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1. INTRODUCTION

Dissipativity is a well-known and essential concept of sys-
tem and control theory introduced by Willems (1972a,b).
Against this background, renewed interest on this prop-
erty has been shown in the context of Economic Model
Predictive Control (EMPC). EMPC is a particular kind of
Model Predictive Control (MPC) characterized by general
objective functions (Faulwasser et al. (2018)). Analogously
to MPC, at each time step the control inputs are computed
solving a finite horizon optimal control problem. Then,
only the first component of the predicted input sequence is
applied to the system. In this scenario, dissipativity prop-
erties are extremely useful in order to characterize the opti-
mal operating behavior of a system and to analyze closed-
loop convergence, see Faulwasser et al. (2018) and Müller
et al. (2015). Results available in the literature prove
dissipativity conditions for dynamical systems modeled by
difference equations (see, e.g., Damm et al. (2014) and
Berberich et al. (2020)). In particular, strict dissipativity is
employed to characterize optimal steady-state (Faulwasser
et al. (2018); Müller et al. (2015)) and optimal periodic
operation (Zanon et al. (2017); Köhler et al. (2018)). Once
dissipativity conditions are provided, these can be used to
guarantee convergence of the closed-loop system, obtained
from the application of EMPC schemes, to the optimal
behavior (Faulwasser et al. (2018)).

This work proposes some preliminary results on dissipa-
tivity conditions for systems modeled by convex differ-
ence inclusions. These findings are extremely important
in order to retrieve convergence guarantees for generic
EMPC schemes built on such systems. This turns out

to be fundamental for the development of effective online
energy management strategies for hybrid electric vehicles.
In this paper, some available results on optimal opera-
tion at steady-state proposed by Damm et al. (2014) are
extended to the case of dynamical systems described by
convex difference inclusions. Thus, the main contributions
are summarized as follows:

• Considering a system described by convex difference
inclusions, dissipativity is proven for optimal steady-
state operation. This property provides important
information on the convergence of the closed-loop
system obtained by applying EMPC schemes.

• Implications of the dissipativity result for the energy
management strategy problem of hybrid electric ve-
hicles are discussed.

The paper is organized as follows. First, dissipativity is
proven for steady-state operation of dynamical systems
modeled by convex difference inclusions (Section 2). Then,
in Section 3, the validity of the dissipativity condition and
of its implications is shown, in a simulation environment,
for the energy management problem of hybrid electric
vehicles.

2. DISSIPATIVITY CONDITION FOR OPTIMAL
STEADY-STATE OPERATION

In this section, the strict dissipativity condition for optimal
operation at steady-state is proven. First, the general con-
vex program is formulated. Then, dissipativity is analyzed.
Eventually, an EMPC formulation is provided.
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2.1 Problem formulation

The system dynamics is modeled by the following differ-
ence inclusion:

x(k + 1) ∈ F (x(k), u(k), r(k)) =

= {y ∈ Rn|y ≤ f (x(k), u(k), r(k))}, (1)

where f is a concave and continuous function. Moreover,
x ∈ Rn denotes the state variables, u ∈ Rm the control
variables, and r ∈ Rw some reference signals. Therefore,
the feasible tuples (x, u, r) are collected in the following
set, which is assumed to be compact:

Y := {(x, u, r) ∈ Rn × Rm × Rw|gi(x, u, r) ≤ 0 for all gi ∈ G}
(2)

with G the set of constraints and gi : Rn × Rm × Rw → R
convex. Hence, the following sets are defined:

X := {x ∈ Rn|∃ u ∈ Rm and r ∈ Rw with (x, u, r) ∈ Y},
U := {u ∈ Rm|∃ x ∈ Rn and r ∈ Rw with (x, u, r) ∈ Y}.

Eventually, the general convex optimal control problem
(defined over the horizon N ) reads as follows:

minimize
x(0),u(0),...,x(N )

N−1∑
k=0

l(x(k), u(k), r(k)) + Vf (x(N ))

subject to x(k + 1) ∈ F (x(k), u(k), r(k)) =

= {y ∈ Rn|y ≤ f (x(k), u(k), r(k))}
gi(x(k), u(k), r(k)) ≤ 0, ∀gi ∈ G

(3)
with l being the continuous and convex stage cost and
Vf a suitable continuous and convex terminal cost. In the
EMPC context, program (3) is solved with x(0) = x(t)
(the measured state) over a suitable prediction horizon
N = Np. Then, only the first control variable is applied to
the system (receding horizon principle).

2.2 Optimal steady-state operation

Let us introduce (x?, u?, r̄), the optimal steady-state (or
equilibrium point) retrieved from the solution of the fol-
lowing convex program:

minimize
x,u

l(x, u, r̄)

subject to x ≤ f(x, u, r̄)

gi(x, u, r̄) ≤ 0, ∀gi ∈ G
(4)

where r̄ is a constant reference signal and gi and x −
f(x, u, r̄) are convex in (x, u, r̄). The equilibrium tu-
ple (x?, u?, r̄), solution of (4), satisfies l(x?, u?, r̄) ≤
l(x̃?, ũ?, r̄) for all other equilibrium tuples (x̃?, ũ?, r̄) ∈ Y.

Definition 2.1. Let (x?, u?, r̄) ∈ Y be an equilibrium point
of (1), with r̄ a constant reference signal. The system (1)
is dissipative with respect to the supply rate s(x, u, r̄) =
l(x, u, r̄) − l(x?, u?, r̄) if there exists a storage function
λ : X→ R bounded from below such that the inequality:

λ(x+)− λ(x) ≤ s(x, u, r̄) (5)

holds for all (x, u, r̄) ∈ Y and all x+ ∈ F (x, u, r̄) (with
x+ denoting the time difference). The system is strictly
dissipative if there exists α ∈ K∞ 1 such that the following
holds for all (x, u, r̄) ∈ Y and all x+ ∈ F (x, u, r̄):

λ(x+)− λ(x) + α(‖ (x− x?, u− u?) ‖) ≤ s(x, u, r̄). (6)

1 K∞ := {α ∈ K|α is unbounded} and
K := {α : R+ → R+|α continuous, strictly increasing, α(0) = 0}.

The validity of dissipativity as per Definition 2.1 im-
plies optimal steady-state operation. This means that, on
average, no other solution can outperform the optimal
steady-state. Furthermore, this property allows to con-
clude closed-loop convergence to a neighborhood of the
the optimal steady-state when controlling the system with
the EMPC scheme (3), compare Faulwasser et al. (2018).
Against this background, it can be shown that this dis-
sipativity property holds for convex difference inclusions
subject to strictly convex cost and convex constraints, as
will be done in the following.

Proposition 2.1. Consider the optimal control problem
(3) with dynamics (1), strictly convex l, a constraint set
defined as in (2) with gi convex, and a constant reference
signal r̄. Assume (4) to satisfy Slater’s condition, i.e.,
there exists (x̂, û, r̄) ∈ Y such that:

x̂− f (x̂, û, r̄) < 0,

gi(x̂, û, r̄) < 0, ∀gi ∈ G.
(7)

Then, there exists a vector νf ∈ Rn+ such that the sys-
tem is strictly dissipative with respect to the supply rate
s(x, u, r̄) = l(x, u, r̄)− l(x?, u?, r̄) and with λ(x) = νTf x.

The proof is an extension of the work proposed by Damm
et al. (2014) to convex difference inclusions.

Proof. The strict convexity of l, together with the convex-
ity and compactness of the constraints, ensures that the
optimization problem (4) has a global and unique optimum
(x?, u?, r̄). Therefore, the Lagrangian for program (4) is
introduced:

L(x, u, r̄) := l(x, u, r̄) + (νTg , ν
T
f )

 g1(x, u, r̄)
...

gi(x, u, r̄)
x− f(x, u, r̄)

 . (8)

The validity of the Slater’s condition implies strong duality
(Boyd and Vandenberghe (2004)), i.e., the existence of
Lagrange multipliers νg and νf such that:

νg ≥ 0, νf ≥ 0 and

νg = 0, if gi(x
?, u?, r̄) < 0

νf = 0, if x? − f(x?, u?, r̄) < 0,

(9)

and such that the following inequality holds:

L?(x?, u?, r̄) < L(x, u, r̄), ∀ (x, u, r̄) 6= (x?, u?, r̄). (10)

Let us define L̂ as follows:

L̂(x, u, r̄) := l(x, u, r̄)− l(x?, u?, r̄) + (νTg , ν
T
f )

 g1(x, u, r̄)
...

gi(x, u, r̄)
x− f(x, u, r̄)

 .

(11)
Therefore, from (10) and (11):

L̂(x, u, r̄) > (νTg , ν
T
f )

 g1(x?, u?, r̄)
...

gi(x
?, u?, r̄)

x? − f(x?, u?, r̄)

 = 0 (12)

for all (x, u, r̄) 6= (x?, u?, r̄), due to the complemen-
tary slackness condition (9). Given that νTg [g1(x, u, r̄)

. . . gi(x, u, r̄)]
T ≤ 0 for all (x, u, r̄) ∈ Y, L̂ is bounded from

above on Y as follows:

L(x, u, r̄) := l(x, u, r̄)− l(x?, u?, r̄) + νTf (x− f(x, u, r̄)) ≥ L̂(x, u, r̄).

(13)
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Now consider any tuple (x, u, r̄) ∈ Y together with x+

satisfying the difference inclusion (1), i.e.,

x+ ≤ f(x, u, r̄). (14)

Since νf ≥ 0, for any such points the following inequality
must hold:

L′(x, u, r̄, x+) := l(x, u, r̄)− l(x?, u?, r̄) + νTf (x− x+) ≥
≥ L(x, u, r̄) ≥ L̂(x, u, r̄). (15)

That is, if (14) holds with strict inequality, L̂ is strictly
bounded from above by L′. Choosing the storage function
λ(x) = νTf x, from (15) the desired strict dissipativity
result follows if there exists some α ∈ K∞, such that the
following inequality holds for all (x, u, r̄) ∈ Y and for all
x+ satisfying (14):

L′(x, u, r̄, x+) ≥ α(‖ (x− x?, u− u?) ‖). (16)

Since L′(x, u, r̄, x+) > 0 for all (x, u, r̄) ∈ Y and x+

satisfying (14) with (x, u, r̄, x+) 6= (x?, u?, r̄, x?) and
L′(x?, u?, r̄, x?) = 0, Lemma A.1 of Berberich et al. (2020)
can be applied to prove the validity of (16), thus ensuring
strict dissipativity. 2

3. SIMULATION RESULTS FOR THE ENERGY
MANAGEMENT PROBLEM OF HEVS

The implications of the dissipativity condition proved in
Section 2 are discussed. In particular, the problem of the
energy management strategy of hybrid electric vehicles is
addressed. The presence of multiple power sources (the
Li-ion battery and the internal combustion engine) offers
a power split feature, which must be carefully controlled
to achieve the best possible energy efficiency. In this work,
an Extended Range Electric Vehicle (EREV) is considered.
This particular kind of hybrid electric vehicles is the com-
position of an electric vehicle and of a Range EXtender
(REX). Thus, a powertrain modeling is introduced. Then,
the energy management problem is formalized as an opti-
mal control problem and convergence of the MPC solution
to a neighborhood of the optimal steady-state is shown.

3.1 Modeling

The energy management strategy problem is formalized as
a mixed-integer convex program (Section 3.2). Therefore,
a convex powertrain modeling is recalled. In particular, a
backward modeling paradigm, as per Onori et al. (2016),
is employed and the power needed for the vehicle motion is
computed from driving cycle speed (v) and slope (θ) pro-
files. The propulsion system components are highlighted
in Figure 1. To ease readers’ comprehension, the model
is proposed in continuous time. Eventually, the principal
powertrain parameters are summarized in Table 1. For
further details on the propulsion system modeling, readers’
are referred to Pozzato et al. (2019, 2020).

Vehicle dynamics. The vehicle motion is described by
the following longitudinal dynamics equation:

Tw = Rw(Mv̇ + Fb + Ff ), ωw =
v

Rw
(17)

with M the vehicle mass, Tw the wheel torque, ωw the
wheel rotational speed, and Rw the wheel radius. Fb is
the mechanical braking force and Ff is the friction force
accounting for both drag and rolling resistance.

Battery

Electric

Pg

Traction

Pb

MotorConverter

Pm
Gearbox

Tm

!m

ICE

EG
Tank

Range Extender

!w

Tw

Pec

Power Link

Fig. 1: EREV powertrain (ICE: Internal Combustion Engine, EG:
Electric Generator).

Gearbox. A constant ratio transmission rt connects the
wheels to the traction motor:

Tm =

{
1
rtηt

Tw, if Tw ≥ 0 (traction)
ηt
rt
Tw, if Tw < 0 (braking)

, ωm = rtωw

(18)
with ωm the motor rotational speed, Tm the motor torque,
and ηt the transmission efficiency.

Traction motor. The traction motor is modeled as an
efficiency map ηm. Therefore, the electric power Pm in
motor and generator modes is modeled as follows:

Pm =

{
Tm,iωm

ηm(Tm,i,ωm) , if Tm,i ≥ 0 (motor)

Tm,iωmηm(Tm,i, ωm), if Tm,i < 0 (generator)

(19)
where Jm is the motor inertia and Tm,i = Tm + Jmω̇m.

Electric converter. The electric converter is modeled as
an average efficiency ηec (Hu et al. (2013)):

Pec =

{
Pm

ηec
, if Pm ≥ 0

Pmηec, if Pm < 0
(20)

with Pec the power requested by the driving cycle.

Power link. Given the presence of multiple power sources,
the power requested by the drivetrain must satisfy the
following balance equation:

Pec = Pb + Pg (21)

Pb is the absorbed/supplied battery power and Pg is the
REX generated power.

Battery model. The battery is modeled in terms of its
internal energy E (Elbert et al. (2014)):

Ė = φ(E,Pb, Pec) = − Ab
RbQb

(E + E0)

+
Ab
RbQb

√
(E + E0)

2 − 2RbQb
Ab

Pb(E + E0)

(22)

with E0 = Qb

2Ab
B2
b and Pb obtained from (21). Equation

(22) is non-convex but the term on the right hand side of
(22) is concave. Therefore, the battery model is relaxed
introducing the following differential inclusion:

Ė ∈ Φ(E,Pb, Pec) = {y ∈ R|y ≤ φ(E,Pb, Pec)} (23)

with Φ the hypograph of φ: a convex set given the concavity
of φ. According to Elbert et al. (2014) and assuming the
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presence of a cost function accounting for the battery
usage, the relaxation (23) does not affect the accuracy
of the solution. Eventually, the following inequality must
always be satisfied Pb ≤ (E + E0) Ab

2QbRb
.

Range extender. The REX is a device composed of a
diesel internal combustion engine coupled with an electric
generator. Therefore, the mechanical power generated by
the internal combustion engine is converted into electrical
power and used to provide energy to the electric drivetrain.

Power generation. The electric generated power takes
values in the following range: 2 ≤ Pg ≤ 35 ∪ 0 (kW). If
the REX is idling, Pg is equal to 0 (kW). The fuel thermal
power is approximated by a second order polynomial
function (Murgovski et al. (2012)):

Pf = AgP
2
g +BgPg + Cg (24)

where Ag, Bg, and Cg are identified parameters. The REX
provides power to the traction motor only if the power
request exceeds Pthr. This behavior is modeled as follows:

q(Pec) =

{
1, Pec > Pthr
0, otherwise.

(25)

The maximum power Pg(T ) = 35 (kW) is provided if the
REX is warmed-up. Thus, once the vehicle is turned on, for
the first 6 (min) (the time needed to warm-up the engine)
the maximum power is limited to Pg(T ) = 27 (kW).
Eventually, the REX operating conditions are summarized
as follows:{
q(Pec)Pg ≤ Pg ≤ q(Pec)Pg(T ), warm-up phase

q(Pec)Pg ≤ Pg ≤ q(Pec)Pg(T ), warmed-up engine

(26)

with Pg the minimum electric power which can be gener-

ated by the REX.

Noise modeling. According to Pozzato et al. (2019), the
following relationship is introduced to model noise emis-
sions:

Lp = ASPLPg +BSPL (27)

with ASPL and BSPL identified parameters. Noise emis-
sions are characterized by Sound Pressure Levels (SPL)
and expressed in dB(A) (Cory (2010)).

3.2 Energy management problem

The energy management strategy has the primal goal of
splitting the power request between the available movers.
To this aim, the battery model (23) is first discretized.
Then, the energy management problem is formalized as a
mixed-integer convex program over a finite time horizon
N .

Discretized Battery Model. (23) is discretized as fol-
lows:

E(k + 1) = E(k)− Ts
Ab
QbRb

(E(k) + E0)+

Ts
Ab
QbRb

√
(E(k) + E0)2 − 2RbQb

Ab
Pb(k)(E(k) + E0)

(28)
where Ts is the sampling time. Far from the SoC upper
and lower bounds, (28) is well approximated by the battery
energy difference ∆E:

Variable Description Unit Value

Vehicle

M Vehicle mass (with battery
pack)

(kg) 12635

Rw Wheel radius
(Hu et al. (2013))

(m) 0.509

ηt Transmission efficiency
(Hu et al. (2013))

(−) 0.97

rt Gear ratio (Hu et al. (2013)) (−) 4.7

Jm Electric motor inertia
(Hu et al. (2015))

(kg m2) 2.3

ηec Electric converter efficiency
(Hu et al. (2013))

(−) 0.98

Battery

Ab Voltage parameter (V) 27.10

Bb Voltage parameter (V) 585.951

Vb Nominal voltage (V) 600

Qb Nominal capacity (Ah) 107

Nb Nominal life cycle (−) 4000

σb Severity factor (20−35 (◦C))
(Suri and Onori (2016))

(−) 0.95

ηgrid Charging efficiency
(Xiong et al. (2009))

(−) 0.92

Pb Maximum power
(Hu et al. (2013))

(kW) 220

Pb Minimum power
(Hu et al. (2013))

(kW) −220

SoC Maximum SoC (%) 80

SoC Minimum SoC (%) 20

∆E Maximum ∆E (kJ) 216.8

∆E Minimum ∆E (kJ) 223.6

REX

ASPL Noise parameter (dB(A)/kW) Confidential

BSPL Noise parameter (dB(A)) Confidential

Ag Generated power parameter (1/kW) Confidential

Bg Generated power parameter (−) Confidential

Cg Generated power parameter (kW) Confidential

p
(1)
g Generated power breakpoint (kW) 20

p
(2)
g Generated power breakpoint (kW) 25

T Coolant warmed-up temper-
ature

(◦C) 60

T Room temperature (◦C) 20

Pthr Idling power threshold (kW) 2

Pg(T ) Maximum power (warmed-
up)

(kW) 35

Pg(T ) Maximum power (cold) (kW) 27

Pg Minimum power (kW) 2

Cost Function

Ts Sampling time (s) 1

αBC Grid energy cost (BC kW−1 h−1) 0.125

βBC Battery cost (BC kW−1 h−1) 400

γBC REX fuel cost (BC kW−1 h−1) 0.104

δBC,0 REX noise cost (baseline) (BC dB(A)
−1

h−1) 0.018

Table 1: Application parameters.

∆E(k + 1) = f(∆E(k), Pb(k), Pec(k)) = −Ts
Ab
RbQb

(∆E(k) + E0)+

Ts
Ab
RbQb

√
(∆E(k) + E0)

2 − 2RbQb
Ab

Pb(k)(∆E(k) + E0).

(29)
Thus, at each time instant k, the battery energy is com-
puted with the following cumulative sum:

E(k) = E(0) +

k∑
i=0

∆E(i) (30)
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with E(0) the battery internal energy initial condition.
The right hand side of (29) is concave, therefore, the
convex model is obtained introducing the hypograph re-
formulation (in accordance with (23)):

∆E(k + 1) ∈ F (∆E,Pb, Pec) =

= {y ∈ R|y ≤ f(∆E(k), Pb(k), Pec(k))}.
(31)

(29) fits well with the EMS formulation, detailed in what
follows. Indeed, the battery utilization is a function of ∆E
and not of E. This is appropriate because, far away from
the state of charge bounds, the battery power is bounded
between

[
Pb, Pb

]
, independent of the actual SoC value.

Mixed-integer convex program. Given the control
variables Pg and Pb, the exogenous inputs Pec and q(Pec),
and the state variable ∆E, the mixed-integer convex
program reads as follows:

minimize
∆E,Pg,Pb

− αBC
ηgrid

∆E(N) +
}
Vf

Ts

N−1∑
k=0

αBC
ηgrid

−∆E(k)
Ts

+

}
l1

Ts

N−1∑
k=0

βBC
σb

Nb
| Pb(k) | +

Ts

N−1∑
k=0

γBC(AgPg(k)2 +BgPg(k) + Cg) +

Ts

N−1∑
k=0

δBC,0SF(v)

[
(ASPLP

(1)
g (k) +BSPL) +

(2ASPLP
(2)
g (k) + q

(1)
SPL(k)BSPL) +

(ASPLP
(3)
g (k)− q(2)

SPL(k)BSPL)

]
+



l2

(32)
subject to

∆E(k + 1) ∈ F (∆E,Pb, Pec) =

= {y ∈ R|y ≤ f(∆E(k), Pb(k), Pec(k))}
Pec(k) ≤ Pb(k) + Pg(k)

∆E ≤ ∆E(k) ≤ ∆E

Pb ≤ Pb(k) ≤ Pb

Pb(k) ≤ (∆E(k) + E0)
Ab

2QbRb{
q(Pec)Pg ≤ Pg(k) ≤ q(Pec)Pg(T ), warm-up phase

q(Pec)Pg ≤ Pg(k) ≤ q(Pec)Pg(T ), warmed-up engine

p(1)
g q

(1)
SPL(k) ≤ P (1)

g (k) ≤ p(1)
g

(p(2)
g − p(1)

g )q
(2)
SPL(k) ≤ P (2)

g (k) ≤ q(1)
SPL(k)(p(2)

g − p(1)
g )

0 ≤ P (3)
g (k) ≤ q(2)

SPL(k)(Pg(T )− p(2)
g )

(33)
Eventually, the following initial condition is introduced:

∆E(0) = 0 (kJ).

The cost function is composed of four terms. Vf and l1
model the electrical energy needed to replace the battery
energy depleted during the driving cycle. Considering l2,
the first term from above is accounting for battery aging.
Thus, the second one is considering the fuel consumption

Offline MPC

Np (s) NA 2 50 100

SoC (%) 45.8269 45.9113 45.8192 45.8226

J (BC) 1.7589 1.7600 1.7599 1.7599

Je (BC) 0.3634 0.3560 0.3640 0.3637

Ja (BC) 0.2539 0.2488 0.2544 0.2542

Jf (BC) 0.5337 0.5464 0.5331 0.5336

Jn (BC) 0.6079 0.6087 0.6084 0.6084

Opt. time 71.6 (s) 0.008 (s/step) 0.036 (s/step) 0.098 (s/step)
∗ NA: Not Applicable

Table 2: Sensitivity analysis with respect to different prediction
horizons Np. The EMPC results are compared to the optimal steady-
state solution applied over a traveled distance of 10 (km).

and the third one is weighting the REX noise emissions.
For the problem at hand, Pg takes the following expression:

Pg(k) = P
(1)
g (k) +P

(2)
g (k) +P

(3)
g (k). However, to simplify

the notation, in (32) and (33), Pg is used when possible.
Further details on the cost function formulation can be
found in Pozzato et al. (2019, 2020).

3.3 Results

The validity of the dissipativity condition, proved in Sec-
tion 2, is shown for the problem at hand. First, the follow-
ing definitions (needed to make a direct correspondence
with Section 2) are introduced:

• x := ∆E is the state variable;

• u := [P
(1)
g P

(2)
g P

(3)
g Pb]

T are the control inputs;
• r := Pec is the reference signal.

Against this background, the stage cost l : Y → R takes
the following structure:

l(x(k), u(k), r(k)) = l1(x(k)) + l2(u(k), r(k)) =

= −ξx(k) + l2(u(k), r(k))
(34)

where l1 and l2 are defined as in (32) and ξ = αBC
ηgrid

∈
R+\{0}. The MPC is formalized according to (3), starting
from (32),(33). In this framework, the limitation (26) on
the REX generated power is formulated relying on two
complementary formulations of (3). Therefore, for the first
6 (min) of operation the MPC embeds the constraint
with Pg(T ). Conversely, once the engine is warmed-up, the

constraint with Pg(T ) is employed.

The REX is now assumed to be warmed-up and a constant
speed profile at 30 (km/h), along with a constant power
request of r̄ = 11.23 (kW) (the vehicle is assumed to be
already at the target speed and the acceleration transient
is neglected), is considered. Therefore, the optimal steady-
state is computed solving (4), which leads to:

P ?b = 8.03 (kW), P ?g = 3.20 (kW), ∆E? = −8.03 (kJ).
(35)

The system (31) is proven to be dissipative with respect to
(35) checking the validity of (5) for all (x, u, r̄) ∈ Y. Thus,
(5) is rewritten as follows:

νf (f(x, u, r̄)− x) ≤ l(x, u, r̄)− l(x?, u?, r̄). (36)

For νf = 0.038 (BC/MJ) (retrieved from the solution of the
dual problem of (4)), the previous inequality holds true.
This implies that, for a long enough prediction horizon,
the solution of the EMPC without terminal constraints
defined in (3) converges to a neighborhood of the op-
timal steady-state (35). This fact is shown solving the
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Fig. 2: Solution of (3) considering different values of the predic-
tion horizon Np. Increasing Np, the MPC solution approaches the
optimal steady-state. Solutions are zoomed between 0 and 500 (m).

EMPC problem assuming the vehicle is traveling over a
distance of 10 (km) while maintaining a constant speed
of 30 (km/h). As shown by Figure 2, increasing Np the
MPC approaches the optimal steady-state at the cost of
an increased optimization time (see Table 2). The MPC
prediction is performed assuming a perfect knowledge of
the future driving cycle.

4. CONCLUSIONS

In this work, a strict dissipativity result for the optimal
steady-state operation of systems modeled by convex dif-
ference inclusions is shown. This property allows to re-
trieve convergence guarantees for the closed-loop system
obtained applying EMPC schemes. To illustrate this fact,
a simulation study is performed considering the power split
issue for EREV.

Future work will provide insights on strict dissipativity
conditions for the optimal periodic operation of systems
described by convex difference inclusions. Thorough simu-
lation studies will be performed to prove the validity and
the implications of such strict dissipativity properties in
the particular context of hybrid electric vehicles.
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