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Abstract: The purpose of this paper is to propose a new approach to the Min-Max Model
Predictive Control (MMMPC) of Linear Time-Invariant Discrete-time Polytopic (LTIDP)
systems. The purpose is to simplify the treatment of complex issues like stability and feasibility
analysis of robust MPC as well as to reduce the complexity of the relative optimization
procedure. The new approach is based on a two Degrees Of Freedom (2DOF) control scheme
where the output r(k) of the feedforward Input Estimator (IE) is used as input forcing a stable
closed-loop system Σf . Σf is the feedback connection of an LTIDP plant Σp with an LTI
dynamic controller Σg. The task of Σg is to guarantee the quadratic stability of Σf , as well as
the fulfillment of hard constraints on some physical variables of Σf for any input r(k) satisfying
an ”a priori” determined admissibility condition. The input r(k) is computed by the feedforward
IE through the on-line minimization of a worst case finite-horizon quadratic cost functional and
is applied to Σf according to the usual receding horizon strategy. Rather than resorting to an
”ad hoc” software, the numerical complexity issue is here addressed reducing the number of both
decision variables and constraints involved in the on-line constrained optimization procedure.
This is obtained modeling r(k) as a B-spline function, which is known to be a universal
approximator which also admits a parsimonious parametric representation. This allows us to
reformulate the minimization of the worst case cost functional as a box-constrained Robust
Least Squares (RLS) estimation problem which can be efficiently solved using Second Order
Cone Programming (SOCP).

Keywords: Model Predictive Control, Receding Horizon, Constrained Optimization, Second
Order Cone Programming.

1. INTRODUCTION

A common approach to robust MPC is its formulation
in terms of a closed-loop min-max constrained optimiza-
tion problem. The usually proposed approaches (see e.g.
Kothare et al. (1996); Scokaert and Mayne (1998); Be-
mporad et al. (2003); Wan and Khotare (2003);Kerrigan
and Maciejowki (2004); Sakizlis et al. (2004); Munoz et al.
(2006); Raminez et al. (2006); Gao and Chong (2012)
and references therein) inherit in a considerably increased
way the major issues of MPC for exactly known plants:
more complicated stability and feasibility conditions and,
especially, much more computationally demanding proce-
dures for the numerical solution of the on line optimization
problem. In fact the MMMPC requires minimizing the
worst case of a cost functional which is computed as the
maximum with respect to all the possible uncertainties
over the prediction horizon.

The twofold purpose of this paper is: 1) to propose a novel
MMMPC strategy characterized by greatly simplified sta-
bility and feasibility analysis, 2) to significantly reduce
the complexity of the on line constrained optimization
procedure.

The basic point of the alternative approach proposed
here is the adoption of an MPC strategy in a 2DOF
control scheme to exploit the advantages of feedback
prediction and of the degrees of freedom introduced by the
feedforward IE. In practice, the present MMMPC works
according to the following two-step procedure:

• Step 1. Given an LTIDP plant Σp, a LTI dynamic
controller Σg is designed to guarantee the quadratic
stability of the closed-loop system Σf and the ful-
fillment of hard constraints on some physical vari-
ables in correspondence of any admissible input ( i.e.
‖r(k)‖22 ≤ γ, ∀k ≥ 0, for a suitably computed γ)
forcing Σf .

• Step 2. An admissible input sequence r(k) is applied
to Σf according to a receding horizon control strategy.
This sequence is computed searching for the minimum
of a ”worst case” quadratic cost functional over each
prediction interval in the linear space generated by
B-spline functions of a fixed degree. This second step
is executed by the feedforward IE.

Decomposing the MMMPC problem in the above two
distinct steps entails the following remarkable advantages:
1) Stability and recursive feasibility of the adopted
MMMPC strategy are guaranteed in advance, regardless
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the chosen prediction horizon. In fact, the internal stability
of Σf and the admissibility condition on r(k) assure both
the uniform boundedness of any internal variable of the
2DOF control scheme and the fulfillment of all constraints
at any time instant.
2) If Σg also contains an internal model of the desired (and
admissible) reference to be tracked, an exact asymptotic
tracking can be directly achieved even in the case of plant-
model mismatch, (Desoer and Wang (1980)). This greatly
simplifies the alternative solutions which are mostly based
on augmenting the model of the plant, which in turn
implies an increase of the decision variables involved in the
optimization problem (see e.g. Maeder and Morari (2010)).
The internal model also yields a Σf with a diagonal static
gain matrix, so that it guarantees the noticeable advantage
of an exact static decoupling, (Jetto and Orsini (2018)).
3) Modeling r(k) as a B-spline decreases the number of
decision variables because these functions are universal
approximators which admit a parsimonious parametric
representation and belong to the convex hull defined by
the relative control points, De Boor (1978). This property
allows the transfer of any amplitude constraint defined
on a B-spline function to its control points. As a conse-
quence (see Section 5), the constrained minimization of
the cost functional can be formulated as a box-constrained
RLS estimation problem with only box constraints on the
unknowns (the control points defining the admissible B-
spline function r(k)). Approaching this problem by SOCP
allows the application of numerically efficient primal-dual
interior-point methods (El Ghaoui and Lebret (1997);
Lobo et al. (1998)).
The paper is organized in the following way. Some mathe-
matical preliminaries are recalled in Section 2, the problem
setting is defined in Section 3, the design of the internal
feedback controller is illustrated in Section 4. The con-
strained on line estimation of the input r(k) is explained
in Section 5. A numerical example is reported in Section
6. Some concluding remarks are given in Section 7.

2. MATHEMATICAL BACKGROUND

2.1 B-spline functions (De Boor (1978))

Analytic B-splines are defined in the following way:

s(v) =
∑̀
i=1

ciBi,d(v), v ∈ [v̂1, v̂`+d+1] ⊆ IR, (1)

where the ci’s are real numbers representing the control
points of s(v), d is the degree of the spline, the (v̂i)

`+d+1
i=1

are the non decreasing knot points, and the Bi,d(v) are
given by the Cox-de Boor recursion formula.

Convex hull property. Any value assumed by s(v), ∀v ∈
[v̂j , v̂j+1], j > d, lies in the convex hull of its d+1 control
points cj−d, · · · , cj .
Smoothness property. Suppose that v̂i < v̂i+1 = · · · =
v̂i+m < v̂i+m+1, with 1 ≤ m ≤ d + 1 then the B-
spline function s(v) has continuous derivative up to order
d−m at knot v̂i+1. This property implies that the spline
smoothness can be changed using multiple knot points. It
is common choice to set m = d+1 multiple knot points for
the initial and the last knot points and to evenly distribute

the other ones. In this way (1) assumes the first and the
final control points as initial and final values.

Identifying the parameter v of (1) with the time instant t,
the sampled B-spline s(k Tc) is obtained by direct uniform
sampling of the corresponding analytic B-spline.

The discrete B-spline s(k) (omitting the explicit depen-
dence on Tc) can be used to represent a scalar discrete
time signal. Defining

c
4
= [c1 · · · c`]T , Bd(k)

4
= [B1,d(k) · · ·B`,d(k)] , (2)

where each Bi,d(k) is obtained setting v = k and v̂i = k̂i,
i = 1, · · · , d + ` + 1, the sampled B-spline s(k) can be
represented as

s(k) = Bd(k)c, k ∈ [k̂1, k̂`+d+1]. (3)

For a q-component vector s(k) = [s1(k) · · · sq(k)]T , a
compact B-splines representation can be used

s(k) = B̄d(k)c̄, k ∈ [k̂1, k̂`+d+1], (4)

where: c̄
4
=
[
c1
T · · · cqT

]T
, B̄d(k)

4
= diag [Bd(k) · · ·Bd(k)].

Each ci
4
= [ci,1 · · · ci,`]T , i = 1, · · · , q, is defined as in (2).

The dimensions of c̄ are (q` × 1). The dimensions of the
block diagonal matrix B̄d(k) are (q × q`).
Remark 1. From (3) it is apparent that, once the degree d

and the knot points k̂i have been fixed, the scalar B-spline

s(k), k ∈ [k̂1, k̂`+d+1], is completely determined by the
corresponding vector c of ` control points. As, in general,
` << kM , where kM is the number of sampled instants

of [k̂1, k̂`+d+1], B-splines are said to admit a parsimonious
parametric representation.

2.2 SOCP formulation of the RLS problem (El Ghaoui
and Lebret (1997),Lobo et al. (1998))

Given an overdetermined set of linear equations Df ≈ g,
with D ∈ IRr×s, g ∈ IRr, subject to unknown but bounded
errors: ‖δD δg‖F ≤ ρ, (ρ > 0), the robust least squares

estimate f̂ ∈ IRs is the value of f minimizing the following
L2 norm

φ(D, g, ρ)
4
= min

f
max

‖δD δg‖F≤ρ
‖(D+δD)f − (g+δg)‖2, (5)

where ‖ · ‖F denotes the Frobenius norm.
Assuming ρ = 1, in (El Ghaoui and Lebret (1997)) it is
shown that problem (5) can be formulated as the following
SOCP

minimize λ

subject to ‖(Df − g)‖2 ≤ λ− τ, ‖[fT , 1]T ‖2 ≤ τ,
which can be efficiently solved using interior point meth-
ods. Possible constraints on f of the kind fmin ≤ f ≤
fmax, can be taken into account by imposing all the
scalar linear inequalities deriving from the above vector
constraint.
The solution of (5) can be directly extended to the case
ρ 6= 1, using the fact: ρφ(D/ρ, g/ρ, 1) = φ(D, g, ρ).

2.3 System constraints and invariant sets

Consider a generic LTIDP plant of the form
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x(k + 1) = A(α)x(k) +Br(k), y(k) = Cx(k), (6)

where x(k) ∈ IRn, r(k) ∈ IRq, y(k) ∈ IRq, A(α) belongs

to the polytopic matrix family A(α)
4
=
∑l
i=1 αiAi and

the vector α = [α1, · · · , αl]T , belongs to the unit simplex
(denoted by Λl).
An invariant γ-feasible set of (6) is a convex compact set
X containing the origin, such that, for every input r(k),
k ≥ 0 satisfying the following admissibility condition

‖r(k)‖22 ≤ γ, (7)

one has x(k) ∈ X ⇒ Ax(k)+Br(k) ∈ X and the following
constraints are satisfied

|zi(k)| = ‖zi(k)‖2 ≤ z̄i, i = 1, · · · , h, (8)

where zi(k) is the i-th element of the h-vector z(k) =
Czx(k), and z̄i is the corresponding pre-specified hard
constraint.
Here X is assumed to be an ellipsoid set defined as

E(P, γ) = {x(k) | xT (k)Px(k)} ≤ γ, where P
4
= Q−1

is a symmetric positive definite matrix.

3. PROBLEM SETUP

𝐼𝐸
𝑟(k)𝑦d(k) e(k) u(k) y(k)

-

+ +

-

Σf

𝑥c(k)Σ𝑐

Σ𝑜

Σ𝑝

Σ2𝐷𝑂𝐹

𝑥3f(k)

K𝑐

K𝑝

𝑥3p(k)

Fig. 1. 2DOF control scheme

The MMMPC strategy proposed in this paper is realized
through the 2DOF control scheme shown in Fig. 1, where:
yd(k) ∈ IRq is the piecewise constant desired reference to
be tracked and y(k) ∈ IRq is the controlled output. The
output of the feedforward IE is the input r(k) ∈ IRq forcing
Σf .
The block Σf ≡ (Cf , Af (α), Bf ) is the feedback connec-
tion of a LTIDP plant Σp ≡ (Cp, Ap(α), Bp), α ∈ Λl,
like (6) with a dynamic LTI output controller Σg which
includes the internal model of constant signals Σc and a
full state observer Σo. The state vectors of Σc, Σp and Σf
are denoted by xc(k), xp(k) and xf (k) respectively. The
vectors x̂p(k) and x̂f (k) are the estimates of xp(k) and
xf (k). The control input forcing the LTIDP plant Σp is
denoted as u(k) ∈ IRm.
In view of the tracking requirement the following assump-
tions on Σp are made: A1) m ≥ q, A2) for no value of
α ∈ Λl, Σp has a transmission zero at z = 1 of Z plane.
The explicit expressions of Σc and Σo will be given in
the next section. As Σg is LTI and independent of α, also
Σf ≡ (Cf , Af (α), Bf ) results to be an LTIDP system of
the same kind of Σ given by (6).
The purpose of Σg is to guarantee the fulfillment of the
following requirements:

r1) quadratic stability of Σf ;
r2) the existence of an invariant γ-feasible set X for Σf ,

such that xf (k) ∈ X ⇒ Af (α)xf (k) + Bfr(k) ∈ X ,
∀α ∈ Λl, and constraints like (8) are satisfied by each
component of the vector zf (k) = Czfxf (k), for any
admissible input r(k) of Σf satisfying (7).

Vector zf (k) defines the constrained variables correspond-
ing to some suitably defined Czf . Asymptotic tracking
of a fixed set point yd(k) = yd, can be obtained as a
consequence of r1, of assumptions A1) and A2) and of
the introduction of Σc (Desoer and Wang; 1980), provided
that r(k) converge to yd.
The inputs of IE are yd(k) and x̂f (k). This information is
exploited by the IE to compute r(k) solving the following
Min-Max Constrained Optimization Problem (MMCOP)
at each k = jNr, for some Nr > 0, j = 0, 1, 2 · · · ,

MMCOP: min
[r(k),··· ,r(k+Ny−1)]

max
α∈Λl

Jα,

Jα
4
=

Ny∑
i=1

eTy (k + i/k)Qy(k + i/k)ey(k + i/k)

+λ1(k)

Ny−1∑
i=0

eTr (k + i/k)Qr(k + i/k)er(k + i/k)

+λ2(k)

Nu∑
i=1

eTu (k + i/k)Qu(k + i/k)eu(k + i/k), (9)

where Qy(k+i/k), Qr(k+i/k) and Qu(k+i/k) are positive
definite matrices and

Ny ≥ Nu, Ny > Nr, λ1(k) ≥ 0, λ2(k) ≥ 0, k ≥ 0 (10)

ey(k + i/k)
4
= yd(k)− y(k + i/k), (11)

er(k + i/k)
4
= yd(k)− r(k + i), (12)

eu(k + i/k)
4
= u(k + i/k)− ũ(k), (13)

subject to

rmin ≤ r(k + i) ≤ rmax, i = 0, · · · , Ny − 1. (14)

In the above equations ũ(k) is the steady-state value of
u(k) corresponding to a suitably defined nominal plant,
y(k+i/k), u(k+i/k) and r(k+i) are the predicted output,
control effort and B-spline respectively, rmin and rmax are
q-vectors computed so as to satisfy (7).
Note that in equations (11)-(12), the reference trajectory is
evaluated at time instant k to avoid undesired anticipative
effects on y(k) due to possible set point changes inside the
prediction horizon Ny.
The MMCOP is solved at each time instant k = jNr
and only the first Nr samples of the whole sequence
[r(k), · · · , r(k + Ny − 1)] are applied to Σf according to
the receding horizon control policy.

Remark 2. The considerations developed in this section
clearly show the idea underlying the present approach
and the relative advantages of the resulting MMMPC
procedure. Designing Σg according to r1 guarantees the
uniform boundedness of xf (k) for any uniformly bounded
r(k), independently of Ny, Nu, Nr, λ1(·), λ2(·), Qu(·),
Qr(·) and Qy(·). This releases the stability issue from the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7161



prediction horizon and other tuning parameters. Require-
ment r2 allows us to transfer any constraint on zf (k) of
the kind (8) on a corresponding upper bound γ on ‖r(k)‖22.
This bound is explicitly taken into account in the MMCOP
through (14). As it will be formally stated in Theorem 2
of Section 5, the above implies that the proposed two-step
procedure yields an MMMPC strategy with guarantee of
internal stability of Σ2DOF and recursive feasibility.

Remark 3. The presence of the internal model Σc guar-
antees exact asymptotic tracking if r(k) exactly con-
verges to the desired set point value. The penalty term

λ1(k)
∑Ny−1
i=0 eTr (k + i/k)Qr(k + i/k)er(k + i/k) is use-

ful to speed up such a convergence. This is particularly
important in the case of piecewise constant signals yd(k)
which are not frozen on a fixed set point for a sufficiently
long time interval and tracking precision is the dominant
criterion.

4. STEP 1: DESIGN OF ΣG

The feedback controller is designed here using ellipsoidal
robust invariant sets because of their closed relation to
quadratic Lyapunov functions leading to an LMI-based
optimization problem.
The controller Σg includes the internal model of constant
signals Σc, whose state-space representation is xc(k +
1) = Acxc(k) + Bc(r(k) − y(k)) (Ac = Bc = Iq) and a
full state observer Σo of the form

x̂p(k + 1) = Āpx̂p(k) +Bpu(k) + L(y(k)− Cp x̂p(k)), (15)

where: Āp
4
= (
∑l
i=1Api)/l is the assumed nominal dynam-

ical matrix of the plant.
The output u(k) ∈ IRm, of Σg forcing the polytopic plant
Σp is given by

u(k) = −Kpx̂p(k) +Kcxc(k). (16)

The state space representation (Cf , Af (α), Bf ) of the

square closed loop system Σf with xf
4
= [x̂Tp , x

T
c , x

T
p −

x̂Tp ]T ∈ IRn and n
4
= 2np + nc is

xf (k + 1) =

Āp −BpKp BpKc LCp
−BcCp Ac −BcCp
∆Ap(α) 0 Ap(α)− LCp

xf (k)

+

[
0
Bc
0

]
r(k) (17)

y(k) = [Cp 0 Cp]xf (k) (18)

where ∆Ap(α)
4
= Ap(α)− Āp.

The constrained variables are

zf (k)
4
= [zTu (k), zTxf

(k)]T (19)

where the respective components zu,r(k) and zxf ,w(k) have
to satisfy (8) for some given z̄u,r and z̄xf ,w respectively.
Typically zu(k) = Czuxf (k) = u(k), so that, by (16),

Czu = [−Kp Kc 0]
4
= K̂ while zxf

(k) = Czxf
xf (k) ∈

IRnxf represents any vector of variables linearly depending
on the state. For example if zxf

(k) = y(k) then by (18)

Czxf
= Cf = [Cp 0 Cp] and nxf

= q.

It is remarked that the above distinction between zu(k)

and zxf
(k), is necessary because, unlike zxf

(k), zu(k)
4
=

u(k), depends on xf (k) through of a matrix which is a
design parameter. Such a matrix has to be determined
imposing the fulfillment of the control specifications.

Once Σc has been designed according to the internal model
principle, the controller gain matrices are computed as
specified in the next section.

4.1 Design of the controller gains

For any fixed matrix L of the observer (15), the gain matrix

[−Kp Kc 0]
4
= K̂ can be computed observing that by (17)

the polytopic closed loop dynamical matrix Af (α) can be

rewritten as Af (α)
4
= Â(α) + B̂K̂, where

Â(α) =

 Āp 0 LCp
−BcCp Ac −BcCp
∆Ap(α) 0 Ap(α)− LCp

 , B̂ =

[
Bp
0
0

]
(20)

Equations (20) are used to design Σg according to the
following procedure, which can be devised as a sort of sep-
aration principle working for sufficiently small parametric
uncertainty:

i) The observer gain matrix L is chosen such that
(Ap(α)− LCp) is quadratically stable ∀α ∈ Λl.

ii) Once the observer Σo has been designed, the gain

matrix K̂ is computed as solution of the following
problem.
P1 Given the polytopic plant (Â(α), B̂) in (20), find a

matrix K̂ and the maximum invariant γ-feasible set X
(where also γ is maximized), such that the following
conditions are satisfied:
· Σf ≡ (Cf , Â(α)+B̂K̂, Bf ) is quadratically stable
∀α ∈ Λl,
· constraints on zf (k) are fulfilled for every initial

condition xf (0) ∈ X , ∀α ∈ Λl and every admissi-
ble input r(k) satisfying (7).

Remark 4. Since in the augmented state xf only the plant
state xp, is of interest, instead of maximizing the entire
ellipsoid volume only the ellipsoid projection on xp sub-
space is maximized.The projection of X onto xp is given by

Xxp

4
= Exp

(P, γ) = {xp(k) |xTp (k)(Txp
QTTxp

)−1xp(k) ≤ γ}
with Txp defined by xp = Txp xf .

Theorem 1. Consider the plant (Â(α), B̂) in (20) and

define η as η
4
= γ−1. Quadratic stability and the invariant

γ feasible set X (where both Xxp
and γ are maximized) for

Σf ≡ (Cf , Â(α) + B̂K̂, Bf ) subject to (8) and forced by
any r(k) satisfying (7), are obtained by solving following
the semidefinite programming problem:

minimize (-log(det(Txp
QTTxp

) + η) subject to:
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Q 0 βQ QÂTi + Y T B̂T

0 βI 0 BTf
βQ 0 βQ 0

ÂiQ+ B̂Y Bf 0 Q

 ≥ 0, (21)

i = 1, · · · , l

[
Q Y T ITr
IrY z̄2

u,rη

]
≥ 0, r = 1, · · · ,m (22)[

Q (QÂTi + Y T B̂T )CTzxf
ITw

IwCzxf
(ÂiQ+ B̂Y ) z̄2

xf ,w
η − IwCzxf

BfB
T
f C

T
zxf

ITw

]
≥ 0

i = 1, · · · , l and w = 1, · · · , nxf
. (23)

in the variables η > 0, β ∈ [0, 1), Q = QT =
diag[Q1, Q2] ∈ IRn×n, n = 2np + nc and Y = [Y1 0] ∈
IRm×n, Y1 ∈ IRm×(np+nc) and in the vertices

Âi
4
=

 Āp 0 LCp
−BcCp Ac −BcCp
Api − Āp 0 Api − LCp

 .
The row vector Ir (Iw) is composed of all null elements
save the element 1 in the r-th (w-th) position. If the set
of inequalities admits a solution then the quadratically
stabilizing feedback gain K̂ = Y Q−1 = [Y1Q

−1
1 0m×np ] is

found. The maximum admissible value γ = η−1 is found
for r(k) and the invariant γ-feasible set X ≡ E(P, γ) with
P = Q−1 for Σf is obtained.
Proof of Theorem 1. For sake of brevity, the proof is not
reported. It follows along the line provided in Anamaria
et al. (2009) (see Theorem 1) with some substantial
modifications due to : 1) in Anamaria et al. (2009) ‖r‖22 is
overbounded by 1, here ‖r‖22 is overbounded by a scalar γ,
which is maximized including η = γ−1 in the functional to
be minimized; 2) in Anamaria et al. (2009) an euclidean
norm bound is imposed to the constrained variables, here
component-wise bounds are considered. 4
Remark 5. The presence of β ∈ [0, 1) makes inequality
(21) a Bilinear Matrix Inequality (BMI). As β is a scalar,
an optimal β can be found by executing a simple search
line.

Once K̂ and X are determined, the idea underlying the
preliminary results can be summarized as follows. The
stabilizing feedback gain K̂ guarantees that, ∀xf (0) ∈ X ,
∀α ∈ Λl, the fulfillment of all hard constraints (8) is
ensured ” a priori” provided the obtained quadratically
stable Σf is forced by an admissible control input r(k),
namely an r(k) satisfying (7) with γ = η−1.
Next step will be determining the trajectory of the ad-
missible input r(k) driving Σf . As detailed in the next
section, this step is performed modeling r(k) as a vector
of sampled B-spline functions whose control points are
iteratively estimated, and then applying the computed
r(k) according to the usual receding horizon strategy.

5. STEP 2: COMPUTATION OF THE B-SPLINE
INPUT FORCING ΣF

This section shows how the MMCOP stated in Section 3
can be reformulated as an RLS estimation problem which
can be solved using the SOCP approach of Section 2.2.

To this purpose the closed loop dynamical matrix Af (α)

of Σf is rewritten as Af (α)
4
= Āf + ∆Af (α) where Āf

is the nominal closed loop dynamical matrix (obtained

putting Ap(α) = Āp in Af (α)) and ∆Af (α)
4
= Af (α)−Āf .

Consequently, any term of the kind Akf (α) can be written

as Akf (α)
4
= Ākf + ∆Af,k(α), where ∆Af,k(α) is a suitably

defined matrix.
Expressing the input r(j) as r(j) = B̄d (j)c̄ according to
(4) and recalling that u(k) = Czu(k)xf (k) and x̂f (k) is the
current state estimate, the predicted output and control
effort are given by

y(k + i/k) = CfA
i
f (α)x̂f (k)

+

k+i−1∑
j=k

CfA
k+i−j−1
f (α)Bf B̄d (j)c̄, i = 1, · · · , Ny, (24)

u(k + i/k) = CzuA
i
f (α)x̂f (k)

+

k+i−1∑
j=k

CzuA
k+i−j−1
f (α)Bf B̄d (j)c̄, i = 1, · · · , Nu. (25)

By (24),(25) and r(k + i) = B̄d (k + i)c̄, ey(k + i/k),
er(k+ i/k) and eu(k+ i/k) given by (11)-(13) respectively,
can be rewritten as

ey(k + i/k) = (gy(k + i/k) + δgy(k + i/k)) (26)

− (Dy(k + i/k) + δDy(k + i/k))f

er(k + i/k) = gr(k + i/k)−Dr(k + i/k)f (27)

eu(k + i/k) = (gu(k + i/k) + δgu(k + i/k)) (28)

+ (Du(k + i/k) + δDu(k + i/k))f

where

gy(k + i/k)
4
= yd(k)− Cf Āif x̂f (k),

δgy(k + i/k)
4
=−Cf∆Af,i(α)x̂f (k),

Dy(k + i/k)
4
=

k+i−1∑
j=k

Cf Ā
k+i−j−1
f Bf B̄d(j),

δDy(k + i/k)
4
=

k+i−1∑
j=k

Cf∆Af,k+i−j−1(α)Bf B̄d(j),

gr(k + i/k)
4
= yd(k), Dr(k + i/k)

4
= B̄d(k + i),

gu(k + i/k)
4
=CzuĀ

i
f x̂f (k)− ũ(k),

δgu(k + i/k)
4
=Czu∆Af,i(α)x̂f (k),

Du(k + i/k)
4
=

k+i−1∑
j=k

CzuĀ
k+i−j−1
f Bf B̄d(j)

δDu(k + i/k)
4
=

k+i−1∑
j=k

Czu∆Af,k+i−j−1(α)Bf B̄d(j)

f
4
= c̄
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Define the following vectors e
4
= [eTy e

T
r e

T
u ]T , g

4
=

[gTy g
T
r g

T
u ]T , δg

4
= [δgTy 0T δgTu ]T and matrices D

4
=[

Dy

Dr

−Du

]
, δD

4
=

[
δDy

0
−δDu

]
, Qe

4
=

[
Qy 0 0
0 Qr 0
0 0 Qu

]
where:

ey
4
=
[
eTy (k + 1/k) · · eTy (k +Ny/k)

]T
,

gy
4
=
[
gTy (k + 1/k) · · gTy (k +Ny/k)

]T
,

δgy
4
=
[
δgTy (k + 1/k) · · δgTy (k +Ny/k)

]T
,

Dy
4
=
[
DT
y (k + 1/k) · · DT

y (k +Ny/k)
]T
,

δDy
4
=
[
δDT

y (k + 1/k) · · δDT
y (k +Ny/k)

]T
,

Qy
4
= diag{Qy(k + i/k)}, i = 1, · · · , Ny.

Qr
4
= λ1(k)diag{Qr(k + i/k)}, i = 0, · · · , Ny − 1.

Qu
4
= λ2(k)diag{Qu(k + i/k)}, i = 1, · · · , Nu.

An analogous definition applies to vectors er, eu, gr,
gu, δgu and matrices Dr, Du and δDu. From the above
definitions, it is evident that only δg and δD are depending
on α. This dependence is now explicitly reintroduced to
better clarify the formulation of MMCOP as an RLS
estimation problem.
Exploiting the above defined vectors and matrices, the
2qNy + mNu scalar equations (26)-(28) can be expressed
in the compact form e(α) = (g + δg(α)) − (D + δD(α))f

and functional (9) can be written as Jα
4
= J(e′(α)) =

e′
T

(α)e′(α), where e′(α)
4
= Q

1/2
e e(α). Also defining g′ +

δg′(α)
4
= Q

1/2
e (g + δg(α)) and D′ + δD′(α)

4
= Q

1/2
e (D +

δD(α)), it is evident that MMCOP is equivalent to the
constrained minimization of the squared L2 norm of the
worst-case weighted residual e′(α). Namely MMCOP is
equivalent to solve the following box-constrained RLS
problem

min
f

max
‖δD′(α)δg′(α))‖F≤ρ

‖(D′ + δD′(α))f − (g′ + δg′(α)‖2(29)

subject to fmin ≤ f ≤ fmax. (30)

The bounds fmin and fmax relative to the vector c̄
4
= f

of control points are determined on the basis of condition
(14) (and hence (7)).
At each k = jNr the bound ρ such that ‖δD′(α) δg′(α)‖F ≤
ρ is computed by performing a gridding on the parameter

vector α ∈ Λl. Next, the parameter vector c̄
4
= f of control

points is estimated through an SOCP as explained in
Section 2.2. The corresponding B-spline input r(k) results
to be known over [k, k + Ny − 1], but only the first Nr
samples are applied to Σf according to the usual receding
horizon strategy.
Feasibility of the MMMPC strategy and stability of
Σ2DOF can be now formally stated in the following theo-
rem.
Theorem 2. Assume that the problem P1 stated in Sec-
tion 4 is solvable and that the input r(k) of Σf is com-
puted as the solution of the box-constrained RLS problem
(29),(30), then the resulting 2-step MMMPC strategy ex-
plained in the above sections is recursively feasible and

yields an asymptotically internally stable Σ2DOF .
Proof of Theorem 2. Recursive feasibility is a direct
consequence of computing r(k) as the solution of an opti-
mization problem where the feasible box-constraints (30)
are imposed on a vector of variables which is the same
one with respect to the optimization problem has to be
solved. Moreover, by Theorem 1, the fulfillment of (30)
directly implies that also the components of zf (k) satisfy
constraints like (8). Internal asymptotic stability of the
resulting overall control system Σ2DOF is a direct conse-
quence of the internal asymptotic stability of Σf and of
the uniform boundedness of r(k) resulting from (30).
Remark 6. Some comments on the claimed simplifica-
tion of the constrained optimization problem involved in
the new MMMPC strategy are in order. The B-spline
parametrization of r(k) allowed us to formulate the MM-
COP as a box-constrained RLS estimation problem of a
parameter vector f . This problem can be solved through
an SOCP for which numerically efficient primal-dual inte-
rior point methods can be used see e.g. (El Ghaoui and
Lebret (1997),Lobo et al. (1998), and references therein).
The vector f to be estimated is composed of q` elements,
where q is the dimension of r(k) and ` is the number
of control points of each scalar B-spline function compos-
ing r(k). The well known approximation properties of B-
splines allow choosing a value ` << Ny, thus obtaining a
greatly reduced number of decision variables with respect
to qNy, as required by the usual MMMPC methods. More-
over, as shown in Section 4, all constraints on zf (k) can be
transferred on the surely feasible interval type inequalities
(14), whose number is q Ny. Nevertheless, by the convexity
property of B-splines, these constraints must only concern
the control points, so that their number reduces to q`. Fol-
lowing the usual approaches, the constraints to be satisfied
(provided they can be satisfied) would be nuNu + nxf

Ny
where nu and nxf

are the dimensions of zu(k) and zxf
(k)

respectively. It is recalled that zu(k)
4
= u(k) and hence

nu = m. Moreover, if zxf
(k) ≡ y(k) then nxf

= q.

6. NUMERICAL RESULTS

The example concerns the angular positioning system
considered in Kothare et al. (1996). The system consists of
a rotating antenna at the origin of the plane, driven by an
electric motor. Unlike Kothare et al. (1996), the state is
here assumed to be unmeasurable. Denoting by θ (rad) and

θ̇ (rad s−1), the angular position and the angular velocity

of the antenna respectively, and by setting xp
4
= [θ, θ̇]T ,

the following discretized time equations are obtained from
their continuous time counterparts using a sampling time
Tc of 0.1s and Euler’s first-order approximation for the
derivative

xp(k + 1) =

[
1 0.1
0 1− 0.1ω

]
xp(k) +

[
0

0.1κ

]
u(k) (31)

y(k) = [1 0]xp(k), (32)

where κ = 0.787 rad−1V −1, u ∈ IRm, m = 1, y ∈ IRq,
q = 1. The parameter ω is proportional to the coefficient
of viscous friction in the rotating parts of the antenna and
is assumed to be unknown over the range 0.1s−1 ≤ ω ≤
10s−1. Consequently, the dynamical matrix of Σp belongs
to the following polytopic matrix family
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Ap(α) =

2∑
i=1

αiApi = α1

[
1 0.1
0 0.99

]
+ α2

[
1 0.1
0 0

]
, α ∈ Λ2.

The control problem consists of using the input voltage
(µV ) to the motor to rotate the antenna so that it point
in the direction of an object in the plane whose angular
position is denoted by yd(k)(rad). The desired piece-wise
constant reference signal yd(k) to be tracked is: yd(k) =
yd1 = 0.1(rad), 0 ≤ k < 300(30s); yd(k) = yd2 = −0.1
(rad), 300 ≤ k < 600 (60s) and yd(k) = yd3 = 0.05 (rad),
600 ≤ k ≤ 900 (90s).
The control effort is required to satisfy the constraint:
|u(k)| <= 2V , k > 0. Hence, according to (19), the
constrained variable zu(k) is assumed to be given by the
control effort u(k) with bound z̄u,1 = 2.
The first step of the proposed MMMPC strategy is to
design a LTI output controller Σg. According to the pro-
cedure described in Section 4, the observer gain L of Σo
is first computed. The gain matrix L = [1.2076, 1.0387]

is found. Considering the pair (Â(α), B̂) given by (20),

the feedback gain K̂ = [−Kp Kc 0] and the invariant

γ-feasible set X for Σf ≡ (Cf , Â(α) + B̂K̂, Bf ) are de-
termined solving the semidefinite programming problem
defined by (21)-(23). As the constraints only concern u(k),
by (19) one has zf (k) ≡ zu(k) and the set of inequalities
(23) concerning zxf

are not considered. According to Re-
mark 5, (21) has been transformed in an LMI executing
a search line for β ∈ [0, 1). For β = 0.01, the feedback

gain K̂ = [−8.0219 − 7.8762 0.0499 0 0] is found. The
invariant γ-feasible set X ≡ E(P, γ) with P = Q−1 =

1.1971 0.7379 −0.0075 0 0
0.7379 1.3586 −0.0046 0 0
−0.0075 −0.0046 0.0001 0 0

0 0 0 31.5090 −2.3552
0 0 0 −2.3552 0.4772

 and γ =

η−1 = 0.0632 is obtained for the resulting closed loop
system Σf ≡ (Cf , Â(α) + B̂K̂, Bf ).
The second step is to determine the trajectory of the
input r(k), subject to (7) with γ = 0.0632, and optimally
driving the output transition between two consecutive
set points of the given switching sequence. This step is
performed modeling r(k) ∈ IRq, q = 1, as a sampled B-
spline function. The control points defining the B-spline
r(k) over a moving prediction horizon are iteratively esti-
mated by the SOCP as explained in Section 2.2. At each
k = jNr, j = 0, 1, 2, · · · and Nr = 1, the bound ρ such
that ‖δD′(α) δg′(α)‖ ≤ ρ is computed by performing a
gridding for α ∈ Λ2. The obtained sequence of ρ ranges
in the interval [0, 0.2292]. The computed r(k) is applied
according to the usual receding horizon control strategy.
The following parameters are chosen: d = 3 (order of B-
spline), ` = 5 (number of control points of the scalar B

spline over each prediction horizon Ny), 9
4
= ` + d + 1

(number of knot points k̂i over each Ny) and Ny = 40.
All the weight matrices are set to identity matrix. An S-
shaped membership function is chosen for λ1(k) for the
following motivations. In correspondence of the transient
response following any set point change, a null initial value
of λ1(k) allows r(k) to vary over all the admissible range.
After the transition period has elapsed, λ1(k) should tend
to a suitable positive value λ̄ to speed up the convergence

of r(k) to the desired set point value yd. In this case the
value λ̄ = 1 has been chosen. A null λ2(k), has been
fixed ∀k ≥ 0, because the feedback controller has been
designed to guarantee that, for any r(k) satisfying (7),

the control effort u(k)
4
= zu(k) obey constraint (8). The

vector f
4
= c̄ = c1 of decision variables to be deter-

mined at each k = jNr is composed by ` = 5 control
points. As γ = 0.0632 and r(k) is a scalar, the bounds
of inequalities (30) are |fmin| = fmax =

√
γ = 0.2565.

The simulation has been performed starting from xf (0) =
[x̂Tp (0), xTc (0), xTp (0)− x̂Tp (0)] = [−0.05, 0, 0, 0, 0.001]T ∈
X and choosing Ap(ᾱ)

4
= ᾱ1A1 + ᾱ2A2 = 0.2A1 + 0.8A2.

The obtained input r(k) is depicted in figure 2. The actual
controlled output of Σf yielded by r(k) is given in figure 3
(solid line). The behavior of the constrained control effort
is shown in figure 4.
As for the computational complexity, the following con-
siderations hold. According to Remark 6, at each k = jNr
the number of decision variables (control points of r(k))
involved in the proposed on-line optimization procedure is
q` = 5 << qNy = 40, and the total number of interval type
inequalities (30) to be imposed is q` = 5 << qNy = 40.

0 10 20 30 40 50 60 70 80 90

sec

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

r

Fig. 2. The trajectory of the computed input r(k) (a scalar
B-spline of order d = 3 with ` = 5 control points and

9
4
= `+ d+ 1 knots points)

7. CONCLUSIONS

The advantage of using a 2DOF control scheme to deal
with the MMMPC consists in the possibility of decom-
posing the problem in two distinct steps: the first one is
the off-line design of a feedback controller which stabi-
lizes the uncertain plant and guarantees in advance the
fulfillment of hard constraints for any input r(k) satisfying
the admissibility condition; the second step consists in the
on-line computation of the input r(k) forcing the closed-
loop system Σf . Modeling r(k) as a B-spline decreases the
number of decision variables and reduces the constrained
optimization of the quadratic cost functional to a much
simpler RLS estimation problem with box-constraints on
the unknowns (the control points of r(k)). Computing the
box constraints is a straightforward consequence of the
admissibility condition established off line at step 1 and of
the membership of B-splines to the convex hull defined by
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Fig. 3. The desired piece-wise output (dashed line) and the
actual controlled output (solid line) of Σf forced by
r(k)
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0.5

input voltage

Fig. 4. The behavior of constrained control effort u(k)
forcing Σp.

their control points. The robust estimation problem can
be formulated as a SOCP, for which numerically efficient
interior point methods exist.
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la Peña. Min-max MPC based on a computationally
efficient upper bound of the worst case cost. J. Process
Control, Vol. 16, pages 511–519, 2006.

V. Sakizlis, N. P. Kakalis, V.Dua, J.D. Perkins, E. N.
Pistikopoulos. Design od robust model-based controllers
via parametric programming. Automatica, Vol. 40,
pages 189–201, 2004.

P.O. M. Scokaert, D.Q. Mayne. Min-max feedback model
predictive control for constrained linear systems. IEEE
Trans. Autom. Control, Vol. 43, pages 1136–1142, 1998.
Neste

Z. Wan, M. V. Kothare. An efficient formulation of robust
model predictive control using linear matrix inequalities
Automatica, Vol. 39, pages 837–846, 2003.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7166


