
Affine Formation Maneuver Control of
Event-triggered Multi-agent Systems ?

Junyi Yang, Hao Yu, Tongwen Chen

Department of Electrical and Computer Engineering, University of
Alberta, Edmonton, AB, T6G 1H9, Canada

(e-mail: junyi7@ualberta.ca; hy10@ualberta.ca; tchen@ualberta.ca).

Abstract: An event-triggered affine formation maneuver control problem is studied in this
work. The formations are invariant for any affine transformation. An event-triggered mechanism
is proposed for the closed-loop system under which the controller updates and information
broadcasting are generated only when it is necessary to maintain the system behavior. The
practical convergence is guaranteed for the closed-loop system and Zeno behavior is excluded.
Simulations are provided to verify the effectiveness of the method.
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1. INTRODUCTION

Due to wide applications in monitoring and control, search
and rescue, sensor networks, control and estimation of
multi-agent systems (MASs) have become an active area
of research since last decade (Olfati-Saber and Murray,
2004). Formation control, as one of the major areas, has
drawn a lot of attention (Oh et al., 2015). Under the
classical setup, the formation control can be classified into
three kinds, namely, distance-based (Sun et al., 2016),
bearing-based (Trinh et al., 2018; Zhao and Zelazo, 2015),
and position-based (Wang et al., 2014). The formation
structures are invariant for rotation and scaling for the
first two kinds, and are fixed for the last one. In the
classical setup, the formation structures typically have
only one degree of freedom (DOF) at most and are usually
determined in advance.

When the agents are maneuvering in an unknown or hos-
tile environment, they need to respond to some unexpected
situations. Thus, it is preferred that the formation struc-
tures are more flexible. This concern can be tackled by
an affine formation method which has been proposed in
Lin et al. (2015); Zhao (2018) recently. The formation
under this newly studied method has n + 1 DOF for an
MAS in an n dimensional (nD) space. For example, in
a 2D space, the formations of MASs are invariant for
any affine transformation which can be obtained by a
rotation, a scaling along two different axis, then another
rotation, and ending with a translation (Lin et al., 2015).
Referring to the topological graph of the MASs under
the affine formation method, different from the spanning
tree condition used in classical setups, an (n + 1)-rooted
condition is considered for the formation problem in an nD
space. Under this assumption, the associated generalized
Laplacian matrices have n + 1 zero eigenvalues, with the
eigenvectors determined by a nominal configuration. Thus,
the dimension of its kernel space is n + 1, which provides
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extra n DOF in the formation structure, rather than 1 as
in classical Laplacian matrices.

In Lin et al. (2015), an affine formation problem is consid-
ered in a consensus sense, which means the MAS converges
to an affine formation determined by the initial states,
and no specific formation can be assigned. However, in
some circumstances, it is preferred that the MAS can
maneuver along some specific formations. Inspired by Zhao
(2018) and Xu et al. (2018), an affine formation maneuver
problem is considered in this work, where the MAS aims
at achieving a specific formation structure spanned by the
kernel space of the associated Laplacian matrices, and at
the same time, tracking some reference trajectories.

Another concern in MASs is the limited onboard energy
and communication resources. Thus, the scheduling of
controller updates and data transmissions becomes a crit-
ical and practical issue. The scheduling can be done in a
time-triggered or an event-triggered fashion. For the first
kind, the sampling period is predetermined which should
guarantee the system performance over a wide range of
operating conditions, see Lemmon (2010). This fixed sam-
pling period may be conservative resulting in unneces-
sary controller updates and data transmissions. In MASs,
the control tasks are usually fulfilled by the communica-
tion among agents. Thus, high-frequency sampling might
cause traffic congestion in the network and increase packet
dropout, see Ding et al. (2017). Frequent updates and
transmissions also cause extra energy consumption (Zhang
et al., 2016), which might reduce the life span of agents. In
the light of this concern, an event-triggered mechanism is
considered in this work. The controller updates and data
transmissions are generated sporadically, only when it is
essential for maintaining the system performance. As a
result, less communication and energy consumption are
required, with some comparable system performance.

The exclusion of Zeno behavior, in the sense that infi-
nite events happen in a finite time interval, is a critical
and challenging problem. In Borgers and Heemels (2014),
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the authors have pointed out that many existing event-
triggered mechanisms would exhibit Zeno behavior when
there is disturbances. Under the event-triggered mecha-
nism proposed in this work, each agent broadcasts its
velocity to the neighbors when the velocity error exceeds a
predetermined threshold, and then, its neighbors use this
information to construct their respective control inputs.
This discontinuous velocity information can be regarded
as a source of disturbance in the MASs, which might lead
to Zeno behavior. In this work, the exclusion of Zeno be-
havior is guaranteed by the assumption of an acyclic graph
and proved by recursively applying an event-separation
property.

Notations: Let R (Z) be the set of real (integer) numbers.
The Euclidian norm of a vector x ∈ Rn is denoted by
‖x‖. The Euclidean induced matrix norm of A ∈ Rn×m
is denoted by ‖A‖. The transpose of a matrix A ∈ Rn×m
is denoted by AT. ⊗ stands for the Kronecker product
for matrices. Denote a column vector with entries all
equal to one by 1 with appropriate dimensions. Let In
be the identity matrix with dimension n; if the context
is clear, the subscript n might be omitted. Let |Ω| be the
cardinality of the set Ω. For two sets Ω1,Ω2 ∈ Rn, define
Ω1\Ω2 := {x ∈ Rn|x ∈ Ω1, x /∈ Ω2}. diag(· · · ) denotes
a diagonal matrix. For a real number s, dse denotes the
smallest integer larger than or equal to s.

2. PRELIMINARIES

The interaction network among agents is described by a
signed directed graph G = (V, E ,A), which is composed of
a node set V = {1, 2, ..., N}, an edge set E ⊆ V×V, and an
adjacency matrix A = [aij ] ∈ RN×N of the signed weights
of G with aij 6= 0 ⇔ (j, i) ∈ E and aij = 0 ⇔ (j, i) /∈ E .
An edge from node j (labelled as tail) to node i (labelled
as head) is represented by the pair (j, i) ∈ E , and the
node j denotes the in-neighbor of i while the converse is
called out-neighbor. The edge (j, i) indicates node i can
receive information from node j. Denote Ni as the set of
in-neighbors of node i, that is, Ni := {j ∈ V|(j, i) ∈ E}.
It is assumed that there is no self-loop, i.e., aii = 0, and
the graph is a fixed topology. In a directed graph G, a path
is an alternating sequence of nodes and edges where the
nodes in the sequence are different. The Laplacian L of a
signed graph G is defined as

L = diag

(∑
k∈N1

a1k,
∑
k∈N2

a2k, ...,
∑
k∈NN

aNk

)
−A.

Referring to Lin et al. (2015), some useful concepts are
recalled. In a direct graph G, a node i is k-reachable (k ≥ 2)
from a non-singleton set U ⊂ V if there is a path from a
node in U to the node i after deleting any k−1 nodes that
are different from i, that is, there are k disjoint paths from
U to i. A directed graph G is k-rooted if there is a subset of
k nodes (labelled as roots), from which every other node is
k-reachable. For a k-rooted graph G = (V, E), its spanning
k-tree rooted at R := {r1, r2, . . . , rk} ⊂ V is a spanning
subgraph T = (V, Ē) satisfying

(1) every node r ∈ R has no in-neighbor;
(2) every node r /∈ R has k in-neighbors;
(3) every node r /∈ R is k-reachable from R.

A configuration in Rd of a node set V is defined by
their coordinates in the Euclidean space Rd, denoted as
p = [pT1 , p

T
2 , . . . , p

T
N ]T with pi ∈ Rd, i ∈ V. A framework

or formation in Rd is a directed graph G with its node i
mapped to pi, denoted as F := (G, p).

3. PROBLEM FORMULATION

Consider a group of N agents in Rd with single-integrator
dynamics under a signed directed graph G:

ṗi(t) = ui(t), i ∈ V = {1, 2, . . . , N}, (1)

where pi ∈ Rd denotes the position of agent i and ui is the
control input. The initial condition of the configuration is
given as p(0) = p0 ∈ RNd. Furthermore, assume that d ≥ 2
and N ≥ d+ 2.

Denote the first Nl < N agents as the leaders and the
remaining Nf = N − Nl agents as the followers, that
is, the leaders’ node subset is Vl := {1, 2, . . . , Nl} while
the followers’ node subset is Vf := V\Vl. The position
of leaders is given by pl := [pT1 , p

T
2 , . . . , p

T
Nl

]T and that

of followers is given by pf := [pTNl+1, p
T
Nl+2, . . . , p

T
N ]T.

Referring to Zhao (2018), it is assumed that each leader
i ∈ Vl does not have access to the information from
other agents and it can move based on some pre-specified
desirable trajectory p∗i (t) which will be defined later. Let
the desired trajectories for leaders be given by p∗l :=
[p∗T1 , p∗T2 , . . . , p∗TNl

]T.

The nominal formation associated with G is defined as
Fr := (G, r), and r = [rT1 , r

T
2 , . . . , r

T
N ]T =: [rTl , r

T
f ]T ∈ RNd

is a constant nominal configuration. The affine image of
the nominal configuration is given by

S(r) := {p ∈ RNd|p = (I⊗A)r+1⊗ b, A ∈ Rd×d, b ∈ Rd},
(2)

where each pair (A, b) denotes one affine transformation.

Definition 1. (Target Affine Formation). The time-varying
target affine formation is expressed as F ∗(t) := (G, p∗(t))
with the target configuration

p∗(t) = [I ⊗A(t)]r + 1⊗ b(t), (3)

where A(t) ∈ Rd×d and b(t) ∈ Rd are continuous of t. By
(2), we have p∗(t) ⊆ S(r) for all t.

Recall that the leaders’ position pl(t) is assumed to be
equal to the desired target configuration p∗l , i.e., pl(t) =
p∗l (t). Hence, in this paper, we will study the following
affine formation maneuver control problem.

Problem 1: Design event-triggered control protocols
ui(t), i ∈ Vf , such that the position pf (t) of followers can
track the target configuration p∗f (t) := [p∗TNl+1, . . . , p

∗T
N ]T

practically, i.e., there is a constant ε > 0 satisfying

sup limt→∞

∥∥∥p∗f (t)− pf (t)
∥∥∥ < ε.

4. EVENT TRIGGERED MECHANISMS

In this section, the event-triggered affine formation ma-
neuver control protocol will be proposed following an
emulation-based manner. First, a continuous-time control
protocol is introduced to ensure asymptotic tracking of
the target formation. Then it will be transformed into an
event-triggered one.
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Initially, we introduce the following lemma on affine lo-
calizability. For a given point set {qi}Ni=1 in Rd, the affine
span I is defined as

I :=

{
N∑
i=1

ciqi|ci ∈ R,
N∑
i=1

ci = 1

}
.

Lemma 2. (Xu et al. (2018)). Suppose that

I) the nominal configuration r satisfies that {ri}Ni=1 has
d-dimensional affine span;

II) the directed graph G is (d+ 1)-rooted and the leader
set Vl is a root set.

Then, the nominal formation is affinely localizable, that
is,

1) for any p ∈ S(r), pf can be determined by pl uniquely;
2) there exists a set of weights aij , i, j ∈ V, associated

with G such that the corresponding signed Laplacian
L ∈ RN×N satisfies (L⊗ I)p = 0.

In the rest of this paper, we always assume the conditions
of Lemma 2 are satisfied and the weights are selected based
on Item 2). Then, the associated signed Laplacian can be
expressed as

L =

[
0
(d+1)×(d+1)
ll 0

(d+1)×(n−d−1)
lf

L
(n−d−1)×(d+1)
fl L

(n−d−1)×(n−d−1)
ff

]
. (4)

By using Lemma 2, one has that L̄ff is nonsingular, and

L̄flp
∗
l (t) + L̄ffp

∗
f (t) = 0, (5)

where L̄fl = Lfl ⊗ Id and L̄ff = Lff ⊗ Id.
Lemma 3. (Xu et al. (2018)). Under the following contin-
uous control protocols:

ui(t) = − 1

Lii

∑
j∈Ni

aij [pi(t)− pj(t)− ṗj(t)], (6)

where Lii 6= 0 is the (i, i)-element of Laplacian L, the
tracking error δf (t) := pf (t) − L̄−1ff L̄flp

∗
l (t) of followers

converges globally and exponentially to zero.

Remark 1: Neighbors’ inputs are required in controller
(6). Such controllers have also been reported in Ren
and Beard (2008), and Zheng and Wang (2012), where
the leader’s trajectory was unpredictable. In addition, by
introducing an acyclic graph in Section 5, the contradiction
in broadcasting input information between a pair of agents
is excluded.

To avoid continuous network occupation and control up-
dates, in the following, an event-triggered implementation
of the controller in (6) is now discussed. Notice that there
are two different parts in (6), namely, the (combined)
relative position information yi(t) :=

∑
j∈Ni

aij [pi(t) −
pj(t)] and the in-neighbor’s absolute velocity information
ṗj(t), j ∈ Ni. For these two kinds of information, different
event-triggered mechanisms are designed as follows.

Since yi(t) can be deemed as local information (see, e.g.,
Zhang and Wang (2018)), agent i is able to measure it
continuously. At each triggering instant tiki for ki ∈ Z≥0
and i ∈ Vf , the relative position information will be sent
to the local controller to update the control signal ui. The
triggering condition is given as

‖εi(t)‖2 ≤ σ1, i ∈ Vf , (7)

where σ1 > 0 is a threshold constant, and the measurement
error εi(t) := ŷi(t) − yi(t), t ≥ 0, with ŷi(t) = yi(t

i
ki

), t ∈
[tiki , t

i
ki+1).

The velocity information ṗi(t), i ∈ V, is difficult to be
continuously obtained by out-neighbors. Therefore, agent
i will first measure its local velocity, then at each trig-
gering instant τ iki , ki ∈ Z≥0, broadcast its own velocity
information to its out-neighbors for their control updates.
The triggering condition is

‖ei(t)‖2 ≤ σ2, i ∈ V, (8)

with a threshold constant σ2 > 0, the broadcast error
ei(t) := ˆ̇pi(t) − ṗi(t), t ≥ 0, and ˆ̇pi(t) = ṗi(τ

i
ki

), t ∈
[τ iki , τ

i
ki+1).

During any two consecutive triggering instants, the con-
troller will use the latest received signals to calculate the
control signal. Thus, the event-triggered control protocols
can be described by

ui(t) =− 1

Lii
ŷi(t) +

1

Lii

∑
j∈Ni

aij ˆ̇pj(t)

=− 1

Lii

yi(t) + εi(t)−
∑
j∈Ni

aij(ṗj(t) + ej(t))

 ,
(9)

for i ∈ Vf .

Due to the discontinuity of ṗi(t), i ∈ Vf , under the event-
triggered controller in (9), it is difficult to ensure a positive
minimum inter-event time for the triggering condition in
(8). Hence, we consider the following triggering perfor-
mance called “separated events”.

Problem 2: Show that the triggering conditions in (7-
8) yield separated events. That is, for any given initial
state p0 ∈ RNd, there exist constants Ty ∈ (0,∞) and
Tṗ ∈ (0,∞) satisfying, respectively,

lim sup
t→∞

∣∣{tiki}∞ki=1 ∩ [0, t]
∣∣

t
< Ty ∈ (0,∞), i ∈ Vf ,

and

lim sup
t→∞

∣∣{τ iki}∞ki=1 ∩ [0, t]
∣∣

t
< Tṗ ∈ (0,∞), i ∈ V.

Remark 2: The event-separation property means that
there are a finite number of triggering instants in any finite
time interval, thus, it implies Zeno-freeness of the trig-
gering time sequences. Moreover, it further ensures that
the average triggering frequency can be upper bounded as
the time goes to infinity. Note that if there is a positive
lower bound for inter-event times, then the corresponding
triggering sequence must be separated.

5. MAIN RESULTS

In this section, the main results will be given to solve Prob-
lems 1-2. First, the following theorem characterizes the
tracking performance of the event-triggered controllers.

Theorem 4. The practical tracking property in Problem 1
can be ensured by the event-triggered controller in (9) and
the triggering conditions in (7-8).
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Proof. By substituting (9) into (1), one has for each
follower i ∈ Vi,

ẏi(t) = −yi(t)− εi(t) +
∑
j∈Ni

aijej(t). (10)

Define ε(t) := [εTd+2, . . . , ε
T
N ]T, e(t) := [eT1 , . . . , e

T
N ]T and

w(t) = L̄ffδf (t) with the tracking error δf given in Lemma
3. Then, (10) can be rewritten in the following compact
form:

ẇ(t) = −w(t)− ε(t) +Afe(t), (11)

where Af denotes the last (n−d−1) rows of the adjacency
matrix A. According to the triggering conditions in (7-8),
we have

‖ε(t)‖2 ≤ |Vf |σ1, and, ‖Afe(t)‖2 ≤ N ‖Af‖2 σ2.
Let V (t) = 1

2w
T(t)w(t), then, its derivative along the

solutions of (1) and (9) satisfies

V̇ (t) ≤− 2V (t) + ‖w(t)‖ ‖ε(t)‖+ ‖w(t)‖ ‖Afe(t)‖
≤ − V (t) + |Vf |σ1 +N ‖Af‖2 σ2,

which implies that the w-system is Lyapunov stable and

sup lim
t→∞

V (t) ≤ 2(|Vf |σ1 +N ‖Af‖2 σ2) =:
1

2
σ2
0 .

The fact that L̄ff is nonsingular further leads to

sup lim
t→∞

‖δf (t)‖ ≤
∥∥∥L̄−1ff ∥∥∥σ0, (12)

and the proof is completed. 2

To study the triggering performance, we introduce the
following assumptions.

Assumption 1. For leaders i ∈ Vl, its velocity ṗi(t), t ∈
[0,∞), is upper bounded by M0.

Assumption 2. The graph G is an acyclic graph, i.e., there
is no path that begins at a node i ∈ V and ends in one of
the in-neighbors j ∈ Ni.
For the events of relative position information, we can pro-
vide positive minimum inter-event times in the following
theorem.

Theorem 5. For a given initial state p0, the triggering
instants generated by the triggering condition in (7) satisfy

inf
ki∈Z≥0

(tiki+1 − tiki) ≥ T0, i ∈ Vf ,

with some positive lower bound T0 > 0.

Proof. By definitions, we have

yf :=

 yd+2

...
yN

 =
[
L̄fl L̄ff

] [ pl
pf

]
= L̄ffδ = w.

Thus, according to Theorem 4, for any given p0, there is
M1(p0) such that ‖w(t)‖ ≤M1, t ∈ R≥0. Consequently,

‖ẏf (t)‖ = ‖w(t) + ε(t)−Afe(t)‖

≤M1 +
√
|Vf |σ1 +

√
N ‖Af‖2 σ2

=:ϕ0.

Since ‖ẏi(t)‖ ≤ ‖ẏf (t)‖ and
∥∥εi(tiki)∥∥ = 0 for all i ∈ Vf

and ki ∈ Z≥0, one can obtain that the inter-event times of

the triggering condition in (7) are lower bounded by
√
σ1

ϕ0
,

and therefore, the proof is completed. 2

For the analysis of the triggering conditions in (8), we
introduce the following graph partition algorithm in Al-
gorithm 1.

Algorithm 1 Partition of nodes in G
1: Initial m = 0, V0 := V, E0 := E and G0 = G(V0, E0);
2: Select all leaders as the 0th layer of agents, i.e., L0 :=
{i ∈ Vl} as the 0th layer;

3: while Vm 6= Lm
4: m = m+ 1;
5: Generate a subgraph Gm(Vm, Em) where

Vm :={i ∈ V|i /∈ ∪m−1s=0 Ls},
Em :={(i, j) ∈ E|i, j ∈ Vm}.

6: Define the new mth layer of agents:

Lm := {i ∈ Vm|Ni ∩ Vm = ∅}.
7: end while
8: end

Recall that both leaders and followers need to broadcast
their velocity information. Thus, all nodes in the graph
G are considered in the partition. In an acyclic directed
graph, there always exists at least one node that does
not have in-neighbors. Hence, the mth layer Lm contains
all the agents without in-neighbors in the mth acyclic
subgraph Gm. Since there are a finite number of agents
in the acyclic graph G, Algorithm 1 must reach an end
with finite layers, and denote the last layer as q ∈ Z≥1. An
example is illustrated in Fig . 1. Furthermore, we have the
following simple facts of the partition.

Fig. 1. An illustration of Algorithm 1. G0(V0, E0) in (a)
decides L0 = {1, 2, 3}; G1(V1, E1) in (b) with V1 =
{4, 5, 6, 7} yields L1 = {4, 5}; G2(V2, E2) in (c) with
V2 = {6, 7} yields L2 = {6}; and finally G3(V3, E3) in
(d) with V3 = L3 = {7} ends the algorithm.

Fact 1. For the layers of agents generated by Algorithm 1,

(1) V = ∪qm=0Lm;
(2) for any m ∈ {1, 2, . . . , q}, ∪i∈Lm

Ni ⊂ ∪m−1j=0 Lj .

Remark 3: The number of layers of an agent i ∈ V char-
acterizes the “distance” between the agent and the roots
(i.e., leader agents). For large-scale multi-agent systems,
it is preferred to implement the communication topology
with more layers due to some practical limitations, such as
the spatial distribution or the broadcast ability of agents.
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Based on the analysis above, we present the results of
triggering sequences {τ iki}

∞
ki=0 for i ∈ V.

Theorem 6. Suppose that Assumptions 1-2 hold for the
plant in (1) associated with the graph G. For a given initial
state p0, the triggering condition in (8) generates separated
events for all i ∈ V.

Proof. First, for the leader i ∈ L0 = Vl, the boundedness
of ṗi(t), t ∈ [0,∞) guarantees a positive lower bound of
inter-event times, which can be given as

inf
ki∈Z≥0

(τ iki+1 − τ iki) ≥
√
σ2
M0

, i ∈ L0,

with M0 defined in Assumption 1.

Assumption 2 ensures the feasibility of Algorithm 1; hence,
we consider the agents in L1 ⊂ Vf . According to the event-
triggered controller in (9), for any i ∈ Vf , the events from
the triggering condition in (8) only occur when the relative
position information of agent i or the absolute velocity
information of its in-neighbors j ∈ Ni is updated, i.e.,
τ iki , ki ∈ Z≥0 belongs to {tiki}

∞
ki

or {τ jkj}
∞
kj=0 with j ∈ Ni.

Based on Theorem 5 and Item (2) in Fact 1, one has, for
any given interval [a, b] with a ≥ b ≥ 0,∣∣[a, b] ∩ {tiki}∞ki ∣∣ <⌈ (b− a)ϕ0√

σ1

⌉
+ 1, i ∈ L1;∣∣∣[a, b] ∩ {τ jkj}∞ki ∣∣∣ <⌈ (b− a)M0√

σ2

⌉
+ 1, j ∈ Ni, i ∈ L1.

Hence, it can be obtained that, for i ∈ L1,∣∣[a, b] ∩ {τ iki}∞ki ∣∣ <χp(b− a) +
∑

j∈L0∩Ni

χ0,j
v (b− a)

=:χ1,i
v (b− a),

where χp(s) :=
⌈
sϕ0√
σ1

⌉
+1 and χ0,j

v (s) :=
⌈
sM0√
σ2

⌉
+1, j ∈ L0

for s ≥ 0. The subscript “p” means position while “v”
represents velocity. The superscript (l, i) stands for agent i
in layer Ll. Thus, the events for agent i ∈ L1 are separated.
In detail, we have that for i ∈ L1,

lim sup
t→∞

∣∣{τ iki}∞ki=1 ∩ [0, t]
∣∣

t
<

ϕ0√
σ1

+ |L0 ∩Ni|
M0√
σ2
. (13)

Suppose that the event-separation property holds for the
agents in the layers {L0, . . . ,Lm} with m ≤ q − 1 and q
being the total number of layers. Specifically, for any given
a ≥ b ≥ 0, ∣∣[a, b] ∩ {τ iki}∞ki ∣∣ ≤ χs,iv (b− a) (14)

holds for all i ∈ Ls and s ∈ {1, . . . ,m}.
Now consider the agent i ∈ Lm+1. From Theorem 5,∣∣[a, b] ∩ {tiki}∞ki ∣∣ < χp(b− a), i ∈ Lm+1. (15)

Since Ni ⊂ ∪mj=0Lj , i ∈ Lm+1 from Fact 1, combining (14-
15) leads to∣∣[a, b] ∩ {τ iki}∞ki ∣∣ <χp(b− a) +

m∑
t=0

∑
j∈Lt∩Ni

χj,tv (b− a)

=:χm+1,i
v (b− a).

(16)

By recursively applying (13) to (16), one can show that
the events caused by the triggering condition in (8) of

agent i ∈ Lm+1 are separated. The analysis above can
be extended to all the agents in the graph G due to Item
(1) in Fact 1; and therefore, the proof is completed. 2

Remark 4: According to Theorems 4-6, the triggering
conditions in (7-8) provide a tradeoff between the track-
ing performance and the triggering performance. Smaller
thresholds σ1 and σ2 could lead to higher tracking accu-
racy that is scaled by σ0 in (12) but increases the number
of events.

Remark 5: From the proof of Theorem 6, the events of an
agent in a higher layer would be triggered more frequently
than those in a lower layer. According to Remark 2,
this property demonstrates the relationship between the
system size and the communication load.

Remark 6: When there exists cycles in the graph, such
as, between agents i and j, each of the agents can be
regarded as the lower layer of the other one. In this case,
a “positive feedback” effect on their events of absolute
velocity information may happen. The events in agent
i would promote the events in agent j, which could
conversely accelerate the triggering of agent i. As a result,
the events would not be separated as they are triggered
faster and faster. How to design the event-triggered affine
formation maneuver control for the systems containing
cyclic topology will be left as future work.

6. SIMULATIONS

In this section, the effectiveness of the event-triggered
control protocol is illustrated by simulations. The inter-
action network among agents is shown as in Fig. 1(a). The
nominal formation r and the associated signed Laplacian
are chosen the same as the ones used in Xu et al. (2018).

The thresholds for triggering conditions in (7) and (8) are
chosen as σ1 = 0.05 and σ2 = 0.1, respectively. Fig. 2
shows the trajectories of the agents, where the practical
time-varying affine formation maneuver is realized. Fig. 3
shows the tracking errors of the followers, with the steady-
state errors given in Table 1. Here, δx and δy represent the
tracking errors along x axis and y axis, respectively. The
numbers of events are shown in Table 2. The agents in
the higher layer are triggered more frequently than those
in the lower layer, which coincides with the analysis in
Remark 4. In addition, the tracking errors of the agents in
the higher layer are larger than the ones in the lower layer.
This is reasonable, since the control protocol relys on the
information collected from the agents in the lower layers.
The tracking errors are accumulated layer by layer.

Table 1. Steady-State Tracking Errors: with
smaller thresholds

Agent A4 A5 A6 A7

Steady-state error δx 0.6063 0.5925 1.4063 1.9263
Steady-state error δy 0.0131 0.0156 0.0126 -0.0731

Tables 3 and 4 show the steady-state errors and the
numbers of events when the thresholds in (7) and (8)
are chosen as σ1 = 0.1 and σ2 = 0.2, respectively.
Large thresholds cause large tracking errors, however they
reduce the frequency of controller updates and information
broadcasting, which confirms the tradeoff explained in
Remark 3.
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Fig. 2. Trajectories of the agents: Here, the dash lines
represent the trajectories of the leaders, the solid lines
represents the trajectories of the followers
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Fig. 3. Tracking errors of the followers, with larger thresh-
olds

Table 2. Number of Events: with smaller
thresholds

Agent A4 A5 A6 A7

Updates of relative position 373 424 943 1386
Broadcasting of velocity 168 182 333 342

Agent A1 A2 A3

Broadcasting of velocity 44 29 49

Table 3. Steady-State Tracking Errors: with
larger thresholds

Agent A4 A5 A6 A7

Steady-state error δx 0.8741 0.6908 2.0886 2.3037
Steady-state error δy -0.0665 -0.0508 -0.2324 -0.2220

Table 4. Number of Events: with larger thresh-
olds

Agent A4 A5 A6 A7

Updates of relative position 209 225 529 755
Broadcasting of velocity 89 96 176 187

Agent A1 A2 A3

Broadcasting of velocity 27 18 28

7. CONCLUSIONS

An event-triggered affine formation maneuver problem was
solved in this work. Under the proposed control protocol,
the followers practically tracked the target configuration.
In addition, Zeno behavior was excluded when the MAS
was connected by an acyclic graph. The design of an event-
triggered mechanism under the cyclic topology will be
considered in the future study.
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