
Leadership Hierarchy-based Formation
Control via Adaptive Chaotic
Pigeon-inspired Optimization

Jianxia Zhao, Haibin Duan*, Lin Chen, Mengzhen Huo

Bio-inspired Autonomous Flight Systems Research Group, School of
Automation Science and Electrical Engineering, Beihang University

(BUAA), Beijing, 100083, PR CHINA (*e-mail: hbduan@
buaa.edu.cn).

Peng Cheng Laboratory, Shenzhen, 518000, PR CHINA.

Abstract: Formation control of multi-agent systems (MASs) is a significant research subject
in the field of cooperative control. In this paper, we propose a novel consensus-based formation
control approach with minimal resource cost and excellent adaptability for second-order
nonlinear multi-agent systems. Specifically, an improved constrained adaptive chaotic pigeon-
inspired optimization algorithm (ACPIO) is proposed for tuning parameters, which promotes the
automation of controller design and alleviates the workload of conventional designer. Moreover,
a variant of pinning control method integrating with hierarchical leadership model of pigeon
flocks is introduced, which achieves excellent adaptability and reduces computational complexity
simultaneously. Additionally, sufficient conditions are derived for achieving the desired formation
pattern based on Lyapunov stability theory and matrix theory. Numerical simulation results
demonstrate the feasibility and effectiveness of the proposed method for formation control of
second-order nonlinear MASs.

Keywords: multi-agent systems, formation control, leadership hierarchy, pinning control,
improved pigeon-inspired optimization

1. INTRODUCTION

The multi-agent systems (MASs) (Li et al. (2004); Zhou
et al. (2019)) are composed of multiple interacting intelli-
gent agents, generally used to conduct complex tasks coop-
eratively within various environments, such as surveillance
(Nigam et al. (2011)), source seek (Han and Chen (2014))
and military combat (Cil and Mala (2010)). Formation
control is one of the most actively studied topics within the
realm of MASs, aiming to drive multiple agents to achieve
prescribed constraints on their states. However, this is no
easy task due to its sensitivity to external interference and
system uncertainty.

In order to establish and maintain a certain spatial con-
figuration for MASs, a variety of formation control meth-
ods have been proposed. Common methods of formation
control falls into three strategies: leader-follower, virtual
structure and behavior-based strategy. It has been in-
dicated these approaches have their own disadvantages
though they are applied widely in formation problem
(Beard et al. (2001)). For instance, the leader-follower
strategy lacks robustness because that the failure of the
leader may destroy the whole formation. The virtual struc-
ture strategy is not fully distributed. To improve the ro-
bustness, Ren (2007) unified these control strategies within
the framework of consensus protocol.

Since many pinning control methods for MASs have been
developed, it would be useful to study the consensus prob-
lem. However, existing studies on pinning control achieve

a limited success with failure to tie hierarchy relationship
with nodes. Encouragingly, Qiu and Duan (2017) proposed
a hierarchical leadership strategy that could theoretically
construct a hierarchical model with satisfactory adapt-
ability. Based on the strategy, the MASs may have the
following advantages: information transfers more efficient
than other types of networks (Zafeiris and Vicsek (2015)),
and agents with certain hierarchical structures can im-
prove individual navigation accuracy (Flack et al. (2015)).
Therefore, it is worth proposing a variant of pinning con-
trol that integrates with hierarchical leadership strategy.

However, it is time-consuming to manually adjust param-
eters(Hai et al. (2019)). Therefore, establishing an effec-
tive mechanism of tuning parameters is necessary. Pigeon-
inspired optimization (PIO) algorithm (Duan and Qiao
(2014); Zhang and Duan (2015); Duan and Wang (2015))
has proven to be feasible and effective for optimization
problems. But there are still some shortcomings. In or-
der to improve the population diversity and promote the
searching ability for global optima, many efforts have been
made (Duan et al. (2018); Xu and Deng (2018); Qiu and
Duan (2020)). In this paper, the weight adaptive strategy
and chaos theory(Luo and Duan (2014)) are applied in
PIO algorithm, namely ACPIO algorithm.

To address aforementioned issues, formation control prob-
lems of second-order nonlinear MASs are investigated in
this paper. Specifically, based on hierarchical leadership,
the pinning strategy with optimal control parameters is
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developed to guarantee synchronization. The main contri-
butions of the proposed approach are as follows:
(1) A novel consensus-based formation control approach is
proposed. For purpose, the ACPIO algorithm is proposed
as the solver of optimal control parameters.
(2) Sufficient condition for the existence of the pinning
controller is derived using matrix theory and Lyapunov
stability theory.
(3) A variant of pinning control method integrating with
leadership hierarchy model is introduced to achieve better
adaptability and reduce computational burden as well.

The remainder of this paper is organized as follows. The
preliminaries and problem formulation are introduced in
Section 2. Section 3 expounds the design and analysis
of pinning control. Numerical simulation results are pre-
sented in Section 4 to verify the effectiveness of the pro-
posed approach. Finally, Section 5 draws the conclusions.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Notations

Let Rn×n be the set of real matrices of size n×n, and Rn
be the set of vectors of size n× 1. In is the n-dimensional
identity matrix and 1n(0n) means the n-dimensional col-
umn vector with each entry being 1(0). ‖ · ‖ indicates
the Euclidean norm. λmin(A) and λmax(A) denotes the
minimum and maximum eigenvalue, respectively. Matrix
A<0(A ≤ 0) means that A is real symmetric and negative
definite (semi-negative definite). The symbol ⊗ denotes
Kronecker product. Additionally, [·] represents the floor
function.

2.2 Graph theory

Consider a directed graph G = (V,E,A), where V =
{V1, V2, ..., VN} and E ⊆ {(Vi, Vj) : Vi, Vj ∈ V } are the set
of nodes and edges, respectively. A = (aij) ∈ RN×N is the
non-negative adjacency matrix of G with element aij . A
directed edge eij in the network G is denoted by a ordered
pair of (Vi, Vj), where Vi and Vj indicate the terminal and
initial nodes, respectively, which means that node Vi can
receive information from node Vj . aij > 0 if and only if
there is a directed edge (Vi, Vj) in G. The Laplacian matrix
L = (lij) ∈ RN×N of the directed network is defined as

lij = −aij(i 6= j); lii =
∑N
i=1 aij and

∑N
j=1 lij = 0 (Olfati-

Saber and Murray (2004)).

2.3 Problem formulation

A class of second-order nonlinear multi-agent systems is
considered in our work, which is composed of a leader
agent and N -1 follower agents. The mathematical motion
model for the following agent i is described as follows:{

ẋi(t) = vi(t),
v̇i(t) = f(xi, vi, t) + ui

(1)

where xi = [xi1, xi2, ..., xin]T ∈ Rn, vi = [vi1, vi2, ..., vin]T ∈
Rn are position and velocity state vectors, respectively. f :
Rn → Rn stands for a continuous mapping. f(xi, vi, t) =
[f1(xi1, v1), f2(x2, v2), ..., fin(xin, vin)]T ∈ Rn is a smooth

nonlinear function. ui = [ui1, ui2, ..., uin]T ∈ Rn is the
control input. When agent i is the general leader (i = NL),
ui = 0, which means the leader agent is an isolated agent.
To simplify the consensus of system, the expected position
xei (t) = xNL

(t) and expected velocity vei (t) = vNL
(t), and

the desired spatial configuration is formed by setting the
position offset from general leader.

Let the state error be ∆xi(t) = xi(t) − xei (t), ∆vi(t) =
vi(t)− vei (t), then the error variable of the system can be
expressed as:{

∆x(t) = (∆xT1 (t),∆xT2 (t), . . . ,∆xTN (t)),
∆v(t) = (∆vT1 (t),∆vT2 (t), . . . ,∆vTN (t))

(2)

Assumption 1. (Yu et al. (2009)) The nonlinear function
fi(xi, vi, t) is bounded. There exists positive constants α
and β, such that for any xi, xj , vi, vj ∈ Rn, the following
inequality hold:

‖f(xi, vi, t)−f(xj , vj , t)‖ ≤ α‖xi−xj‖+β‖vi−vj‖ (3)

Definition 1. (Wang and Wu (2012)) The second-order
consensus in multi-agent systems (1) is said to be achieved,
if the solution of (1) satisfy:{

lim
t→∞

‖∆x(t)‖ = 0

lim
t→∞

‖∆v(t)‖ = 0 (i = 1, 2, ..., N.)
(4)

Lemma 1. (Zhou et al. (2019)) For matrices A, B, C and D
with appropriate dimensions, the following equations hold:

(A⊗B)T = AT ⊗BT

(A+B)⊗ C = A⊗ C +B ⊗ C
(A⊗B)(C ⊗D) = AC ⊗BD

Lemma 2. (Xu et al. (2004)) For a given pair of x, y ∈ Rn,
and a positive-define matrix Q ∈ Rn×n, the following
inequality holds

2xT y ≤ xTQx+ yTQ−1y

3. CONSENSUS-BASED FORMATION WITH
PINNING CONTROLLERS

3.1 Stability analysis

Inspired by the pinning control scheme, the control input
can be designed as follows:

ui(t) =− k(t)[di(∆xi(t) + ∆vi(t)) +

N∑
j=1

lij(∆xj + ∆vj)]

(5)

where

k̇(t) =
1

2
eτtξ(t)TKξ(t)

D = diag{d1, d2, . . . , dN}
L̂ = L+D

γ = L̂⊗ In
ξ(t) = (∆xT (t),∆vT (t))T

K =

[
γ γ
γ γ

]
The symbol di denotes the diagonal element of matrix D,
and di > 0 indicates agent i is pinned.

With the developments as above, the main results are
presented in the following.
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Theorem. Suppose that the nonlinear function f(·) satisfies
Assumption 1, the multi-agent system (1) can achieve the
desired spatial configuration under control protocol (5), if
there exist positive constants τ > 0, α > 0, β > 0, k∗ > 0
satisfying the following

(1)λmin(L̂) > 1

(2)Γ < 0

where

Γ =

[
(1 + 2α)INn + (τ − k∗)γ (1− k∗)γ + τINn

(1− k∗)γ + τINn (3 + 2β + τ)INn − k∗γ

]
Proof. We consider a Lyapunov function defined by

V (t) =
1

2
ξT (t)

[
γ INn
INn INn

]
ξ(t) +

1

2
e−τt(k(t)− k∗)2

From the condition 1 in Theorem, the first term is positive
definite. It is obvious that the second term is non-negative.
Thus, the function V (t) is positive definite.

V̇ (t) =ξT (t)

[
γ INn
INn INn

]
ξ̇(t)

− 1

2
τe−τt(k(t)− k∗)2 + e−τt(k(t)− k∗)k̇(t)

=ξT (t)

[
γ INn
INn INn

] [
0Nn×1

∆fi

]
− ξT (t)×[

γ INn
INn INn

] [
0Nn −INn

k(t)(L̂⊗ In) k(t)(L̂⊗ In)

]
ξ(t)

− 1

2
τe−τt(k(t)− k∗)2 + e−τt(k(t)− k∗)k̇(t)

=ξT (t)

[
γ INn
INn INn

] [
0Nn×1

∆fi

]
+

1

2
ξT (t)

[
0Nn γ
γ 2INn

]
ξ(t)

− 1

2
k∗ξT (t)Kξ(t)− 1

2
τe−τt(k(t)− k∗)2

(6)

Using Assumption 1 and Lemma 1, the first term can be
derived that

ξT (t)

[
γ INn
INn INn

] [
0Nn×1

∆fi

]
≤1

2
∆xT (t)∆x(t) + ‖∆fi‖+

1

2
∆vT (t)∆v(t)

≤(
1

2
+ α)∆xT (t)∆x(t) + (

1

2
+ β)∆vT (t)∆v(t)

≤1

2
ξT (t)

[
(1 + 2α)INn 0Nn

0Nn (1 + 2β)INn

]
ξ(t)

(7)

Then, substituting (7) into (6), and using condition 2 in
Theorem, we have:

V̇ (t) ≤1

2
ξT (t)Γξ(t)− 1

2
τξT (t)

[
γ INn
INn INn

]
ξ(t)

− 1

2
τe−τt(k(t)− k∗)2

≤− τV (t)

(8)

Therefore, it can be derived that

V (t) ≤ V (0)e−τt (9)

By the condition 2 in the Theorem, it can be derived that
V̇ (t) < 0. Hence, by Lyapunov stability theory, the second-
order consensus is achieved under control protocol (5).

Fig. 1. Example illustration

3.2 Leadership hierarchy of pigeon flocks

The hierarchical structure in the in-flight leader-follower
relationship of pigeons are discovered by analyzing the
pigeon flight data (Nagy et al. (2010)). And the lead-
ership hierarchy model of pigeon flocks (Qiu and Duan
(2017)) enables agents to form a self-organizing hierar-
chical leadership network required in formation. In order
to expound the transformation process from a random
connected topology structure to the leadership hierarchy
demanded for a certain formation, graph theory is ap-
plied. The pigeon flock can be expressed as a undirected
graph. If the communication range Rc and distance Rij
between pigeons i and j satisfy the condition: Rij ≤ Rc, a
communication connection eij = (Vi, Vj) exists between
individual i and j. Therefore, a leadership edge exists
between the sequential pair (Vi, Vj), where Vj is the initial
vertex representing the leader j and Vi is the terminal
vertex denoting the follower i.

The final leadership network is shown in Fig.1 and the
specific steps are as follows:

Step 1. Establish interaction relationship network. Each
agent i attempts to identify the set N i

c of agents within
interaction range. The number of agents in N i

c is nic.

Step 2. Select the leader. The NL-th vertex VNL
is selected

to be the general leader, where NL = [(l1 + 1)/2 + 1/2],
RankNL

= 1, l1 is the length of the longest path p1. The
identifier FlagL of the first to the leader vertices in p1 are
set to be 1 and Rankk = |k− [(l1 +1)/2+1/2]|+1. Except
agent NL, if the identifier FlagkL = 1 of the k-th vertex, it
will follow the (k + 1)-th vertex. Otherwise, it will follow
the (k − 1)-th vertex.

Step 3. Form interim leadership network. If agent i is not
in p1 and agent j ∈ N i

c is in p1, agent i will be stored in set
p2 and follow agent j. Before all agents have determined
their leaders, repeat the preceding procedure. If agent j
satisfying the condition is not unique, agent i will follow
the greatest numbered one. The hierarchical rank and
identifier will change accordingly.

Step 4. Obtain final leadership network. The identifier
Flagic = 1 of agent i denotes the current leader and
hierarchical rank are temporary. If i ∈ p2, Flagic = 1.
Otherwise, agent i will keep following the current leader.
If agent i is not the only follower of the current leader, it
will continue to change its leader.

3.3 ACPIO for control parameters

In order to obtain the optimal control parameters com-
bination for the formation control of MASs, the fitness
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function is designed as follows (Xu et al. (2004);Vega et al.
(2018)):

J =

∫ t0

0

(UT (t)R1U(t) + ξT (t)R2ξ(t)). (10)

where U(t) = [uT1 (t), uT2 (t), . . . , uTN (t)]T , ξ(t) is the error
vector.R1 andR2 denote the corresponding weight matrix.

For MASs, the optimal parameters problem can be formu-
lated as finding the control parameters di and τ (5) that
minimize the fitness function J :

argmin J,

s.t.‖ui(t)‖ ≤ umax,
‖vi(t)‖ ≤ vmax,∀t ∈ [0, t0), i = 1, 2, . . . , N.

(11)

PIO is a novel swarm intelligence optimization method
based on the special pigeon behavior (Duan and Qiao
(2014)). The population in PIO is set to Np. The
pigeon i is associated with a position vector Xi =
[Xi1, Xi2, . . . , Xin]T and velocity vector V eli = [V eli1,
V eli2, . . . , V elin]T . The control parameters to be opti-
mized are constrained.

Unique to other optimization algorithms, two operators
of PIO algorithm contribute to the extension of search
span(Duan and Qiao (2014)). The map and compass
operator imitates the sun and the earth’s magnetic field
during pigeons flying. The new position and velocity of
pigeon i at the t-th iteration can be calculated with the
follows:

V eli(t) = V eli(t− 1)e−R·t + r1(Xg −Xi(t− 1)). (12)

Xi(t) = Xi(t− 1) + V eli(t− 1). (13)

where R is the map and compass factor, r1 is a random
number in the range of [0, 1] and Xg is the current global
best position which can be obtained by comparing all the
position among all the pigeons.

When close to the destination, they will rely on the
adjacent landmarks. In the landmark operator, half of
pigeons are decreased by Np in every generation. The
position updating rule for pigeon i at t-th iteration can
be given by:

Np(t) = Np(t− 1)/2. (14)

Xc(t− 1) =

∑
Xi(t− 1)J(Xi(t− 1))∑
Np(t− 1)J(Xi(t− 1))

. (15)

Xi(t) = Xi(t− 1) + r2(Xc(t− 1)−Xi(t− 1)). (16)

where r2 is a random number in the range of [0, 1].

In order to improve the population diversity and promote
the searching ability for global optima, the weight adaptive
strategy and chaos theory are applied in PIO algorithm.
The adaptive weight Ri can be calculated as follows:

Ri(t) =
Nc− t
Nc

∆Xi(t)
Rmax −Rmin
max{∆Xi(t)}

+Rmin. (17)

∆Xi(t) =

√√√√ n∑
k=1

(Xi,k −Xg,k)2. (18)

where Rmax and Rmin are maximum and minimum value
of Ri, Nc denotes the maximum iteration.

Chaos is a highly unstable motion of deterministic systems
in finite phase space which usually exists in nonlinear
systems. A new group of extremum with strong ergodicity

and irregularity can be obtained by using chaotic mapping
to help the algorithm to jump out of the local optimum.
Consider the following logistic equation.

xi+1 = µxi(1− xi), i = 0, 1, 2 . . .. (19)

where µ represents a control parameter, when 0 ≤ x0 ≤ 1,
µ = 4, which means logistic is in a completely chaotic
state. To guarantee xi ∈ [0, 1], we have made correspond-
ing changes as follows:

Cxi = (xi − xmin)/(xmax − xmin). (20)

Cxt+1
i = 4Cxti(1− Cxti). (21)

x̂i = xmin + Cxi(xmax − xmin). (22)

where Cxti and x̂i are the chaos variable after t iterations
and new value obtained by chaos optimization, respec-
tively.

Remark that, in the end of both operators, a greedy
strategy in (23) should be performed to improve the
solutions’ quality.

Xi(t) =

{
Xi(t), J(Xi(t)) > J(Xi(t− 1))
Xi(t− 1), J(Xi(t)) ≤ J(Xi(t− 1))

(23)

The process of ACPIO algorithm for solving formation
control parameters of MASs can be described as:

Step 1 : Initialize the position and velocity of agents and
identifier;

Step 2 : Obtain the hierarchical rank and identifiers by
leadership hierarchy model of pigeon flocks.

Step 3 : Initialize the parameters of ACPIO algorithm, such
as the population Nu, iteration threshold Nc1 and Nc2,
the stagnation threshold Smax etc. Randomly generate the
pigeons’ positions and velocities.

Step 4 : Calculate and evaluate the fitness of each pigeon
according to (10).

Step 5 : Update the adaptive factor R by (17) and the
position and velocity of pigeons by using map and compass
operator or landmark operator.

Step 6 : Update the iteration number of stagnation S. If
optimum is not updated, S = S + 1. Otherwise, S = 0.

Step 7 : Update the position of pigeons by using (20)- (22)
when S ≥ Smax.

Step 8 : Output the optimal results when terminal condi-
tion is satisfied. Otherwise, go to Step 5.

Step 9 : Apply the optimal parameters in pinning control
method to establish and maintain a desired spatial config-
uration.

4. NUMERICAL SIMULATIONS

In this section, in order to verify the feasibility and ef-
fectiveness of our proposed method, series of numerical
simulations have been conducted. The initial communi-
cation topology among the agents is shown in Fig.1(a).
Let the nonlinear function be f(xi(t), vi(t), t) = [cos(4t) +
0.01cos(2xi(t)) + 0.01sin(4vi(t))] ∗ 12 and k∗ = 2. The
hierarchical rank and control parameter are obtained by
leadership hierarchy strategy and ACPIO algorithm, re-
spectively. The comparative evolution curves shown in
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(a) The RMSE of position (b) The RMSE of position

(c) The RMSE of velocity (d) The RMSE of velocity

(e) The position trajectories (f) The position trajectories

Fig. 2. Comparative simulation results under ideal condi-
tion.

Fig. 4 illustrate that ACPIO can find a better solution
than standard PIO algorithm due to its less cost.

Case 1 Ideal condition. A flock of 8 agents is disposed to
move under an ideal condition. According to the leadership
hierarchy network shown in Fig.1(b), the agents with high
rank are chosen as the pinned ones such as agents 2, 3, 4
and 7. In addition, the optimal parameters d2 = 49.5, d3 =
11.9, d4 = 16.4, d7 = 13.7 and τ = 0.40. Fig. 2(a) and
Fig. 2(c) show the root mean square error (RMSE) of
the position and velocity using the proposed method,
respectively. The corresponding position trajectories and
formation forming of agents are shown in Fig. 2(e). Com-
parative simulations are carried out without leadership
hierarchy relationship using the same initial parameters.
The corresponding results are shown as Figs 2(b), 2(d)
and 2(f). Both methods can achieve the desired formation,
but the performance of proposed approach is more superior
because of its less RMSE of position and velocity.

Case 2 Agents failure. Based on case 1, the leadership
hierarchy network under the circumstance that one or
more agents fail at a time. Assuming that the failure
time Tf = 30s and the failure agent index Numf = 5.
Therefore, the hierarchical network changes voluntarily
with current states. The index of pinned agents is 2,
3, 4 and 6. The optimal parameters are recalculated as
d2 = 16.6, d3 = 4.8, d4 = 17.6, d6 = 15.3 and τ =
0.73. Fig. 3(a) and Fig. 3(c) illustrate the RMSE of the
position and velocity using the proposed method after
agent failure, respectively. Fig. 3(e) describes the position
transformation of agents during formation reconstruction.
As shown in Fig. 3(e), after failure of agent 5, the general

(a) The RMSE of position (b) The RMSE of position

(c) The RMSE of velocity (d) The RMSE of velocity

(e) The position trajectories (f) The position trajectories

Fig. 3. Comparative simulation results in case of agent 5
failure.

Fig. 4. The comparative evolution curves of PIO and
ACPIO

leader changes from agent 5 to agent 7. Comparative
simulations are also carried out using the same initial
parameters. The corresponding results are shown as Figs
3(b), 3(d) and 3(f). Therefore, it is clearly that the
proposed method is fault-tolerant.

5. CONCLUSION

This paper mainly provides a consensus-based formation
control method for MASs. Using the constrained adaptive
chaotic PIO algorithm and leadership hierarchy mecha-
nism, the performance of the proposed pinning control ap-
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proach is superior in terms of adaptability and flexibility.
In addition, utilizing Lyapunov stability theory and matrix
theory, the sufficient conditions are derived theoretically
for achieving the desired formation pattern. Numerical
simulation results verify the feasibility and effectiveness
of the proposed method.
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