
Closed-loop real-time supply chain
management for perishable products ?

Fernando Lejarza, Michael Baldea

McKetta Department of Chemical Engineering, The University of
Texas at Austin, Austin, TX 78712, USA (e-mail: lejarza@utexas.edu,

mbaldea@che.utexas.edu).

Abstract: Supply chain networks are dynamical systems with particular control challenges
that stem from inventory deterioration and external disturbances (i.e., unanticipated consumer
demand, time delays, etc.). For industries handling highly perishable inventory (e.g, fresh
produce, vaccines, biologics) controlling product quality throughout the multiple echelons
of the supply chain is critical to minimize inventory waste and satisfy consumer quality
requirements. However, quality, as a function of time and environmental conditions (i.e.,
temperature, humidity, light, etc.), is difficult to model accurately resulting in unpredicted
inventory spoilage. In this paper we demonstrate a novel closed-loop, feedback-based control
framework that employs real-time product quality measurements for optimal supply chain
management. A moving horizon approach is used to periodically update decisions (i.e.,
production, transportation, storage, and respective environmental conditions) based on fed-
back information. We demonstrate that the postulated feedback controller effectively stabilizes
the supply chain dynamics, while minimizing costs. An illustrative case study is provided.

Keywords: Supply chain management, Perishable inventory, Quality control, Feedback control

1. INTRODUCTION

Supply chains are complex, time-sensitive networks of fa-
cilities (i.e., suppliers, manufacturers, distribution centers,
and retailers) experiencing constant exchange of differ-
ent products and information. For enterprises to remain
competitive, efficient supply chain management (SCM)
can reduce production, inventory, and transportation costs
while simultaneously satisfying, oftentimes uncertain, con-
sumer demand (Shah, 2005; Papageorgiou, 2009). Control-
theoretic approaches have been extensively applied to
SCM problems (Perea et al., 2000; Sarimveis et al., 2008).
Similar to the systems studied under control theory, supply
chain models are often comprised of multiple types of
inventory balances, demand fluctuations, lead-time delays,
sales forecasting, etc. Therefore, for improved performance
and stability, SCM calls upon frameworks conventionally
thought to belong to the realm of process industries.

An additional intricacy is when inventory quality evolves
(typically decays) during the product’s “residence time”
through the supply chain, requiring optimal control of en-
vironmental conditions to guarantee that the quality and
efficacy of the products meet consumer standards (Black-
burn and Scudder, 2009). Failing to consider such product
quality dynamics within SCM can result in substantial
inventory waste, for which a stark example is the food
industry, where approximately 25% of the food produced
for human consumption in the United States is wasted
along the supply chain (Dou et al., 2016). To address
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this problem, an increasing number of publications have
proposed approaches to control perishable inventory sys-
tems (Abbou et al., 2017; Ignaciuk, 2013; Hamiche et al.,
2019). None of these works, however, consider the supply
chain structure comprehensively (i.e., different inventory
dynamics across supply chain facilities), as well the im-
pact of environmental conditions used to regulate product
quality. From an operations research perspective, some
works have addressed temperature-sensitive product per-
ishability in multi-echelon supply chains (e.g., (Rong et al.,
2011; Amorim et al., 2012)). Such frameworks integrate,
typically empirical, data-driven product quality models
within SCM schemes for optimal production, distribution,
and control of environmental conditions throughout the
supply chain (Abbott, 1999; Van Boekel, 1996). The open-
loop nature of these formulations, however, fails to account
for the genetic, environmental, and handling variability
experienced by products in the daily operation of the
supply chain, which is expected to significantly disturb
SCM control policies (Goyal and Giri, 2001). In an effort
to “close the loop”, Lejarza and Baldea (2019) proposed
a receding horizon optimization strategy to account for
fluctuations in product degradation rate and demand.

Recent technological advances (e.g., smart packaging
(Kuswandi et al., 2011) and hyperspectral imaging (Gowen
et al., 2007)) have enabled reliable, real-time, and non-
destructive product quality measurements throughout all
stages of the supply chain. Motivated by these develop-
ment, in the work herein we propose a control theoretic
framework to integrate the aforementioned technologies
with existing supply chain optimization models for real-
time management of perishable inventory systems.
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Our main contribution is to develop a closed-loop, feedback-
based control strategy that uses current inventory quality
and quantity measurements to reduce supply chain op-
erating costs, while satisfying consumer demand. Based
on an existing perishables production-distribution model
(Rong et al., 2011), we provide a detailed stability analysis,
and demonstrate how different feedback strategies impact
production, distribution, and environmental conditions
control polices. To illustrate our framework we perform
numerical simulations on a representative supply chain
network, and draw conclusions on the different supply
chain management and quality control strategies.

2. PROBLEM STATEMENT

2.1 Product quality dynamics

We define product quality, q(t), as a time dependent vari-
able, and assume there exists at least one control variable
k(t) which can be independently manipulated during in-
ventory storage and shipment, which directly influences
q(t). The evolution of product quality is therefore assumed
to be of the form:

dq(t)

dt
= f(t, q(t), k), q(t0) = q0 > 0 (1)

We further assume that quality is non-negative and that
degrades monotonically in time, i.e., f(t, q, k) ≤ 0 ∀ t, k, q.
We use a difference equation to discretize the initial value
problem in (1), and obtain:

q(t+ ∆t) ≈ q(t) + f(t, q(t), k)∆t (2)

Some additional features of the quality control problem
are:

(1) there exist upper and lower bounds on k(t), k ≤
kmax and k ≥ kmin, respectively, representative of
the physical capabilities of the inventory storage and
distribution equipment available

(2) there exists a quality threshold qmin > 0, such that
if q(t) ≤ qmin the product is considered spoiled and
needs to be discarded at a cost

(3) the product naturally degrades in time, such that

lim
t→∞

q(t) = q∞ < qmin

and the quality drops below the minimum threshold
in a finite amount of time such that the product
cannot be used to meet consumer criteria

Generally product quality models, as (1), are obtained
empirically, as opposed to being derived from first prin-
ciples, and are based on (perceived) metrics such as color,
firmness, and water for fresh produce (Abbott, 1999;
Van Boekel, 1996). Therefore, in practical SCM appli-
cations, these empirical models are unable to accurately
predict product degradation owing to the significant vari-
ability that exists between different units/batches of the
same product. Such inherent modeling errors call upon
closed-loop control frameworks such that corrective deci-
sions can be implemented when realizations of product
quality deviate from the model predictions.

2.2 Supply chain dynamics

Several previous works developed dynamic models for in-
ventory control in the supply chain (e.g., (Sarimveis et al.,

2008) and references therein). Since each type of facility
employs different manipulated variables (e.g., production,
incoming shipments, and sales) to regulate inventory lev-
els, each will naturally have different dynamic models.
In the most general from, the discrete time inventory
dynamics are derived from conservation principles and can
be written as:

Ii,t+1 = Ii,t +
∑

m∈M(i)

uin
m,t−ωm

−
∑

n∈N (i)

uout
n,t (3)

where

• the state variable Ii,t ≥ 0 is the amount of inventory
at time t in facility i

• the manipulated variables uin
m,t ≥ 0 ∀m ∈ M(i)

represent inventory inflows (inbound shipments and
production) at facility i

• the manipulated variables uout
n,t ≥ 0 ∀n ∈ N (i)

represent inventory outflows (outbound shipments
and sales) at facility i

• the time delay ωm is the lead-time for inventory
inflows (production or transportation lead-time)

From a control-theoretic standpoint, multiple approaches
exist for dealing with systems as the one in (3) (Sarimveis
et al., 2008). Of particular interest is model-based control
which employs the dynamic model in (3) to predict fu-
ture supply chain states and compute optimal production-
distribution policies. Frameworks such as model predictive
control (MPC) have been extensively studied for supply
chain management problems (Perea-Lopez et al., 2003;
Subramanian et al., 2013, 2014) owing to their capability
to handle multiple state and control variables, time delays,
disturbances, as well as state and input constraints. We
will elaborate further on our proposed control methodol-
ogy in a subsequent section.

2.3 Integrated supply chain and product quality dynamics

The general dynamic models for product quality (1) and
inventory (3) must be integrated such that consumer
standards are met. We follow the modeling approach
introduced by Rong et al. (2011), which accounts for time-
varying product quality as a function of environmental
conditions throughout the supply chain. The diagram in
Figure 1 is demonstrates the flow of perishable inventory,
as a function of k(t). The line breaks in the quality function
(red line in Figure 1) convey unmodeled, random product
spoilage at the different stages of the supply chain.

Fig. 1. Evolution of supply chain (inventories) and prod-
uct (quality) dynamics over time for a producer P ,
distribution center D, and retailer R.
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To integrate the quality model with the inventory dynam-
ics in (3), we consider a finite, discrete number of qual-
ity levels which are merged with inventory variables Ii,t.
Following the approach in (Rong et al., 2011), inventory
variables Ii,q,k,t, for facility i at time t, are characterized
in terms of quality q and environmental conditions k .
Similarly, the aforementioned manipulated variables be-
come uin

m,q,k,t−ωm
and uout

n,q,k,t. The integrated supply chain
dynamic model for facility i reflects a degradation rate of
∆qi,k quality levels per time period in storage, and ∆qm,k
quality units during transportation lead time ωm. The
inventory dynamics are given by:

Ii,q,k,t+1 = Ii,q+∆qi,k,k,t +
∑

m∈M(i)

uin
m,q+∆qm,k,k,t−ωm

−

∑
n∈N (i)

uout
n,q,k,t

(4)
for all q ∈ {Q|qi,min ≤ q ≤ qi,max}, where Q is the set
of all quality levels, and qi,min, qi,max are the minimum
and maximum product qualities allowed in facility i,
respectively.

We note that the aforementioned supply chain variables
are typically subject to constraints regarding production,
shipment, and storage capacities, as well demand satisfac-
tion among others. Further details on the mathematical
expressions of these constraints can be found in (Rong
et al., 2011) and (Perea-Lopez et al., 2003).

3. FEEDBACK-BASED CONTROL

The control scheme proposed herein stems from the eco-
nomic model predictive control (EMPC) paradigm (Rawl-
ings and Mayne, 2009; Ellis et al., 2014), which was re-
cently demonstrated for supply chain systems with de-
mand disturbances (Subramanian et al., 2014). These
schemes involve solving a finite horizon optimization prob-
lem in a rolling horizon fashion, by applying the first
element in the control sequence to the system, and ob-
taining the next state measurement which becomes the
initial state when the problem is solved again. To conduct
a comparative analysis of our proposed methodology we
consider the following three main feedback cases:

• Case 1 : feedback information includes inventory lev-
els, and environmental conditions are fixed over time
to some conservative value (assumed to result in min-
imal product deterioration)
• Case 2 : feedback information includes inventory lev-

els, and environmental conditions are regulated over
time to attain further cost minimization
• Case 3 : feedback information includes both inventory

levels and quality measurements, and environmental
conditions are regulated over time to minimize costs
counteracting any measured product quality distur-
bances

For notation compactness, in this section we denote the
state variables Ii,q,k,t with the vector x ∈ X, and manipu-
lated variables uin

m,q,k,t−ωm
, uout

n,q,k,t with the vector u ∈ U.
The sets X and U capture the constraints on state and
input variables, respectively, and are typically of the form
X = {x ∈ RNx | Axx ≤ bx} and U = {u ∈ RNu | Auu ≤

bu}, bounding state and input variables from above and
below.

Assumption 1. The constraint set X is convex and closed.
The constraint set U is convex and compact.

We consider an objective function reflecting production,
transportation, holding, and disposal costs which are as-
sociated with the states and control inputs, and is denoted
as the stage cost function `(x, u) : X× U→ R, which is a
linear function of the form

`(x, u) = cTx x+ cTuu

where cx and cu are vectors of cost factors for state and
input variables, respectively.

Definition 1. (Optimal steady-state). If the integrated in-
ventory and quality dynamic model for the entire supply
chain is given in compact form by x+ = h(x, u), where
h(x, u) : X × U → X, the optimal-steady state (xs, us)
solves

argmin
x,u

`(x, u) s.t. x = h(x, u), x ∈ X, u ∈ U (5)

and is assumed to be unique.

The MPC objective function VN (x,u) : X × UN → R
minimizes the operating costs of the supply chain for a
given prediction horizon N , and depends on the current
system state and predictions on the future evolution of
both states and inputs. The control input sequence over
time, u, is given by u = {u0, u1, · · · , uN−1}. Only the
initial state x is considered since future (predicted) states
are implicit functions of u. The control objective can be
therefore written as:

VN (x,u) =

N−1∑
t=0

`(xt, ut)

For the work herein we consider a centralized controller,
implying that there is a global supply chain coordinator
that has complete information of the dynamics, as well
as current measurements of state variables at all facilities
(i.e., the states are globally observable). In this way,
optimal control inputs are computed for each node such
that the total supply chain operating costs are minimized.
Therefore, a single optimization problem is solved online
and is given by:

min
u

VN (u, x)

s.t. xt+1 = h(xt, ut) ∀t ∈ I0:N−1

xt ∈ X, ∀t ∈ I0:N−1

ut ∈ U, ∀t ∈ I0:N−1

x0 = x

xN = xs

(6)

where I0:N−1 denotes the set of integers {0, . . . , N − 1}.
The resulting implicit feedback control law

u = κN (x) = u0(x) (7)

is the first element in the optimal solution of the optimiza-
tion problem in (6). The admissible region, XN , is

XN = {x ∈ X|∃u ∈ UN , such that (6) is feasible} (8)

Proposition 1. The product quality dynamics are inher-
ently stable, and regulating environmental conditions k(t)
does not affect the stability of the integrated supply chain
dynamic system.
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Proof. By definition, the quality variables are bounded
from above and below so that q∞ ≤ q(t + 1) ≤ q(t) ≤
q0 ∀t ∈ I0:N−1. This is because dq(t)/dt = f(q(t), k(t)) <
0 ∀k(t) ∈ S ∀t ∈ I0:N−1, which implies that eventually the
product spoils such that limt→∞ q(t) = q∞ ≤ qi,min and
inventory losses occur. Clearly, q∞ is an asymptotically
stable equilibrium for the quality dynamics, irrespective
of the manipulated environmental conditions k(t). While
an inappropriate choice of input variable k(t) may result
in inventory waste, ultimately it will never make the
integrated supply chain dynamics unstable (stability here
is implied in the bounded-input, bounded-state sense,
meaning that inventory will be non-negative and will not
exceed storage capacity at all time periods).

Proposition 2. Demonstrating the stability of the inven-
tory balances as in (3) (i.e., ignoring product perishability)
is sufficient to guarantee the stability of the integrated
supply chain model under the proposed feedback-based
algorithm.

Proof. If the dynamical system in (3) is closed-loop stable
under the feedback control law κN (x), the stability of the
integrated supply chain dynamical system in (4) is implied
by Proposition 1.

In order to demonstrate the closed-loop stability of (3) we
adopt the same approach as Subramanian et al. (2014).

Remark 1. Without considering inventory quality dynam-
ics (i.e., assuming that product quality is constant over
time) the supply chain inventory dynamics are linear and
are amenable to a state-space representation of the form
x+ = Ax + Bu (e.g., (Wang and Rivera, 2008; Subrama-
nian et al., 2014)).

Assumption 2. There exists a multiplier λs such that
(xs, us) is the unique solution to

argmin
x,u

`(x, u)+λTs [x−(Ax+Bu)] s.t. x ∈ X, u ∈ U (9)

Assumption 3. The system x+ = Ax + Bu is strictly
dissipative with respect to the supply rate s(x, u) =
`(x, u)− `(xs, us) and storage function λ(x) = λTs x. That
is, there exists a positive definite function ρ(·) such that

λTs (Ax+Bu− xs) ≤ ρ(x− xs) + s(x, u) ∀(x, u) ∈ X× U

The following theorem is from (Subramanian et al., 2014,
Theorem 4).

Theorem 1. (Lyapunov function with terminal constraint).
Let the the system (A,B) be stabilizable and Assumptions
1, 2, and 3 hold. Then the steady-state solution of the
closed-loop system x+ = Ax + BκN (x) is asymptotically
stable with XN as the region of attraction. The Lyapunov
function is

Ṽ (x) = V 0
N (x) + λTs [x− xs]−N`(xs, us) (10)

where V 0
N (x) is the optimal cost of (6).

Proof. The proof is the same as the one presented in
(Rawlings et al., 2012, Theorem 2).

Remark 2. Since different feedback strategies and ap-
proaches for controlling environmental conditions stem
from Cases 1, 2, and 3, each case will have a different
control law κN (x). Therefore, as long as the optimization
problem defined in (6) is feasible in each case, the previous
stability analysis holds.

4. NUMERICAL EXAMPLES

To illustrate the advantages of the proposed supply chain
and product quality control scheme, we consider an illus-
trative case study consisting of a network of two producers
(P1 and P2) that supply inventory directly to retailers (R1,
R2, R3, and R4), as shown in Figure 2.

R1 R2 R3 R4

P1 P2

Fig. 2. Supply chain network topology considered for the
subsequent numerical experiments.

The time scale discretization interval is in days, and
decisions are made and revised on a daily basis. For the
controller, the prediction horizon of choice is N = 10 days.
The transportation lead times (ωi,j in days) and costs (fi,j
in monetary units per unit shipped) for shipments between
producer i and retailer j are:

ωi,j =

[
2 3 2 2
1 1 1 1

]
, fi,j =

[
0.44 0.66 0.44 0.66
7.5 7.5 7.5 7.5

]
Inventory storage costs are 2 monetary units per day per
inventory unit, and are assumed to be the same at all
facilities. Transportation and storage costs are dependent
on temperature, and obtained by multiplying them by
a factor nk which accounts for the coefficient of perfor-
mance for cooling at different temperatures. As discussed
earlier, we consider a finite number of possible storage
and shipment temperatures, which are in this case k =
{2, 4, 6, 8, 10} ◦C, and as in (Rong et al., 2011) we con-
sider nk = [1.00 0.88 0.77 0.65 0.54], reflecting the fact
that lower temperatures are costly. Further, production
costs are lower at P1 and P2, and are 0.165 and 1.65
monetary units per unit manufactured, respectively.

As for the product quality dynamics, we consider an ex-
ponential Arrhenius temperature-dependent, zeroth-order
model of the form:

dq

dt
= −k0 exp(−Ea/RT ), q(t = 0) = q0 (11)

where k0 is the pre-exponential factor, Ea is the activation
energy, R is the universal gas constant, and T is tempera-
ture in Kelvin. Such models have been frequently used to
capture the degradation of food products over time (Black-
burn and Scudder, 2009). Following the modeling approach
in (Rong et al., 2011), we consider a discretization of
750 quality levels which provides enough resolution to
accurately represent the quality dynamics as a function of
temperature. Using this scale, the maximum initial quality
would be a level of 750. For example, a consumer quality
requirement of 80%, would correspond to a quality level of
600 (Rong et al., 2011). We note that this discretization is
subject to change depending on the product under consid-
eration. The resulting daily product degradation for the
different predefined temperatures was obtained directly
from (Rong et al., 2011) and is ∆qk = [11 13 16 20 27].
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In this case study, demand (number of inventory items
requested at time period t) is assumed to be deterministic
and to have a constant value of 650 units per day at
each retailer facility. While this framework is naturally
suited to also account for demand forecasting errors, as
has been previously demonstrated (Perea-Lopez et al.,
2003; Subramanian et al., 2013, 2014; Lejarza and Baldea,
2019), the novelty of our proposed work is to address
measurable “disturbances” in product quality. To simulate
such effects, quality disturbances, denoted δq, are random
such that δq ∈ [−10, 10], and are injected to the model at
each sampling time after solving (6). For the two-echelon
supply chain example herein, quality disturbances occur
during shipment from producers to retailers such that
si,j,q,k,t → si,j,q+δq,k,t for q∞ ≤ q(t) + δq(t) ≤ q(t+ 1).

4.1 Results

Numerical simulations were conducted over a time period
of 30 days, decisions and feedback being implemented
daily. Figure 3 shows the average disturbance on inventory
quality during shipments, over the entire time horizon.
The resulting inventory levels and storage temperatures
are displayed in Figure 4.

Fig. 3. Average quality disturbance during shipments.

Fig. 4. Total inventory (top), and average storage temper-
ature in ◦C (bottom) over time.

From the top plot in Figure 4, we note that each case
is stabilized by their respective feedback control law.
All cases are started at a non steady-state amount of

inventory, but we observe that the steady-state is rapidly
attained. The steady-state total inventory level is 2600
for all cases, which corresponds to the total daily demand
(4×650 units). For Case 2, we note that periodic inventory
disturbances occur resulting from product waste, due
to the unmodeled quality fluctuations, which cannot be
prevented without decreasing storage temperatures.

From the bottom plot in Figure 4, per definition of Case
1, storage temperature is fixed at 4 ◦C and does not vary
neither in time nor per facility. To potentially minimize
operating costs, Cases 2 and 3 allow for flexible and higher
storage temperatures, relative to Case 1. In Figure 4 we
note that Case 3 deviates from the storage temperatures
obtained for Case 2 as a consequence of the unmodeled
product quality disturbances that accounted for via the
proposed feedback strategy. The lower temperatures for
Case 3 decrease the rate of inventory degradation, counter-
acting the random product spoilage (i.e., δq < 0) that oc-
curred during transportation. These observations confirm
that different types of feedback (i.e., the different cases
considered) yield vastly different optimal control policies
on the environmental conditions during storage. In the
(likely) presence of product quality forecasting errors, it
is important to consider the appropriate feedback mecha-
nism, namely Case 3, not only for improved consumer sat-
isfaction, but also for optimal supply chain performance.

Next, in Table 1 we consider how the different feedback
control laws affect inventory production policies for each
of the cases. Since producing inventory at P1 is inexpen-
sive, relative to P2, in all cases producer P1 operates at
maximum capacity to meet incoming orders. In Case 1,
the lower storage temperatures obtained by fixing k to
a conservatively low, but expensive value, result in zero
inventory waste despite the random spoilage shown in
Figure 3. Further, implementing product quality feedback
in Case 3, allows for storage temperature adjustments also
preventing inventory waste. Therefore, for Cases 1 and 3,
shipments from P1 to retailers are, in general, of sufficient
quality and quantity to meet demand such that few orders
are placed to P2. In Case 2, lacking inventory quality
feedback, a substantial amount of the inventory shipped
from P1 to retailers is spoiled and must be disposed at
a cost. In order to fulfill demand, an increased amount of
(more expensive) orders must be placed to P2, as displayed
in Table 1.

Table 1. Daily average production and inven-
tory waste (in number of product units) with

respective standard deviation

Production at P1 Production at P2 Waste

Case 1 2300 ± 0 381 ± 319 0 ± 0
Case 2 2300 ± 0 1398 ± 513 576 ± 130
Case 3 2300 ± 0 380 ± 317 0 ± 0

Last, Table 2 shows the average daily operating cost and
standard deviation over the 30 day time horizon. Table
2, as well as the previously discussed results, emphasize
that the choice of control policy has a significant impact
on supply chain operating costs. While Case 1 results in
inefficient temperature control (i.e., higher temperatures
are admissible to reduce costs), relaxing the fixed temper-
ature constraint can result in substantially worse economic
performance when product quality feedback is not imple-
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mented (i.e., Case 2). The proposed feedback strategy in
Case 3 attains the lowest operating costs, indicating that
measuring product quality throughout the supply chain is
critical to improve operations by reducing inventory waste,
and energy consumption.

Table 2. Daily average operating costs (in mon-
etary units) and respective standard deviations

Average Standard deviation

Case 1 46,703 21,561
Case 2 89,884 26,732
Case 3 35,681 17,589

5. CONCLUSION

In this paper, we introduced a novel closed-loop feedback-
based SCM optimization framework for perishable inven-
tory. On one hand, we demonstrated that while conser-
vatively fixing environmental conditions in Case 1 pre-
vents inventory spoilage, it can substantially increase the
operating costs. On the other hand, optimal control of
environmental conditions can result in significant amounts
of wasted inventory when: (i) product degradation is not
modeled accurately or (ii) no inventory quality feedback is
implemented. We showed that implementing recent tech-
nological developments in product quality monitoring via
feedback results in improved decision-making, reducing
energy consumption, inventory waste, and thereby mini-
mizing the total supply chain operating costs.
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