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Abstract: We start from a special class of scattering passive linear infinite-dimensional systems
introduced in Staffans and Weiss (SIAM J. Control and Opt., 2012). This class is called the
Maxwell class of systems, because it includes the scattering formulation of Maxwell’s equations,
as well as various wave and beam equations. We generalize this class by allowing a nonlinear
damping term. While the system may have unbounded linear damping (for instance, boundary
damping), the nonlinear damping term N is “bounded” in the sense that it defined on the
whole state space (but no actual continuity assumption is made on N ). We show that this
new class of nonlinear infinite dimensional systems is well-posed and scattering passive. Our
approach uses the theory of maximal monotone operators and the Crandall-Pazy theorem about
nonlinear contraction semigroups, which we apply to a Lax-Phillips type nonlinear semigroup
that represents the whole system, with input and output signals.
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1. MOTIVATION

In the modelling of physical systems, we often come
across second order differential equations with a nonlinear
damping term depending on the velocity, such as

z̈(t) +Dż(t) +N (ż(t)) +A0z(t) 3 B0u(t) , (1)

y(t) = C0ż(t) +D0u(t) . (2)

Here z(t) ∈ E, where E is a finite-dimensional inner
product space. The function z ∈ C2([0,∞);E) usually
represents a vector of displacements, ż and z̈ are its
first and second derivatives, A0, D ∈ L(E) are strictly
positive and N : E→E is a monotone set-valued function.
“Monotone” means that if z1, z2 ∈ E and w1 ∈ N (z1),
w2 ∈ N (z2), then

〈w1 − w2, z1 − z2〉E > 0 .

The signals u, y are the input and the output of the system,
both with values in U , which is another finite-dimensional
inner product space, while B0 ∈ L(U,E), C0 ∈ L(E,U)
and D0 ∈ L(U).

The addition of the damping term N may create a much
more complex dynamic behaviour (compared to the linear
case), as the following example illustrates.

Example 1.1. Let us assume that z represents the one-
dimensional displacement of a rigid body with mass m > 0
along a straight line, under the influence of the external
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force u, while it is connected to the point denoted by zero
on this straight line via a spring with constant k > 0,
having viscous friction with coefficient d > 0, A0 = k/m,
D = d/m and B0 = 1/m. Suppose that the nonlinear
function N is

N (v) = β sign(v) , (3)

where mβ > 0 is the amplitude of the Coulomb (or static)
friction and sign (the multi-valued signum function) is
defined by

sign(v) =

{
1 if v > 0 ,
−1 if v < 0 ,
[-1,1] if v = 0 .

(4)

It is well known that in this case, for any initial state
x(0) = [z(0) ż(0)] and any continuous function u, (1)
has a unique solution. If u and d are sufficiently small,
then this solution stops in finite time (at a point that may
depend on u and on x(0)), see for instance Amann and
Diaz (2003), Diaz and Millot (2003). Thus, the system
has a continuum of equilibrium points, none of which
is locally asymptotically stable. If we replace N (v) with
the shifted version N (v − v0) (which is still monotone,
and represents Coulomb friction with respect to a moving
platform having velocity v0 6= 0) then the system has a
globally asymptotically stable equilibrium point.

The second example (below) will illustrate that the
addition of the damping termN in (1) does not necessarily
improve the stability properties of the system. We should
not necessarily think of N as a clever addition to the
system, meant to improve it, but as something present
that needs to be modelled.
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Example 1.2. Consider the mechanical system consisting
of two masses, two springs and a damper. The equations
of the system are

m1ẍ1(t) + k1x1(t) + k2(x1(t)− x2(t)) = 0 ,

m2ẍ2(t)− k2(x1(t)− x2(t)) + dẋ2(t) = u(t) ,

y(t) = ẋ2(t).

Assuming that all the constants are positive, it is easy
to check that this system is exponentially stable. If, in
addition, there is also static friction between the second
mass and the fixed supporting surface, then the second
equation changes to

m2ẍ2(t)−k2(x1(t)−x2(t))+dẋ2(t)+β sign(ẋ2(t)) = u(t) ,

where the multivalued function sign is as in (4). This
system can be put into the framework (1), by defining
E = R2, U = R, C0 = [0 1], B0 = C>0 ,〈[

z1
z2

]
,

[
x1
x2

]〉
E

= m1z1x1 +m2z2x2,

D =

[
0 0

0
d

m2

]
, A0 =

k1 + k2
m1

− k2
m1

− k2
m2

k2
m2

 ,
N
([
z1
z2

])
=

[
0

β sign(z2)

]
.

The addition of static friction does not improve the stabil-
ity of the system, quite the contrary. Assuming that u = 0,
a typical state trajectory is such that ẋ2(t) becomes zero
in finite time, after which x1(t) oscillates with constant
amplitude.

This paper is about infinite-dimensional versions of (1)–
(2), and our main interest is the well-posedness of the
system, considering input signals u ∈ L2

loc([0,∞);U) (U
is the input and output space, and is a Hilbert space),
initial states x(0) ∈ X (X is the state space, also a Hilbert
space) and expecting final states x(τ) ∈ X and output
signals in y ∈ L2

loc([0,∞);U). Well-posedness means that
on any time interval [0, τ ], the mapping from x(0) and the
u (restricted to [0, τ ]) to x(τ) and to y (restricted to [0, τ ])
is continuous, see Section 2.

There is a very large literature on systems described by
partial differential equations that are linear except for a
nonlinear damping term, which can act in the interior
or on the boundary of the domain. We mention, as a
representative sample only (in alphabetical order) the pa-
pers Alabau-Boussouira and Ammari (2011) (abstract sec-
ond order in time equations), Berrahmoune (2002) (beam
equations), Conrad and Rao (1993) (wave equations),
Eller, Lagnese and Nicaise (2002) (Maxwell’s equations),
Lasiecka (1989) (wave and plate equations), Lasiecka and
Tataru (1993) (wave equations), Zuazua (1990) (wave
equations). As far as we are aware, most of the papers
on this topic treat the well-posedness of the associated
Cauchy problem, i.e., the existence of a non-linear strongly
continuous semigroup on the state space, and its various
asymptotic stability properties (decay rates). It seems that
no attention has been devoted to systems with input and
output signals that are described by equations containing
a nonlinear damping term. Our aim in this paper is to fill
this gap in an abstract and fairly general framework. Our
main tools are the theory of maximal monotone operators,

the generation theory of nonlinear contraction semigroups,
the theory of scattering passive linear systems, and the
Lax-Phillips semigroup associated to a well-posed system,
for which we introduce here a nonlinear version.

Example 1.3. Consider the vibrations in a fixed vertical
plane of a vertical beam clamped at the bottom, with
a rigid body with a large mass M mounted on the top.
Such a system could represent, for instance, a wind turbine
tower with the nacelle and the turbine together playing
the role of the rigid body. If we adopt the homogeneous
Euler-Bernoulli model for the beam, then this is the fa-
mous SCOLE system, introduced by Littman and Markus
(1988a,b) (they had in mind an antenna on a flexible
mast). Suppose that a perturbation force f acting horizon-
tally on the rigid body in the fixed vertical plane causes
the beam to vibrate. In the case of the wind turbine, this
force would represent the wind acting on the turbine and
the nacelle. The well-posedness and other properties of this
system were analyzed in Zhao and Weiss (2010), and many
more relevant references are listed there.

We try to dampen the vibrations of the system described
above by placing a trolley of mass m in contact with the
rigid body, such that there is friction between them. This
friction has a component of viscous friction with constant
D and a component of static friction with amplitude
f0. The idea is to absorb the vibration energy via these
frictions. Such dampers or more sophisticated versions,
called tuned mass dampers, are often used to dampen the
vibrations of very tall buildings, see, for instance, Hrovat,
Barak and Rabins (1983), Varadarajan and Nagarajaiah
(2004) and the references therein.

Assuming that the beam is uniform, with height l,
the model (the SCOLE system coupled with the trolley,
defined for (x, t) ∈ ((0, l)× [0,∞)) is

ρwtt(x, t) + EIwxxxx(x, t) = 0,
w(0, t) = 0 , wx(0, t) = 0 ,
Mwtt(l, t)− EIwxxx(l, t) = f(t)−D[wt(l, t)− ξt(t)]

−f0sign[wt(l, t)− ξt(t)]− k[w(l, t)− ξ(t)] ,
Jwxtt(l, t) + EIwxx(l, t) = 0 ,
mξtt(t) = D[wt(l, t)− ξt(t)]

+f0sign[wt(l, t)− ξt(t)] + k[w(l, t)− ξ(t)],
(5)

where the subscripts t and x denote derivatives with
respect to the time t and the position x, respectively.
We have denoted by w the transverse displacement of the
beam, and by ξ the horizontal displacement of the trolley
with respect to an equilibrium position. The positive
constants EI, ρ and J are the flexural rigidity of the beam,
the mass density of the beam and the moment of inertia
of the rigid body. We have assumed that the trolley is
connected to the rigid body by a spring with constant k,
whose role is to prevent the trolley from drifting away too
far from its equilibrium position. (In practical applications
there is a limited range for the displacement of the trolley.)
The linear version of this system (corresponding to f0 = 0)
but with a non-uniform beam, has been investigated in
Section 5 of Zhao and Weiss (2017).

The signal f is the force input acting on the rigid body.
−EIwxxxx(x, t)dx is the total lateral force acting on a slice
of the beam of length dx, located at the position x and the
time t. EIwxxx(l, t) and -EIwxx(l, t) are the force and the
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torque acting on the rigid body from the beam at the time
t. We define the input and output signals of the SCOLE
model, u and y, as follows:

u = f , y = wt(l, ·) . (6)

The natural state of this nonlinear coupled system has
two parts, z and q:

z(t) =

 √
ρwt(·, t)√

k(ξ(t)− w(l, t))√
J wxt(l, t)

 , q(t) =

√EIwxx(·, t)√
Mwt(l, t)√
mξt(t)

 .
The state space where (z, q) evolves is

X = L2[0, l]× R2 × L2[0, l]× R2 ,

with the natural norm. The (physical) energy of the system
is E(t) = 1

2‖z(t)‖
2 + 1

2‖q(t)‖
2. This system is impedance

passive, which means that
d

dt
E(t) 6 〈u(t), y(t)〉.

The linear version of this system, which corresponds
to f0 = 0, can be expressed as an impedance passive
system corresponding to the Maxwell class of systems,
as in equation (1.8) in Staffans and Weiss (2012) (with
slightly changed notation): For t > 0,[

ż(t)
q̇(t)

]
=

[
0 −L
L∗ G

] [
z(t)
q(t)

]
+

[
0
K∗0

]
u(t),

y(t) = [0 K0]

[
z(t)
q(t)

]
.

(7)

In the cited reference, the state space is X = H ⊕ E, and
E0 is a dense subspace of E with continuous embedding.
Denoting by E′0 the dual of E0 with respect to the pivot
space E, the framework from Staffans and Weiss (2012)
requires the following conditions:

L ∈ L(E0, H) , K ∈ L(E0, U) , G ∈ L(E0, E
′
0),

ReG 6 0 and the operator
[
L
K0

]
has to be closed as

an unbounded operator from E to H ⊕ U . All these
requirements are true for the linear version of our coupled
system (5), if we put H = E = L2[0, l] × R2, E0 =
H1
l (0, 1)× R2 and U = R, where

H1
l (0, l) = {ϕ ∈ H1(0, l) | ϕ(0) = 0} .

The operators L and K0 from (7) are defined by

L =

√EI
ρ

d2

dx2
0 0

0
√

k
M −
√

k
m√

EI
J δ
∗
l 0 0

 , K0 =
[
0 1√

M
0
]
,

where δ∗l is the operator of point evaluation at l. The
operator G from (7) is defined by

G =

 0
√

EI
M δ′l 0√

EI
M δ∗l

d
dx − D

M
D√
Mm

0 D√
Mm

−Dm


and then one can verify by computations that (7) is
equivalent to the linear version of (5).

With the state space X this system is not well-posed,
not even in the linear case, i.e., when f0 = 0. In the linear
case it becomes well-posed if we use instead the state space
X̃ = H̃ ⊕ Ẽ, where H̃ = Ẽ = H1

l (0, l)× R2.

Let us introduce new input and output signals via the
scattering transformation

usca =
1√
2

(u+ y), ysca =
1√
2

(u− y).

With these signals, our system becomes scattering passive,
which means that

d

dt
E(t) 6 ‖usca(t)‖2 − ‖ysca(t)‖2 .

Moreover, this nonlinear system is well-posed, as follows
from the theory presented here later. Following the reason-
ing in (Staffans and Weiss, 2012, Sect. 5), in the linear case
(f0 = 0) the equations of this scattering passive system are
exactly (7). In the nonlinear case, G should be replaced
with G−N . The nonlinear monotone set-valued function
N is given as:

N (q) =

0 0 0
0 f0√

M
0

0 0 − f0√
m

 sign

(0 0 0
0 1√

M
− 1√

m

0 1√
M
− 1√

m

 q(t)),
where sign(·) is as defined in (4) and it is applied here
component-wise.

2. THE MAXWELL CLASS OF SCATTERING
PASSIVE SYSTEMS

A well–posed linear system is a linear time-invariant
system such that on any finite time interval, the operator
from the initial state and the input function to the final
state and the output function is bounded. To express this
more clearly, and also to clarify our notation, let us denote
by U the input space, by X the state space and by Y the
output space of a well-posed linear system Σ. U , X and Y
are Hilbert spaces (to prepare for nonlinear extensions, we
work with real Hilbert spaces) and the input and output
functions are u ∈ L2

loc([0,∞);U) and y ∈ L2
loc([0,∞);Y ).

For any u ∈ L2
loc([0,∞);U) and any τ > 0, we denote

by Pτu its truncation to the interval [0, τ ]. Then the well-
posed system Σ consists of the family of bounded operators
Σ = (Στ )τ>0 such that[

x(τ)
Pτy

]
= Στ

[
x(0)
Pτu

]
. (8)

Here x : [0,∞)→X is the state trajectory of Σ corre-
sponding to the initial state x(0) and the input function
u, and y is the corresponding output function. The bound-
edness property mentioned at the beginning of this sec-
tion means that the operators Στ are bounded. Denoting
cτ = ‖Στ‖, this can be written as

‖x(τ)‖2+

∫ τ

0

‖y(t)‖2 dt 6 c2τ

(
‖x(0)‖2 +

∫ τ

0

‖u(t)‖2 dt

)
.

(9)
The operators Στ are partitioned in a natural way (corre-
sponding to the two product spaces) as follows:

Στ =

[
Tτ Φτ
Ψτ Fτ

]
. (10)

The four families of operators appearing on the right-hand
side above must satisfy four functional equations express-
ing the causality and the time-invariance of Σ (these func-
tional equations are parts of the definition of a well-posed
system). In particular, the family (Tτ )τ>0 is a strongly
continuous operator semigroup on X and its generator A
is called the semigroup generator of Σ. In the sequel, we
assume that the reader is familiar with the basics of the
theory of well-posed linear systems, as can be found for
instance in Curtain and Weiss (1989), Salamon (1987),
Staffans (2004), Staffans and Weiss (2002), Tucsnak and
Weiss (2014), Weiss (1994a).
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Every well-posed system with input space U , state
space X and output space Y has a system operator S :
D(S)→X × Y , where D(S) is a dense subspace of X ×U
and S closed. Hence, the space D(S) may be regarded
as a Hilbert space with the graph norm of S. How to
find S from the operators Στ is a long story for which
we refer to the just mentioned references. In the partic-
ular case of a finite dimensional system described by the
equations ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t),
where A,B,C,D are matrices of suitable dimensions, we
have S = [A B

C D ]. In general, the operator S gives a local
description of the state trajectories and output functions
of Σ, as explained in the following proposition, that is a
part of Theorem 3.1 in Staffans and Weiss (2002).

Proposition 2.1. Assume that u ∈ H1
loc([0,∞);U) and[ x0

u(0)

]
∈ D(S). The state trajectory x and the output

function y of Σ are defined as in (8). Then

x ∈ C1([0,∞);X),

[
x
u

]
∈ C([0,∞);D(S)),

y ∈ H1
loc([0,∞);Y ),

and for every t > 0 we have that[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
. (11)

From the above it can be shown (by density and con-
tinuous extension) that Σ is completely determined by its
system operator S. For example, the semigroup generator
of Σ is the “left upper” corner of S:

Ax0 = [I 0]S

[
x0
0

]
∀ x0 ∈ D(A) . (12)

The system operator S can be split according to the
product structure of its range space X × Y , as follows:

S =

[
A&B
C&D

]
. (13)

The operators A&B and C&D have the same domain
D(S), A&B is closed but C&D usually is not.

Scattering passive systems are a subclass of the well-
posed linear systems. A well-posed linear system Σ is called
“scattering passive” if the following balance inequality
holds:

‖x(τ)‖2 +

∫ τ

0

‖y(t)‖2dt 6 ‖x(0)‖2 +

∫ τ

0

‖u(t)‖2dt , (14)

which is equivalent to ‖Στ‖ 6 1 (for all τ > 0).

In Staffans and Weiss (2012), Weiss and Staffans (2013),
a class of scattering passive linear systems with a special
structure has been introduced. This class appears in mod-
els of various systems from mathematical physics, such as
wave, plate and Maxwell equations and it contains the
class of systems “from thin air” introduced in Tucsnak
and Weiss (2003), Weiss and Tucsnak (2003). Following
our recent survey paper Tucsnak and Weiss (2014), we
call this the “Maxwell class” of systems. This paper deals
with a nonlinear extension of this class of systems. Thus
it is necessary to briefly recall the definition of this class
and the main facts about it, which we do in this section.

If Σ is a system in the Maxwell class, then its state space
X can be decomposed as X = H ⊕ E, where H and E
are Hilbert spaces. The Hilbert space U is both the input

space and the output space of Σ. We identify H, E and
U with their duals H ′, E′ and U ′. The Hilbert space E0

is a dense subspace of E and the embedding E0 ↪→ E is
continuous. We denote by E′0 the dual of E0 with respect
to the pivot space E, so that

E0 ⊂ E ⊂ E′0 , (15)

densely and with continuous embeddings. We decompose
the state of Σ as follows:

x0 =

[
z
0

w
0

]
, z0 ∈ H , w0 ∈ E .

The following theorem is extracted from the main results
of Staffans and Weiss (2012).

Theorem 2.2. Let H,E,U and E0 be as in the previous
paragraph, and let the operators L ∈ L(E0, H), K ∈
L(E0, U) and G ∈ L(E0, E

′
0) be such that[

L
K

]
: E → H ⊕ U (with domain E0) is closed, (16)

Re 〈Gw
0
, w

0
〉E′0,E0

6 0 ∀ w
0
∈ E0 . (17)

Define the operator S by

S =

 0 −L 0
L∗ (G− 1

2K
∗K) K∗

0 −K I

 , (18)

D(S) =


[
z
0

w
0

u
0

]
∈

H
×
E0

×
U

∣∣∣∣∣∣∣∣
L∗z

0
+
(
G− 1

2K
∗K
)
w

0

+K∗u
0
∈ E

 .

Then S is the system operator of a scattering passive
system Σ. Moreover, the following claims hold:

1. If the input function u and the initial state
[
z(0)
w(0)

]
of

S satisfy

u ∈ H1
loc(0,∞;U) ,

[
z(0)
w(0)
u(0)

]
∈ D(S) , (19)

then the corresponding state trajectory [ zw ] and output
function y of S satisfy[

z
w

]
∈ C1([0,∞);H ⊕ E) ,

[
z
w
u

]
∈ C([0,∞);D(S)) ,

(20)

y ∈ H1
loc(0,∞;Y ) ,

and [
ż(t)
ẇ(t)
y(t)

]
= S

[
z(t)
w(t)
u(t)

]
∀ t > 0 . (21)

2. The semigroup generator A of S is the restriction of
the operator

A =

[
0 −L
L∗ (G− 1

2K
∗K)

]
(22)

(defined on H×E0, with values in H×E′0) to the domain

D(A) =

{[
z
0

w
0

]
∈
H
×
E0

∣∣∣∣∣ L∗z0 +
(
G− 1

2K
∗K
)
w

0
∈ E

}
.

3. We denote by X1 the space D(A) with the norm
‖z‖1 = ‖(I − A)z‖ and by X−1 the completion of X with
respect to the norm ‖z‖−1 = ‖(I −A)−1z‖. We have

X1 ⊂ H × E0 ⊂ X ⊂ H × E′0 ⊂ X−1 ,
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densely and with continuous embeddings. A has a unique
extension to an operator A ∈ L(X,X−1), whose restriction
to H × E0 is A from (22).

4. If the functions u, x = [ zw ] and y are as in (19)–(21),
then they satisfy the following power balance equation for
every t > 0:

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 + 2Re 〈Gw(t), w(t)〉 .

We remark that the additional Claim 1 in the theorem
is a consequence of the main statement together with
Proposition 2.1, while Claim 2 follows from the main
statement together with (12).

The aim of this paper is to generalize this class of sys-
tems by allowing the appearance of a monotone nonlinear
operator N subtracted from G in (18). Thus, the operator
A is replaced with the nonlinear operator

A =

[
0 −L
L∗ G−N − 1

2K
∗K

]
, (23)

where N : E→E is a set-valued mapping that is mono-
tone, meaning that for any u1, u2 ∈ E,

v1 ∈ N (u1), v2 ∈ N (u2) ⇒ 〈v1 − v2, u1 − u2〉 > 0 .

Moreover, we assume that N is maximal monotone, which
means that it does not have a proper monotone extension
(in the sense of inclusion of the graphs).

3. SOME BACKGROUND ABOUT THE
LAX-PHILLIPS SEMIGROUP

Starting from an arbitrary well-posed linear system Σ,
it is possible to define a strongly continuous semigroup
which resembles those encountered in the scattering theory
of Lax and Phillips (1967, 1973), and which contains all
the information about Σ. We recall the basics about this
semigroup, following Staffans and Weiss (2002) (related
material is also in Staffans (2004), Chen and Weiss (2005)).

Like in the previous section, we assume that Σ is a well-
posed linear system with component operator families as
in (10), and we continue to use also the notation U , X
and Y . For any τ > 0, we denote by Sτ the (unilateral)
right shift operator on U = L2([0,∞);U) and also on
Y = L2((−∞, 0];Y ), so that the adjoint S∗τ is the left shift
by τ on the same spaces. We also introduce the bilateral
right shift St acting on L2((−∞,∞);Y ) (where t ∈ R). We
regard Y as a subspace of L2((−∞,∞);Y ), by extending
functions in Y to be zero for t > 0.

Proposition 3.1. For all t > 0 we define on Y ×X ×U the
operator Tt by

Tt =

[S−t 0 0
0 I 0
0 0 S∗t

][
I Ψt Ft
0 Tt Φt
0 0 I

]
.

Then T = (Tt)t>0 is a strongly continuous semigroup.

If we take y0 ∈ Y, x0 ∈ X and u0 ∈ U to represent the
input function of Σ, its initial state and its past output (for
negative time), then at any time t > 0, the first component

of Tt

[
y0
x0
u0

]
represents the past output up to t, the second

component represents the present state x(t) and the third
component represents the future input that will reach the
system after t.

The operator semigroup T introduced in the last proposi-
tion is called the Lax-Phillips semigroup of Σ. Much useful
information on how to translate scattering theory into the
language of systems theory is found in Helton (1976). The
generator of T can be characterized as follows:

Proposition 3.2. Let T be the Lax–Phillips semigroup of
the well-posed system Σ, with system operator S. We
denote the generator of T by A, and we use the notation
A&B and C&D from (13).

(i) The domain of A, D(A) consists of all the vectors[
y0
x0
u0

]
∈ H1((−∞, 0];Y ) × X × H1([0,∞);U) which

satisfy
[ x0

u0(0)

]
∈ D(S) and y0(0) = C&D

[ x0

u0(0)

]
, and

on D(A), A is given by

A

[
y0
x0
u0

]
=

 y′0
A&B

[ x0

u0(0)

]
u′0

 . (24)

(ii) The following two conditions are equivalent:

(a)
[
y0
x0
u0

]
∈ D(A) and

[
y
x
u

]
= A

[
y0
x0
u0

]
,

(b) y0 ∈ H1((−∞, 0];Y ), x0 ∈ X,
u0 ∈ H1([0,∞);U),

[ x0

u0(0)

]
∈ D(S) and[

x
y0(0)

]
= S

[
x0
u0(0)

]
,

[
y
u

]
=

[
y′0
u′0

]
. (25)

This proposition has been extracted (as a particular case)
from Theorem 6.3 in Staffans and Weiss (2002).

Proposition 3.3. We use the notation of the previous two
propositions. The following conditions are equivalent:

(i) Σ is scattering passive.
(ii) For every τ > 0, the operator Στ from (10) is a con-

traction (from X ×L2([0, τ ];U) to X ×L2([0, τ ];Y )).
(iii) The Lax-Phillips semigroup induced by Σ is contrac-

tive (equivalently, ‖Tτ‖ = 1 for all t > 0).

This proposition has been extracted from Proposition 7.2
in Staffans and Weiss (2002). The fact that ‖Tτ‖ 6 1 is
equivalent to ‖Tτ‖ = 1 follows from the structure of Tτ :
it contains blocks that are left shifts, hence ‖Tτ‖ cannot
be less than 1.

4. THE MAIN RESULT

First we have to clarify what we mean by a (possibly non-
linear) time-invariant well-posed system. Our definition is
far from being the most general or “the best” in any sense.
Indeed, we assume that the input, state and output spaces
are Hilbert spaces and the input and output functions are
of class L2

loc, because this is the framework that we are
used to from the linear time-invariant case, but entirely
different frameworks are conceivable.

Giving an axiomatic definition of a well-posed system in
the spirit of Weiss (1994a) is possible but cumbersome.
We prefer to define a well-posed system via its (non-linear
version of the) Lax-Phillips semigroup.

For the basics about strongly continuous semigroups of
nonlinear operators we refer to Brézis (1974), Crandall and
Pazy (1969), Kato (1970), Showalter (1991). We recall here
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just a bare minimum of facts: Let Z be a Hilbert space. An
operator A : D(A)→Z is called (maximal) dissipative if
−A is (maximal) monotone. For every maximal dissipative
operator A and for every x ∈ D(A), the set Ax is
convex and closed. If A is maximal dissipative and densely
defined, then we call it m-dissipative.

A strongly continuous semigroup of nonlinear operators
T acting on Z is defined exactly as in the linear case,
without requiring that the operators are linear. If T is
such a semigroup, then its generator is defined by:

A0z = lim
t→ 0, t>0

1

t
[Ttz − z] ,

D(A0) = {z ∈ Z | the above limit exists} .
A semigroup as above is called contractive if

‖Ttz1 −Ttz2‖ 6 ‖z1 − z2‖ ∀ z1, z2 ∈ Z, t > 0 .

For any strongly continuous contractive operator semi-
group on a Hilbert space Z, its generator A0 is a dissi-
pative operator whose domain D(A0) is dense in Z. This
operator has a unique (possibly set-valued) m-dissipative
extension A, and D(A) = D(A0). For every x ∈ D(A),
A0x is the unique element of smallest norm in the set Ax.
The set D(A) is invariant under Tt and for any x0 ∈ D(A),
the trajectory x(t) = Ttx0 is Lipschitz continuous and
right differentiable. An important fact, often referred to
as the Crandall-Pazy theorem, is the following: If A is
m-dissipative, then A0 (which assign to every x ∈ D(A)
the element of smallest norm in Ax) is the generator of a
strongly continuous contractive semigroup on Z.

As in Sect. 3, U , X and Y will denote Hilbert spaces and
U = L2([0,∞);U), Y = L2((−∞, 0];Y ).

Definition 4.1. A time invariant well-posed system with
input space U , state space X and output space Y consists
of two families of (possibly nonlinear) continuous operators

Σst = (Σst
t )t>0 , Σout = (Σout

t )t>0 ,

where Σst
t : X × U →X and Σout

t : X × U →L2([0,∞);Y )
such that the following is a strongly continuous semigroup
of (possibly nonlinear) operators TN = (TNt )t>0 acting
on Y ×X × U : for every t > 0,

TNt =

S−t 0 0
0 I 0
0 0 S∗t

 I Σout
t

0 Σst
t

0 0 I

 . (26)

To understand the meaning of this definition, one should
compare it to Proposition 3.1. It is clear that in the linear
case, we have

Σst
t = [Tt Φt] , Σout

t = [Ψt Ft] ,
but in the nonlinear case, in general we cannot split
these operators in a similar way as above. Note that the
semigroup property for the family of operators TN implies
functional equations for the families of operators Σst and
Σout which, in the linear case, reduce to the functional
equations in the definition of a well-posed linear system,
as given for instance in Weiss (1994a). For example, we
must have for all t, τ > 0, x0 ∈ X and u, v ∈ U ,

Σst
t+τ

[
x0

u♦
τ
v

]
= Σst

t

[
Σst
τ [ x0

u ]

v

]
.

Here we have used the notation for the concatenation of
two functions u, v ∈ U , as defined in Weiss (1994a) and

many other papers. Naturally, we call TN the Lax-Phillips
semigroup of the system ΣN = (Σst,Σout).

Scattering passive (possibly nonlinear) systems are de-
fined exactly as in the linear case. A time-invariant well-
posed system is scattering passive if and only if its Lax-
Phillips semigroup TN is contractive. Scattering passive
systems come with the big advantage that they can be
described locally in time, via the generator of TN .

The generator of the Lax-Phillips semigroup for the
(possibly nonlinear) scattering passive well-posed system
ΣN = (Σst,Σout) has the following structure: There exist
two nonlinear operators [A&B]N (possibly multi-valued in
X) and [C&D]N (with single values in Y ), both defined
on D(SN ), which is a dense subset of X × U , such that

AN =


y′0

[A&B]
N
[
x0
u0(0)

]
u′0

 , (27)

D(AN ) ⊂


H1((−∞, 0);Y )

×
X
×

H1((0,∞);U)

∣∣∣∣∣∣∣∣
[
x0
u0(0)

]
∈ D(SN )

y0(0) = [C&D]N
[
x0
u0(0)

]


If [
y0
x0
u0

]
∈ D(AN ),

[
yt
xt
ut

]
= TNt

[
y0
x0
u0

]
,

then [yt xt ut]
> ∈ D(AN ) for all t > 0 and it is right

differentiable. A detailed explanation will be provided
in the journal version of this paper (Singh, Weiss and
Tucsnak (2020)).

The system operator of ΣN is now defined by

SN =

[
[A&B]N

[C&D]N

]
.

Clearly the system operator determines the system, via
the generator AN of its Lax-Phillips semigroup TN .

Theorem 4.2. We use the notation and the assumptions
of Theorem 2.2, so that Σ is a scattering passive system
from the Maxwell class. Let N be a (set-valued) maximal
monotone operator defined on all of E. Consider the non-
linear operator ΣN that is obtained from Σ by replacing
G with G−N . Thus,

SN =

 0 −L 0
L∗ (G−N − 1

2K
∗K) K∗

0 −K I

 , (28)

with D(SN ) = D(S) (defined after (18)).

Then SN is the system operator of a scattering passive
time invariant well-posed system.

Sketch of the proof. According to (24) and (27), the

generator AN of Lax-Phillips semigroup T (if it exists at
all) must have the following structure:

AN =


d

dξ
0 0 0

0 0 −L 0
0 L∗

(
G−N − 1

2K
∗K
)
K∗

0 0 0
d

dξ

 , (29)
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with the same domain D(A) as in the linear case, de-

scribed in equation (25). In order to prove that AN is
m-dissipative, we split it as follows:

AN =


d

dξ
0 0 0

0 0 −L 0
0 L∗ G− 1

2K
∗K K∗

0 0 0
d

dξ


︸ ︷︷ ︸

A

+

0 0 0 0
0 0 0 0
0 0 −N 0
0 0 0 0


︸ ︷︷ ︸

-Ñ

.

The first term on the right hand-side, A is m-dissipative
since it is the generator of the Lax-Phillips semigroup of
the linear scattering passive system Σ described in The-
orem 2.2. The second term −Ñ is m-dissipative because
N is maximally monotone, by assumption. N is defined
on the entire Hilbert space E, hence D(Ñ ) = Y ×X × U .

Therefore, D(A) ∩
(

intD(Ñ )
)

= D(A), which is dense.

According to Theorem 1 of Rockafellar (1970), it follows

that AN is m-dissipative (and densely defined) on Y ×
X×U . According to the main result of Crandall and Pazy
(1969) (see also Theorem 5 in Brézis (1974)), AN generates

a contraction semigroup TN on Y ×X × U .

Take [y0 x0 u0]> ∈ D(AN ). Then the trajectory[
y(t)
x(t)
u(t)

]
= TNt

[
y0
x0
u0

]
,

is a classical solution of the equation

d

dt

[
y(t)
x(t)
u(t)

]
= AN

[
y0
x0
u0

]
.

In particular the first component satisfies d
dty(t) = d

dξy(ξ)

in the space Y. Hence y(t) = S−ty0, therefore the first
component evolves according to left shift semigroup on Y.
Also, the last component satisfies the differential equation
d
dtu(t) = d

dξu(ξ) in the space U . It follows that u(t) =

S∗tu0, i.e., the last component evolves according to the left
shift semigroup on U . Thus, we have verified that the third
line of TNt has the structure as required in (26).

The remaining details will be given in the journal version
of this paper, Singh, Weiss and Tucsnak (2020). 2

5. CONCLUSION

In this paper we have introduced the generalized Maxwell
class of systems obtained from linear time invariant system
in the Maxwell class, with a nonlinear damping term N .
We have shown that such systems are well-posed and
scattering passive, provided that the nonlinear term N is
maximally monotone and is defined over the entire state
space.

REFERENCES

Alabau-Boussouira, F. and Ammari, K. (2011). Sharp
energy estimates for nonlinearly locally damped PDEs
via observability for the associated undamped system.
Journal of Functional Analysis 260, 2424–2450.

Amann, H. and Diaz, J.I. (2003). A note on the dynamics
of an oscillator in the presence of strong friction. Non-
linear Analysis: Theory, Methods & Appl. 55, 209–216.

Berrahmoune, L. (2002). Stabilization of beams with
nonlinear feedback. SIAM J. Control and Optim. 41,
1166–1193.
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