality holds

∞∑
k=0

zT (k)z(k) ≤ γ2
∞∑
k=0

wT (k)w(k) + α. (21)

Proof: Consider the Lyapunov function (18). For the
L2−gain performance, it is required that

V (k + 1, x(k + 1))− V (k, x(k)) ≤
≤ − 1

γ2
z(k)T z(k) + w(k)Tw(k)

(22)

for all x(k), x(k+ 1) satisfying (17), and for all w(k) ∈W .

If (22) holds, then it follows that

V (∞, x(∞))− V (0, x(0)) ≤

≤ − 1

γ2

∞∑
k=0

z(k)T z(k) +

∞∑
k=0

w(k)Tw(k) (23)

Note that the system (17) is asymptotically stable for
states near the origin. It follows that lim

k→∞
x(k) = 0. Hence

lim
k→∞

V (k, x(k)) = 0. With the zero initial condition, i.e.,

x(0) = 0, inequality (23) becomes

0 ≤ − 1

γ2

∞∑
k=0

z(k)T z(k) +

∞∑
k=0

w(k)Tw(k)

or equivalently
∞∑
k=0

z(k)T z(k) ≤ γ2
∞∑
k=0

w(k)Tw(k)

It is concluded that the system 14), (16) has L2−gain
performance γ.

Using (18), (17), the left hand side of (22) can be rewritten
as
V (k + 1, x(k + 1))− V (k, x(k)) =
= x(k + 1)TP (k + 1)−1x(k + 1)− x(k)TP (k)−1x(k)

=

[
x(k)
w(k)

]T [Ac(k)T

ET

]
P (k + 1)−1 [Ac(k) E ]

[
x(k)
w(k)

]
−
[
x(k)T w(k)T

] [ P (k)−1 0
0 0

] [
x(k)
w(k)

]
(24)

Using (1), the right hand side of (22) can be rewritten as

− 1

γ2

∞∑
k=0

z(k)T z(k) +

∞∑
k=0

w(k)Tw(k) =

= − 1

γ2
[
x(k)T w(k)T

] [CT

DT

]
[C D ]

[
x(k)
w(k)

]
+

+
[
x(k)T w(k)T

] [ 0 0
0 I

] [
x(k)
w(k)

] (25)

Using (24), (25), it follows that the inequality (22) holds
if and only if[

P (k)−1 0
0 0

]
−
[
Ac(k)T

ET

]
P (k + 1)−1 [Ac(k) E ]

� 1

γ2

[
CT

DT

]
[C D ]−

[
0 0
0 I

]
or equivalently P (k)−1 − 1

γ2
CTC − 1

γ2
CTD

− 1

γ2
DTC − 1

γ2
DTD + I

−
[
Ac(k)T

ET

]
P (k + 1)−1 [Ac(k) E ] � 0

(26)

Using Schur complement, equation (26) can be rewritten
as 

P (k + 1) Ac(k) E

(∗) P (k)−1 − 1

γ2
CTC − 1

γ2
CTD

(∗) (∗) − 1

γ2
DTD + I

 � 0

or equivalently P (k + 1) Ac(k) E
(∗) P (k)−1 0
(∗) (∗) I

− 1

γ2

 0
CT

DT

 [ 0 C D ] � 0

Thus, with Schur complement
P (k + 1) Ac(k) E 0

(∗) P (k)−1 0 CT

(∗) (∗) I DT

(∗) (∗) (∗) γ2I

 � 0 (27)

Pre- and post-multiplication of (27) by I 0 0 0
(∗) G(k)T 0 0
(∗) (∗) I 0
(∗) (∗) (∗) I

 ,
 I 0 0 0

(∗) G(k) 0 0
(∗) (∗) I 0
(∗) (∗) (∗) I


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one gets
P (k + 1) A(k)G(k) + B(k)F (k) E 0

(∗) G(k)TP (k)−1G(k) 0 G(k)CT

(∗) (∗) I DT

(∗) (∗) (∗) γ2I

 � 0

(28)
Using Lemma 4, one has

G(k)TP (k)−1G(k) � G(k)T +G(k)− P (k) (29)

Substituting (29) into (28), one obtains (19).

For all initial conditions x(0) such that x(0)TP (0)−1x(0) ≤
α, using (22), one gets

x(k)P (k)−1x(k) ≤ x(0)TP (0)−1x(0)−

− 1

γ2

k−1∑
j=0

z(j)T z(j) +

k−1∑
j=0

w(j)Tw(j)

It follows that

x(k)P (k)−1x(k) ≤ x(0)TP (0)−1x(0) +

k−1∑
j=0

w(j)Tw(j)

Hence
x(k)P (k)−1x(k) ≤ α+ β (30)

Recall that

−1 ≤ v(k) = F (k)G(k)−1x(k) ≤ 1

Thus, using Lemma 5, and (30), one obtains

F (k)G(k)−1P (k)(G(k)−1)TF (k)T ≤ α+ β

Using Schur complement, this condition is equivalently
rewritten as 1

α+ β
F (k)

F (k)T G(k)TP (k)−1G(k)

 � 0

Using Lemma 4, one gets 1

α+ β
F (k)

F (k)T G(k) +G(k)T − P (k)

 � 0

The proof is complete. 2

By setting F1 = F2, G1 = G2 in the conditions of Theorem
1 the following corollary is derived

Corollary 1: Consider the system (14), (16). For given
scalars α > 0, β > 0, assume that there exist positive de-
fine matrices P1, P2, matrices F1, F2, G1, G2 and a positive
scalar γ satisfying the following matrix inequalities

P (k + 1) A(k)G+ B(k)F E 0
(∗) G+GT − P (k) 0 GTCT

(∗) (∗) I DT

(∗) (∗) (∗) γ2I

 � 0 (31)

 1

α+ β
F

FT G+GT − P (k)

 � 0 (32)

then, ∀x(0) such that x(0)TP (0)−1x(0) ≤ α, one has
x(k)TP (k)−1x(k) ≤ α + β, ∀k ≥ 1, and the following
inequality holds

∞∑
k=0

zT (k)z(k) ≤ γ2
∞∑
k=0

wT (k)w(k) + α. (33)

Corollary 1 is Theorem 1 in Wada et al. (2004). Hence
Theorem 1 in Wada et al. (2004) is a particular case of our

theorem. As a consequence, Theorem 1 in the paper can
be used to obtain less conservative L2−gain performance
than that by using existing results in the literature.

Note that (20) holds if and only if 1

α+ β
Fj

FT
j Gj +GT

j − Pj

 � 0,∀j = 1, 2 (34)

Define γs = γ2. Rewrite (19) as

2∑
j=1

2∑
l=1

λjλlΓ
m
jl � 0 (35)

with m = 1, 2, and

Γm
jl =


Pm (AjGl +BjFl) E 0
(∗) (Gl +Gl − Pl) 0 GlC

T

(∗) (∗) I DT

(∗) (∗) (∗) γsI

 (36)

Using (35), (34), relaxed LMI conditions can be easily be
formulated using Lemmas 2, or 3 as follows

Corollary 2: The linear discrete-time system (1), (3) is
with a L2− performance index less than γ =

√
γs, if

for given positive scalars α, β, there exist positive definite
matrices Pj , matrices Gj , Fj , j = 1, 2, and positive scalar
γs, such that (34) holds and{

Γm
jj � 0, ∀m,∀j = 1, 2

Γm
jl + Γm

lj � 0, ∀m,∀j,∀l = 1, 2, j < l
(37)

or {
Γm
jj � 0, ∀m = 1, 2,∀j = 1, 2

2Γm
jj + Γm

jl + Γm
lj � 0, ∀m,∀j,∀l = 1, 2, j 6= l

(38)

The proof of corollary 2 is straightforward.

Remark 2: Note that condition (38) is less conservative
than (37), i.e., if there exist matrices Pj , Gj , Fj satisfying
(37), they also satisfy (38). The main advantage of (37)
with respect to (38) is that (37) has a fewer number
of LMI constraints than (38). Hence the computational
complexity is reduced.

A natural idea is to optimize the L2−performance index
γ. Using Corollary 2 and (34), this can be formulated as

min
Pj ,Gj ,Fj

γ

subject to (37), (34)
(39)

or
min

Pj ,Gj ,Fj

γ

subject to (38), (34)
(40)

Since the optimization problems (39) and/or (40) are a
convex semi-definite (SDP) problem, they can be solved
efficiently using free available LMI parser such as CVX, see
Grant and Boyd (2014), or Yalmip, see Löfberg (2004). In
the following, we refer to the optimization problems (39),
and (40), respectively, as algorithm 1 and algorithm 2.

Remark 3: In the linear system case, it is well known, see
Gahinet and Apkarian (1994), that the parameter β has
no impact on the L2−gain γ. However, in the presence of
the saturation non-linearity, this is no longer the case, i.e.,
γ is a function of β. Using (34), it should be clear that this
function is non-increasing, i.e., if β1 ≥ β2, then γ1 ≤ γ2.
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4. EXAMPLE

This example is taken from Wada et al. (2004). The CVX
toolbox was used to solve SDP optimization problems.
Consider system (1), (3) with

A =

[
0 1

−0.58 −0.6

]
, B =

[
0
1

]
, E =

[
0
1

]
and

K = [ 0 −0.7 ] , C = [ 1 0 ] , D = 0

For this example, the L2−gain of the closed-loop system
in the linear region is 4.5690.

By applying algorithm 1 and algorithm 2 with α = 0,
β = 10, one gets, respectively, γ = 10.1770, γ = 10.1220.
The matrices obtained using algorithm 2 are

P1 =

[
24.7751 −12.7511
−12.7511 12.8289

]
, P2 =

[
16.3648 −7.4523
−7.4523 15.1787

]
,

G1 =

[
24.7751 −12.7511
−12.7511 12.8289

]
, G2 =

[
16.3647 −7.4524
−7.4523 15.1787

]
,

F1 = [ 1.0991 −0.1498 ] , F2 = [ 1.2354 −0.8445 ]

For comparison, Theorem 1 in Wada et al. (2004) was
applied to estimate the L2−gain. As a result γ = 13.1844
is obtained with α = 0, β = 10. Clearly, both algorithms
1 and 2 give smaller γ than the existing solution in the
literature. Note that for this example, Theorem 3.2.2 in
Ma and Yang (2008) gives the same γ as Theorem 1 in
Wada et al. (2004).

For different β ∈ [0.5 20], Fig. 1 presents the L2−gain γ
using algorithm 1 (dashed red), and algorithm 2 (solid
blue). As discussed by remark 2, it can be observed
that algorithm 2 is slightly outperforms algorithm 1. For
comparison, Fig. 1 presents the L2− gain γ obtained by
using Theorem 1 in Wada et al. (2004) (dash-dot yellow).

0 2 4 6 8 10 12 14 16 18 20
β

4

6

8

10

12

14

16

γ

Algorithm 2
Algorithm 1
Wada et al.

Fig. 1. L2−gain performance index as a function of β
for Algorithm 2 (solid blue), for Algorithm 1 (dashed
red), and for Theorem 1 in Wada et al. (2004) (dash-
dot yellow).

5. CONCLUSION

This paper considers the L2−gain performance analysis
for linear discrete-time systems subject to actuator sat-
uration. The basic idea is to use an auxiliary nonlin-
ear saturation-dependent state feedback law in conjunc-
tion with a saturation-dependent Lyapunov function. The
closed-loop system is modeled as a linear parameter vary-
ing system. The obtained conditions are expressed as a set

of LMIs constraints. It is proved that the proposed condi-
tions are less conservative than the existing conditions in
the literature. One numerical example illustrates that the
proposed method improves existing results on the same
problem.
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