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Abstract: We consider the classical infinite-horizon constrained linear-quadratic regulator
(CLQR) problem and its receding-horizon variant used in model predictive control (MPC).
If the terminal constraints are inactive for the current initial condition, the optimal input signal
sequence that results for the open-loop CLQR problem is equal to the closed-loop optimal
sequence that results for MPC. Consequently, the closed-loop optimal solution is available from
solving only one CLQR problem instead of the usual infinite number of CLQR problems solved
on the receding horizon. In the presence of disturbances or because of plant-model mismatch, the
system will eventually leave the predicted optimal trajectory. Consequently, the solution of the
single open-loop CLQR problem is no longer optimal, and the receding horizon problem must
resume. We show, however, that the open-loop solution is also robust. Robustness essentially is
given, because the solution of the CLQR problem not only provides the sequence of nominally
optimal input signals, but a sequence of optimal affine laws along with their polytopes of validity.
We analyze the degree of robustness by computational experiments. The results indicate the
degree of robustness is practically relevant.

1. INTRODUCTION

Linear-quadratic MPC is known to result in a piecewise-
affine optimal feedback law. Because this law quickly grows
complex as the problem dimensions or the horizon is in-
creased, it is often preferable to solve the underlying op-
timal control problem online, thus evaluating the optimal
feedback law point by point without ever calculating it
explicitly.

We propose to use the piecewise-affine structure (and an-
other property, called persistency, explained below) with-
out calculating the full explicit solution. Essentially, we
show how to infer a sequence of optimal control laws for
time points k + 1, k + 2, . . . from the pointwise solution
at time point k. We stress we do not use the open-loop
optimal input sequence that results at time point k, but
our approach results in the same closed-loop optimal feed-
back as standard receding horizon MPC. Because we use
optimal laws instead of optimal points, the approach is
robust with respect to disturbances to a certain degree.
It is the purpose of the paper to present the idea and to
analyze its robustness with computational experiments.

Other ideas have been explored on how to use the struc-
ture of the solution without calculating it explicitly. By
storing regions of activity of the constraints instead of
the affine pieces, the storage requirements can be reduced
to grow only linearly in the number of constraints (Jost
and Mönnigmann, 2013; Jost and Mönnigmann, 2013).
Methods that determine and reuse the polytope for time
step k have been proposed before; larger regions on which

optimality is lost but stability is guaranteed can also be
constructed (Jost et al., 2015). Another class of methods
accelerates the online computations by storing the most
frequent active sets (Pannocchia et al., 2007, 2011). Reach-
ability analysis has been used to remove irrelevant re-
gions (Kvasnica et al., 2019). Since neighboring polytopes
sometimes have the same feedback law in common, the
number of regions relevant for MPC can be reduced (Kvas-
nica and Fikar, 2012).

Problem statement

We consider the problem of solving, on a receding horizon
of length N , V ?N (x(0)) :=

min
u(k), k=0,...,N−1
x(k), k=1,...,N

1
2‖x(N)‖2P + 1

2

N−1∑
k=0

(
‖x(k)‖2Q + ‖u(k)‖2R

)
(1a)

subject to

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , N − 1

u(k) ∈ U , k = 0, . . . , N − 1

x(k) ∈ X , k = 0, . . . , N − 1

x(N) ∈ T ,

(1b)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and
input variables at time point k, respectively, and x(0)
is a known initial condition. We assume all matrices to
have appropriate dimensions, (A,B) to be stabilizable, and
Q � 0, R � 0, and X , U to be compact polytopes that
contain the origin in their interiors. Furthermore, P is the
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solution to the discrete time algebraic Riccati equation and
T is chosen to be the largest invariant set such that the
solution to (1) and to its unconstrained counterpart are
equal whenever both exist.

Let FN be the set of initial states x(0) for which (1) has a
solution and note FN 6= ∅ since FN ⊇ · · · ⊇ F1 ⊇ T 6= ∅.

2. KNOWN RESULTS

2.1 Piecewise-affine optimal solution

The CLQR problem (1) is a quadratic program with a
strictly convex cost function. There exist H ∈ RmN×mN ,
H � 0, F ∈ Rn×mN , Y ∈ Rn×n, G ∈ Rq×mN , E ∈ Rq×n,
w ∈ Rq such that (1) is equivalent to

min
u

1

2
u′Hu+ x′Fu+

1

2
x′Y x (2a)

subject to
Gu− Ex− w ≤ 0 (2b)

where q is the number of inequality constraints in (1)
and (2), u = (u(0)>, . . . , u(N − 1)>)> and x refers to the
initial condition from hereon by a slight (but common)
abuse of notation. For any x such that a solution to (1),
or equivalently to (2), exists, let

u? = (u?>(0), u?>(1), . . . , u?>(N − 1))> (3)

refer to the optimal input sequence and let

A = {i|Giu? − Eix− wi = 0} (4a)

I = {i|Giu? − Eix− wi < 0} (4b)

be the active and inactive set, respectively, where Gi (Ei,
wi, etc.) refers to the ith line of G (Ei, wi, etc.). GA (EA,
wA etc.) refers to the submatrix of G (E, w etc.) with the
rows indicated by A. We say A is an active set of (2) (or
equivalently of (1)) if there exists an x ∈ FN such that
the constraints i ∈ A are active at its optimal solution
and all other constraints are inactive. Then the active and
inactive set immediately result from (4).

The following lemma is an immediate consequence of the
statements in (Bemporad et al., 2002).

Lemma 1. Let x ∈ FN be arbitrary and assume the
quadratic program (2) has been solved. Let A and I refer
to the active and inactive set at the optimal solution.
Assume the matrix GA to have full rank. Let

K = H−1(GA)′ΓSA −H−1F ′,
b = H−1(GA)′ΓwA,

T =

(
GIH

−1(GA)′ΓSA − SI
ΓSA

)
,

d = −
(
GIH

−1(GA)′ΓwA − wI
ΓwA

)
,

(5)

where Γ = (GAH
−1(GA)′)−1 and S = E + GH−1F ′,

S ∈ Rq×n. Let

P? = {x ∈ Rn |T ?x ≤ d?}. (6)

Then, u?(·) : P? → RNm defined by

x→ K?x+ b? (7)

is the optimal input sequence introduced in (3) for all
x ∈ P? and the first m components of u?(·) define the
optimal feedback law u?(·) : P? → Rm.

Lemma 1 essentially provides an optimal feedback law
from a single optimal point. More specifically, assume (2)
has been solved for an arbitrary but fixed point x ∈
FN and let u? ∈ RmN refer to the resulting point in
RmN . Then the active and inactive set immediately result
from evaluating (4) and the optimal feedback law u?(·)
and its polytope of validity P? can be determined with
Lemma 1 without solving an optimization or otherwise
costly problem. The computational effort for calculating
the matrices in (1) is known to be smaller than for solving
a QP (2) (see Berner and Mönnigmann (2019) for details).

We stress again we never determine all polytopes and affine
laws that constitute the parametric solution to (2), but
Lemma 1 will be applied to very few polytopes only.

3. DETERMINING SEQUENCES OF CLOSED-LOOP
OPTIMAL FEEDBACK LAWS

It is important to sort the constraints in a stagewise order
for the results to follow. We assume the following order
in (1) and (2) without restriction

u(0) ∈ U , x(0) ∈ X (stage 0)

u(1) ∈ U , x(1) ∈ X (stage 1)

... (8)

u(N − 1) ∈ U , x(N − 1) ∈ X (stage N − 1)

x(N) ∈ T (stage N)

There exist qU + qX constraints in stages 0, . . . , N − 1 and
qT constraints in stage N , where qU , qX and qT are the
number of halfspaces that define U , X and T , respectively.

It furthermore proves to be convenient to state active sets
as sequences of bits. More precisely, for anyA ⊂ {1, . . . , q},
let the sequence α of q bits αk be defined by

αi =

{
1 if i ∈ A
0 otherwise

(9)

We use A and α interchangeably (e.g, Gα = GA if α is as
in (9) for A). By α1α2 we denote the concatenation of the
two bit sequences α1 and α2. We split the bit sequences
α into stages for ease of interpretation. For example, the
active set A = {2, 15} corresponds to

α = 010000︸ ︷︷ ︸
qU+qX
(k=0)

. 000000︸ ︷︷ ︸
qU+qX
(k=1)

. 0010︸︷︷︸
qT

(k=2)

,

where k enumerates stages, appears in the example with
N = 2, qU = 2, qX = 4 and qT = 4 treated below.
More generally, αk in α = α0 α1 · · · αN−1 αN denotes the
subsequence of bits that belongs to stage k.

An optimal feedback law and its polytope that result for
horizon N are in general not an optimal law and polytope
for horizon N + 1 (see, e.g., Fig. 2 in (Muñoz de la Peña
et al., 2004) or Fig. 1 in (Mönnigmann, 2019)). There exist
feedback laws and polytopes, however, that remain the
same when the horizon is increased. We say an optimal
control law and its polytope are persistent from horizon
N on if they exist for all N + l, l ≥ 0. In fact, it is easy to
find persistent polytopes by analyzing active sets assuming
the stated constraint order and the α-notation, as stated
by the next result.
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Lemma 2. Let α be an active set for (1) with horizon N .
If the terminal constraints are inactive, i.e., there exists an
α̃ such that

α = α̃ 0 · · · 0︸ ︷︷ ︸
qT

(10)

then the affine law and polytope that α defines according
to Lemma 1 is persistent fromN on. Moreover, the optimal
feedback law and polytope that result with Lemma 1 for α
and horizon N are equal to the optimal feedback law and
polytope that result with Lemma 1 for

α̃ 0 · · · 0︸ ︷︷ ︸
l·(qU+qX )

0 · · · 0︸ ︷︷ ︸
qT

(11)

and horizon N + l for any l ≥ 0.

The proof of Lemma 2 can be found in (Mönnigmann,
2019, Lemma 3 and Proposition 4). Lemma 2 is quite tech-
nical but based on a simple idea: Assume the CLQR prob-
lem (1) resulted in an optimal sequence x?(1), . . . , x?(N)
such that x?(N) is in the interior of the terminal set T
(equivalent to the qT zeroes in (10) and (11)). We can
extend the optimal sequence by an arbitrary number of
additional inactive stages (those with the l ·(qU+qX ) zeros
in (11)). These additional inactive stages correspond to
steps taken with the optimal solution to the unconstrained
LQR controller for which the terminal set is control invari-
ant (Chmielewski and Manousiouthakis, 1996; Scokaert
and Rawlings, 1998). This is illustrated with Figure 1,
which shows the solution to the CLQR problem 1 for Ex-
ample 1 stated in Section 4. The label ’0’ marks the initial
condition (x(0) = (−0.33, 0.45)>). The points marked ’0’,
’1’ and ’2’ result for the CLQR problem with N = 2. The
points marked ’0’ to ’8’ result for N = 8, where ’0’, ’1’,
and ’2’ coincide for both horizons. The initial condition
results in

000001︸ ︷︷ ︸
qX+qU=6

.000001. 000000000000︸ ︷︷ ︸
qT =12

(12)

for N = 2 and

000001.000001. 000000. · · · .000000︸ ︷︷ ︸
6 stages

.000000000000 (13)

for N = 8, where colors are used to highlight the stages
both active sets have in common. In accordance with
Lemma 1, l = 6 stages with inactive constraints are
inserted in (13). Since qX = 4 and qU = 2, each stage
corresponds to 6 constraints. The terminal set T is defined
by qT = 12 constraints in the example, which correspond
to the 12 trailing zeroes in (12) and (13). The additional
6 inactive stages in (13) correspond to the application of
the optimal feedback of the unconstrained LQR problem
and result in points ’2’ to ’7’ in Figure 1. The number
of additional stages, l = 6, is chosen arbitrarily in the
example. The results for l = 1, . . . , 5, which correspond
to (13) with the respective number of inserted inactive
stages, is evident from Figure 1 and l > 6 results in
additional inactive stages, since the terminal set T is
invariant under the unconstrained optimal feedback.

Based on Lemma 2, we can state the result required for
inferring infinite sequences of optimal MPC feedback laws
from the solution of just one optimal control problem.

Proposition 3. Consider (1) for a fixed but arbitrary hori-
zon N . Let x(0) ∈ FN be arbitrary and let x+,MPC refer
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Fig. 1. Illustration of Lemma 2. Lines are added as a
guide to the eye only. Polytopes belong to the explicit
solution for N = 2 are added for illustration only.
The explicit solution is point-symmetric with respect
to the origin; the figure shows only the upper left part
of the solution.

to the successor state to x(0) that results under MPC
assuming no plant-model mismatch.

If
α = α(0) α(1) · · · α(N−1) α(N) (14)

with αN = 0 · · · 0 is the optimal active set for x, then

α+ = α(1) · · · α(N−1) 0 · · · 0︸ ︷︷ ︸
qX+qU

α(N) (15)

is the optimal active set for x+,MPC.

Proof. Note that α+ in (15) results from (14) in two
steps, (i) dropping the first stage α(0), and (ii) inserting
a penultimate zero stage. The proof proceeds in two
corresponding steps. Part (i) shows the intermediate active
set that results after (i) but before (ii)

α(1) · · ·α(N) α(N). (16)

defines the solution to the CLQR problem (1) with reduced
horizon N − 1 and initial condition x+,MPC. Part (ii) then
shows the intermediate active set (16) can be extended to
α+ from (15) to yield the desired result.

Part (i): The claim actually holds by the principle of
optimality. We show this in more detail for clarity. Let

u?(0), u?(1), . . . , u?(N − 1)

x(0), x?(1), . . . , x?(N − 1), x?(N)
(17)

refer to the optimal input sequence and state sequence that
result for the initial condition x(0) from solving the CLQR
for horizon N and note x+,MPC = x?(1). Now consider
the CLQR for the reduced horizon N − 1 and the initial
condition x?(1) and decorate all quantities related to this
new problem with a tilde (e.g., x̃(0) = x?(1)). We need to
show that the optimal input and state sequences

ũ?(0), ũ?(1), . . . , ũ?(N − 2)

x̃(0), x̃?(1), . . . , x?(N − 2), x?(N − 1)
(18)

for the new problem are equal to (17) with the first entries
removed, i.e.,
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u?(1), . . . , u?(N − 1)

x?(1), . . . , x?(N − 1), x?(N),
(19)

which can be seen by contradiction: Assume (18) is optimal
and not equal to (19), which implies (18) results in a lower
cost function value than (19) in the CLQR problem with
horizon N − 1. Since u?(0) from (17) steers the system
from x(0) to x̃(0) = x?(1), the sequences

u?(0), ũ?(0), . . . , ũ?(N − 2)

x(0), x̃(0), x̃?(1), . . . , x̃?(N − 1),
(20)

respect the constraints of the CLQR with horizon N and
results in a lower cost function value than (17), since the
first term is equal and the remaining term smaller for (20)
than (17) by the assumption. This is a contradiction to
the optimality of (17) and proves (18) and (19) are equal,
or equivalently, (19) are the optimal sequences that result
for x̃(0) = x?(1) = x+,MPC.

Now recall the active set can, for a given initial con-
dition and optimal sequence of input signals, be deter-
mined by substituting the initial condition and optimal
input sequence into the constraints (cf. (4a)). By assump-
tion, the optimal input sequence from (17) results in
α(1)α(2) · · ·α(N−1) from (16). Because of the constraint
order (8), the optimal input sequence without the first
term from (19) therefore results in the same active set
without the first term α(2) · · ·α(N−1), which proves part
(i).

Part (ii): Since α(1) · · ·α(N−1) α(N) is the active set for
x+,MPC taken as an initial condition for horizon N − 1,
α+ defined in (15) is an active set for x+,MPC taken as
an initial condition for horizon N according to Lemma 2.
Note that we need α(N) = 0 · · · 0 in order for Lemma 2 to
apply, which holds by assumption. 2

We summarize three important implications of Proposi-
tion 3 in the following remark for ease of reference.

Remark 4. (i) The active set α+ from Proposition 3
defines the optimal feedback law for x+,MPC and
therefore no optimal control problem needs to be
solved for x+,MPC.

(ii) Proposition 3 can obviously be applied repeatedly
until the system has entered the terminal set T . More
specifically, just as the active set that defines the
optimal feedback for x(0)

α(0)α(1)α(2)α(3) · · ·α(N−1)α(N)

yields the active set

α(1)α(2)α(3) · · ·α(N−1) 0 · · · 0︸ ︷︷ ︸
qX+qU

α(N) (21a)

for x+,MPC, repeated application of Proposition 3
yields the active sets

α(2)α(3) · · ·α(N−1) 0 · · · 0︸ ︷︷ ︸
2·(qX+qU )

α(N) (21b)

α(3) · · ·α(N−1) 0 · · · 0︸ ︷︷ ︸
3·(qX+qU )

α(N) (21c)

...

0 · · · 0︸ ︷︷ ︸
N ·(qX+qU )

α(N) (21d)

that define the optimal feedback for the subsequent
successor states that result under MPC feedback until
the empty active set that defines the terminal set T
and the optimal feedback law of the unconstrained
LQR appear.

(iii) Proposition 3 applies to the nominal successor states
x+,MPC, x++,MPC, . . . and therefore is in general not
useful in any practical appliation. However, since α+

and its successor define polytopes P+, P++ (with
x+,MPC ∈ P+, x++,MPC ∈ P++, . . . ) and the optimal
control law on these polytopes, no optimal control
problem needs to be solved for any actual state in
these successor polytopes.

We assess the robustness explained in Remark 4 (iii) in
Section 4.

Proposition 3 and the sequence (21) of active sets ex-
plained in Remark 4(ii) can be illustrated with Figure 1.
We already stated the active set (12)

000001︸ ︷︷ ︸
dropped

.000001.000000000000,

repeated here for convenience, that result for the initial
condition marked ’0’ in Figure 1. Applying Proposition 3
yields, without solving an optimization problem, the active
set

000001. 000000︸ ︷︷ ︸
new

.000000000000,

for the closed-loop successor state marked ’1’, where colors
merely point out the relations between the stages. Ac-
cording to Lemma 1, this active set defines the polytope
highlighted in light red in Figure 1 and the optimal control
law that holds on this polytope (not shown). Note that
Proposition 3 not only yields the optimal feedback signal
for the successor state, but a control law that is optimal on
full-dimensional polytope; this is the robustness claimed in
Remark 4(iii). Repeated application of Proposition 3 yields
the active set

000000. 000000︸ ︷︷ ︸
new

.000000000000,

for the next and all subsequent closed-loop successor states
marked ’2’, ’3’, . . . . This active set defines the terminal set
T highlighted in light yellow in Figure 1 and the optimal
control law that holds on T (not shown) according to
Lemma 1.

Finally, we stress that the assumption α(N) = 0 · · · 0, i.e.,
inactive terminal constraints, is necessary in Proposition 3.
In other words, the active set for the closed-loop successor
state can in general not be determined with (15) if the
terminal constraints are active in (14). This is illustrated
in Figure 2. The initial condition marked ’0’ in this figure
results in the active set

000001.000000.001000000000

with an active terminal constraint. Consequently, Lemma 2
does not apply and we cannot obtain the solution for a
longer horizon by adding inactive stages, but the solution
for N = 3 (black lines in the figure) departs from that for
N = 2 (red lines in the figure). As a result, part (ii) of
the proof of Proposition 3, which uses Lemma 2, does not
apply. This shows that Proposition 3 does in general not
apply if its condition α(N) = 0 · · · 0 is not fulfilled. .
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Fig. 2. The requirement α(N) = 0 · · · 0, i.e., the inactivity
of all terminal constraints, is necessary in Proposi-
tion 3.

4. EXAMPLES

We illustrate the proposed approach with two examples
that differ with respect to their sizes.

Example 1. The first example results from discretizing
the state-space representation of G(s) = 1

s2+s+2 with a
sampling time of 0.1 seconds. This results in

A =

(
0.89550 −0.18969
0.09485 0.99034

)
, B =

(
9.4846 · 10−2

4.8294 · 10−3

)
.

The example is similar to the one used by Seron et al.
(2003), but we here impose state and input constraints

x(k) ∈ X = {x ∈ R2;−2 ≤ xi ≤ 2, i = 1, 2},
u(k) ∈ U = {u ∈ R;−1 ≤ u1 ≤ 1}

and choose Q = diag(0, 1), R = 0.01 and N = 30. The
number of constraints amounts to q = N(qX + qU ) + qT =
192, where qX = 4, qU = 2 and qT = 12. The terminal cost
matrix P and constraint set T are as introduced in Sect. 1
and not reported here in the sake of space.

Example 2. The second example results from discretizing
the minimal state-space representation of

G(s) =


−5s+ 1

36s2 + 6s+ 1

0.5

8s+ 1
0

0
0.1(−10s+ 1)

s(8s+ 1)

−0.1

(64s2 + 6s+ 1)s
−2s+ 1

12s2 + 3s+ 1
0

2(−5s+ 1)

16s2 + 2s+ 1


with a sampling time of 1 second. A state-space model with
n = 10 states and m = 3 inputs results after removing
the uncontrollable states. We enforce the state and input
constraints

x(k) ∈ X = {x ∈ R10;−10 ≤ xi ≤ 10, i = 1, . . . , 10},
u(k) ∈ U = {u ∈ R3;−10 ≤ ui ≤ 10, i = 1, 2, 3}

and we choose Q to be the identity matrix, R =
diag(0.25, 0.25, 0.25) and N = 30. This results in q =
N(qX +qU )+qT = 996 constraints, where qX = 20, qU = 6
and qT = 216. The terminal cost matrix P and constraint
set T are as introduced in Sect. 1.

The optimal inputs are applied in closed loop to the
additively disturbed system

x(k + 1) = Ax(k) +Bu(k) + d(k) (22)

for both Example 1 and 2, where the components of
d(k) ∈ Rn are drawn from independent zero-mean normal
distributions. We vary the standard deviations, which
are specified in Tables. 1 and 2, over a large range to
investigate the robustness of the proposed approach.

The procedure is summarized in Algorithm 1, which essen-
tially checks if the actual successor state of the disturbed
system is in the successor polytope of the nominal system.
If this is the case, no OCP needs to be solved, but the
optimal feedback law on the successor polytope can be
applied. Whenever an OCP is solved, the algorithm must
check whether the resulting active set has inactive terminal
constraints, because this is required for Proposition 3 to
apply. If this condition is not fulfilled, an OCP must be
solved in the subsequent step.

1 Initialization: set x to initial condition;
2 Solve QP (2) for x and horizon N ; set u← u?(0);
3 Apply u;
4 Measure or estimate x+;
5 if terminal constraints are active then
6 set x← x+ and goto 2
7 else
8 Determine P+;
9 if x+ ∈ P+ then

10 determine K+, b+;
11 set u← K+x+ + b+ and goto 3;
12 else
13 set x← x+ and goto 2.
14 end
15 end
Algorithm 1: Summary of the proposed procedure

We apply the proposed approach to 104 standard MPC
runs with random initial conditions that are uniformly
distributed in X of the respective example. We carry out 30
MPC steps for each random initial condition. The number
of steps is arbitrary and merely appears to be reasonable
for the horizons N = 30.

Tables 1 and 2 list the fraction of input signals that can be
generated without solving an OCP, because the disturbed
successor state is located in the successor polytope of the
nominal system. An OCP must be solved in the proposed
approach if the the successor state of the additively dis-
turbed system does not lie in the predicted polytope of the
nominal system.

A considerable number of OCPs can be avoided in both ex-
amples, even if the standard deviations of the disturbances
are fairly large (see column 1 in Tables 1 and 2). This
number increases as the standard deviation is decreased
in both examples as expected. It is also evident from the
examples that the proposed method does not per se work
better for small systems.

5. OUTLOOK

Because the proposed method anticipates optimal control
laws that are valid on full-dimensional polytopes, it is
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Table 1. Results for Example 1. The column
’relative std’ states the standard deviation
(std) of the normal distributions d(k) in (22).
Values in this column are in percent of the
width of the intervals −2 ≤ xi ≤ 2 that
define X for Example 1. The columns ’fraction
reused’ and ’fraction OCP’ are the fraction
of the optimal inputs are calculated without
solving an OCP and with solving an OCP,

respectively.

relative std absolute std fraction reused fraction OCP

0.1% 0.004 85.1% 14.9%
0.3% 0.012 74.7% 25.3%
1% 0.04 60.7% 39.3%
3% 0.12 33.3% 66.7%

10% 0.4 12.4% 87.6%

Table 2. Results for Example 2. Relative stan-
dard deviations are in percent of the width of
the intervals −5 ≤ xi ≤ 5 that define X for
Example 2. All other columns are as in Table 1.

relative std absolute std fraction reused fraction OCP

0.1% 0.01 99.9% 0.1%
0.3% 0.03 99.8% 0.2%
1% 0.1 99.7% 0.3%
3% 0.3 99.5% 0.5%

10% 1 98.8% 1.2%

inherently robust to some extent. Future work has to
address the development of criteria that permit anticipat-
ing the extent of this robustness for disturbed systems
like (22), for other forms of disturbances and for plant-
model-mismatch.

Neighboring polytopes often are defined by active sets that
differ only with respect to one active constraint (Ahmadi-
Moshkenani et al., 2018). It is an obvious idea to extend
the proposed method to not only using the anticipated
optimal successor polytope, but also its neighbors. Note
this will increase the robustness further even if not all but
only some of the neighboring polytopes can be identified.
Since storing the active sets requires much less memory
than storing the geometric explicit solution, this extension
is likely to be feasible for large systems.

Finally, there exist opportunities to reduce the compu-
tational effort of finding the optimal successor polytope
and affine law compared to the effort that results with
Proposition 3. While Proposition 3 expresses all successor
active sets as active sets for the horizon N of the original
problem, there always exists a shorter horizon (due to per-
sistency (Mönnigmann, 2019)). This implies the number
operations required to determine the polytope and law
from the active set with Lemma 1 can be reduced, because
the lemma can be applied for a shorter horizon.
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