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Abstract: We present a novel distributed heterogeneous multi-population evolutionary dynam-
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1. INTRODUCTION

The evolutionary game dynamics have become a powerful
tool in the modeling of strategic interactions as in Hof-
bauer and Sigmund [1988], Barreiro-Gomez and Tembine
[2018a]. Recently, this approach has been implemented in
many engineering applications as in Quijano et al. [2017].
Moreover, in Tian et al. [2019], authors propose dynamical
attacking strategies in the simulation of reputation man-
agement scheme evaluation applying evolutionary games.
In Kawano et al. [2019], authors study the evolutionary
dynamics of two different types of communities in an
evolving environment, and in Stella and Bauso [2019], a
behavior from honeybee swarms is generalized to duopolis-
tic competition and opinion dynamics in the context of
evolutionary dynamics.

Evolutionary dynamics represent the evolution of a pop-
ulation composed of a large number of agents. In this
regard, the evolutionary dynamics are a non-atomic and
anonymous approach, i.e., the decisions of an individual
agent have a negligible influence over the whole popula-
tion. Likewise, this approach implies that all the agents
are homogeneous. Therefore, population dynamics assume
that the switching rates, for a given pairwise interaction,
have the same structure for all the decision makers within
the population. In contrast, this paper suggests to take
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port from the U.S. Air Force Office of Scientific Research under grant
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into account that there must be different types of revision
protocols within a same mass of agents. For convenience,
we consider a society that comprises the collection of all
the heterogenous agents in a strategic interaction. Fur-
thermore, there are different classes of masses that are
forming diverse populations. Due to the fact that each
population evolves differently, i.e., its evolution is given
by different evolutionary dynamics, then the proposed
approach becomes a multi-population case. Moreover, we
allow different populations to interact to each other within
the same society. Indeed, even though the evolution of
two different populations are described by the same evo-
lutionary dynamics, they might have different structures
regarding migration constraints. Hence, strategies play
different roles. For instance, there are strategies that allow
the interaction to other populations known as migration
nodes, but there are also some strategies that only allow
an interaction within the same population.

The contribution of this paper is a novel distributed het-
erogeneous multi-population evolutionary dynamics ap-
proach, in which the evolution of different populations
composing a unique society is described by means of a
coupled and distributed system. We present stability cer-
tificates, showing that the multi-population approach can
still be used for the same purposes as the single-population
counterpart. To this end, we present an off-line economic
dispatch problem.

Notation: Let R, R>0, R≥0 denote the set of real, positive
real, and non-negative real numbers, respectively. The
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decision variables of population p are mostly denoted with
an associated super-index, e.g., xp ∈ Rnp . Moreover, 1n
(0n) denotes the vector with n unitary (null) entries, i.e.,
1n = [1 . . . 1]>

(
0n = [0 . . . 0]>

)
, and In is the

n × n identity matrix. Boundary of the set ∆ is denoted
by ∂∆. Finally, consider the operator [·]+ = max(0, ·).

2. HETEROGENEOUS MULTI-POPULATION
EVOLUTIONARY DYNAMICS

Let us consider a society composed of a set of q ∈ N>0

heterogeneous populations P = {1, . . . , q} (e.g., Figure 1).
In addition, the society comprises a large and finite number
of rational agents or decision makers. Let πs ∈ R>0 denote
the mass of the society. Each population p ∈ P has an
associated mass πp ≤ πs, which is composed of a large and
finite number of agents. These agents make the decision to
select a certain strategy within the population they belong
to, or can migrate to a different population within the soci-
ety pursuing to enhance their payoff. Let Sp = {1, . . . , np}
be the set of available strategies in the population p ∈ P,
and the scalar xpi be the portion of agents selecting the
strategy i ∈ Sp in the population p ∈ P. The vector
xp = [xp1 . . . xpnp ]> ∈ Rnp

denote the p-population
state, or the strategic distribution in the pth population.
Each population has a set of feasible population states
given by ∆p

+(πp) =
{
xp ∈ Rnp

≥0 :
∑
i∈Sp x

p
i = πp

}
, ∀p ∈ P,

and the tangent space of the simplex ∆p
+(πp) is given

by T∆p
+ =

{
zp ∈ Rnp

:
∑
i∈Sp z

p
i = 0

}
, for all p ∈ P.

It follows that there exists a relationship between the
population states, the population mass and the society
mass, i.e.,

∑
p∈P

∑
i∈Sp x

p
i =

∑
p∈P π

p = πs. Let π =

[π1 . . . πq]> ∈ Rq≥0 denote the society state or the
strategic distribution along the entire society, i.e., the
allowed mass within each population is decided throughout
the society. Then, consider the following simplex set

∆s =

π ∈ Rq>0 :
∑
p∈P

πp = πs

 . (1)

As previously mentioned, agents make decisions in order
to maximize their payoffs, which are determined by a
fitness function, i.e., let fpi : ∆p

+(πp)→ R be the function
corresponding to the portion of agents xpi selecting the
strategy i ∈ Sp, for all p ∈ P. Hence, let fp : ∆p

+(πp) →
Rnp

denote the population fitness function, i.e., fp(xp) =
[fpi (xp) . . . fpnp(xp)]>.

At each population, there is a portion of agents in charge of
coordinating with other populations. In other words, there
are strategies working as a gate for both emigration and
immigration. Let Mp ⊂ Sp be the set corresponding to
the migration strategies in the population p ∈ P. Hence,
Let gp = fpi (xp) : ∆p

+(πp) → R be the fitness function
corresponding to the migration strategy i ∈ Mp, for all
p ∈ P. LetM = {1, . . . ,m} be the set of m ≥ q migration
nodes. Notice that, there are not isolated populations (it
is possible that agents immigrate and/or emigrate to/from
each population).

Assumption 1. For simplicity, we consider there is a
unique strategy at each population for the migration to
other populations, i.e., the set of migration strategies Mp

is a singleton set, for all p ∈ P. �

In addition, there are two different types of migration: (1)
switching among strategies within the same population,
and (2) migration among populations. Indeed, there are
constraints for all the possible migrations in the entire
society represented by undirected and connected graphs
as explained next.

Let Gp = (Sp, Ep, Ap) be the connected graph representing
the possible migration among strategies within the same
population p ∈ P, where Ep ⊆ {(i, j) : i, j ∈ Sp}
represents the possible interaction among the portion of
agents selecting the strategies, i.e., if (i, j) ∈ Ep, then the
portion of agents xpi and xpj can interact to each other
and migration between the strategies i and j can occur.
Moreover, Ap ∈ {0, 1}np×np

is the adjacency matrix of
the graph Gp. On the other hand, let G = (M, E , A) be
the undirected graph representing the possible migration
among populations, where E ⊆ {(p, r) : p, r ∈ M}
represents the possible interaction among populations. It
follows that considering Assumption 1, if (p, r) ∈ E then
agents in the population p ∈ P can migrate to population
r ∈ P, or equivalently, portion of agents xpi and xrj can
interact, where i ∈Mp and j ∈Mr. Similarly, the matrix
A ∈ {0, 1}m×m is the adjacency matrix of the graph G.

This work is developed under the framework of games with
monotone fitness functions and/or full-potential games as
defined below.

Definition 1. The game fp : ∆p
+(πp) → Rnp

for p ∈ P
is monotone decreasing if (xp − yp)> (fp(xp)− fp(yp)) ≤
0, for all xp, yp ∈ ∆p

+(πp). Alternatively, if fp(xp) is
continuously differentiable and monotone decreasing, a
sufficient condition is Dfp(xp) � 0. �
Definition 2. If there exists a continuously differentiable
potential function V p : Rnp

≥0 → R, such that fp(xp) =

∇V p(xp), for all xp ∈ Rn≥0, then fp(xp) is a full-potential
game. �

Additionally, we consider two different solution concepts,
i.e., the Nash equilibria in its traditional form (Defini-
tion 3), and over graphs depending on the social inter-
action structure, or equivalently, considering migration
constraints (Definition 4).

Definition 3. The population state xp∗ ∈ ∆p
+(πp) is a

Nash equilibrium if each used strategy entails the maximum
benefit for the proportion who is choosing it as in Sandholm
[2010], i.e., the set NE(fp(xp)) = {xp ∈ ∆p

+(πp) : xpi > 0
=⇒ fpi (xp) ≥ fpj (xp), ∀ i, j ∈ Sp}, for all p ∈ P,
corresponds to the Nash equilibria. �
Definition 4. Let Ap ∈ {0, 1}np×np

be the adjacency ma-
trix of the graph Gp representing the migration constraints
in the pth population. The population state xp∗ ∈ ∆p

+(πp)
is a Nash equilibrium if each used strategy entails the max-
imum benefit in the neighborhood for the proportion who is
choosing it. The set NEG(fp(xp), Ap) = {xp ∈ ∆p

+(πp) :
xpi > 0 =⇒ fpi (xp) ≥ fpj (xp), ∀ i ∈ Sp, j ∈ N p

i }, for all
p ∈ P, corresponds to the Nash equilibria on graphs. �

There exists an equivalence between NE(fp(xp)) and
NEG(fp(xp), Ap) depending on the graph G as stated
below in Lemma 1.

Lemma 1. If the possible interaction in a population is
given by an undirected connected graph Gp, then the set of
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Population 1 Population 2 Population 3 Population 4 Population 5 Population 6 Migration Graph

G1 = (S1, E1, A1) G2 = (S2, E2, A2) G3 = (S3, E3, A3) G4 = (S4, E4, A4) G5 = (S5, E5, A5) G6 = (S6, E6, A6) G = (M, E , A)
(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Population and migration graphs.

equilibria NE(fp(xp)) = NEG(fp(xp), Ap) (see [Barreiro-
Gomez and Tembine 2018b, Lemma 1]). �

Proof. Let supp(xp) = {i ∈ Sp : xpi > 0}. Since
xp∗ ∈ ∆p, then supp(xp∗) 6= ∅, i.e., there exists an i ∈ Sp
for which xp∗i > 0. Now, let fpi (xp∗) = maxj∈Np

i
fpj (xp∗).

If xp∗i = πp, then xp∗j = 0, for all j ∈ Sp\{i}, and it is

concluded that xp∗ ∈ NE(fp(xp)). If xp∗i < πp then, there
is another strategy j ∈ Sp such that xp∗j > 0. Moreover, let

fpj (xp∗) = maxa∈Sp fpa (xp∗). Notice that, since the graph
Gp is connected, then there exists a path on Gp connecting
i to j, i.e., a path Ẽpi→j ⊆ Ep. It follows that

fpi (xp∗) = max
a∈Ni

fpa (xp∗) = max
a∈Np

i

(
max
k∈Np

a

fpk (xp∗)

)
,

...

= max
a∈Np

i

(
max
k∈Np

a

· · ·
(

max
`∈Np

r

f`(x
p∗)

))
, (covering Ẽpi→j),

then fpi (xp∗) = maxa∈Sp fpa (xp∗), for which it is concluded
that xp∗ ∈ NE(fp(xp)). . �

The interactions are determined by a revision protocol
(Sandholm [2010]). Consider the function %p : ∆p

+(πp) ×
Rnp × {0, 1}np×np → Rn

p×np

≥0 known as revision proto-
col, which describes how agents make decisions in the
population p ∈ P. The revision protocol takes a popu-
lation state, a population fitness function and the adja-
cency matrix representing the migration restrictions in the
population, and returns a non-negative matrix. Moreover,
%pij(x

p, fp(xp), Ap) is known as the switching rate from the

ith to jth strategy in the pth population. Agents selecting
the strategy i ∈ Sp have incentives to migrate to the
strategy j ∈ Sp only if %pij(x

p, fp(xp), Ap) > 0.

Definition 5. A revision protocol %pij(x
p, fp(xp), Ap) is

pair-wise if it has the following form:

%pij(x
p, fp(xp), Ap) = aijφ(xp)[fpj (xp)− fpi (xp)]+,

with φ(xp) > 0, for all xp ∈ ∆p(πp)\∂∆p(πp) and φ(xp) ≥
0, for all xp ∈ ∂∆p(πp). . �

The evolutionary game dynamics, describing the evolution
process for each population, emerge from the combina-
tion of the population game fp and the switching rates
%pij(x

p, fp, Ap). Consider a novel distributed version of
the mean dynamics considering birth and death for each
population (reproduction rate δpi (xp)), i.e.,

ẋpi = Dp(xp),

=
∑
j∈Sp

xpj%
p
ji(x

p, fp(xp), Ap) (2)

− xpi
∑
j∈Sp

%pij(x
p, fp(xp), Ap) + δpi (xp), ∀i ∈ Sp, p ∈ P,

where Dp : Rnp → Rnp

, and δpi (xp) = 0 if xp ∈ ∆p
+(πp).

We take the following reproduction rate

δpi (xp) = αp

πp − ∑
j∈Sp

xpj

 , ∀i ∈ Sp, p ∈ P, (3)

where αp ∈ R>0. Each population might have dif-
ferent revision protocol, e.g., first population evolv-
ing with the distributed replicator %1ij(x

1, f1(x1), A1) =

x1ja
1
ij [f

1
j (x1)−f1i (x1)]+, second with the distributed Smith

%2ij(x
2, f2(x2), A2) = a2ij [f

2
j (x2)− f2i (x2)]+, third with the

distributed projection %3ij(x
3, f3(x3), A3) = a3ij [f

3
j (x3) −

f3i (x3)]+/x
3
i , among others.

Proposition 1. ∆p(πp) =
{
xp ∈ Rnp

:
∑
i∈Sp x

p
i = πp

}
,

for all p ∈ P, is invariant under the density-dependent
mean dynamics in (2). Moreover, if the component-wise
inequality Dp(xp) ≥ 0 holds for all xp ∈ ∂∆p

+(πp) and
p ∈ P. Then, the simplex set ∆p

+(πp) is invariant under
the density-dependent mean dynamics in (2). �

Proof. First, we compute
∑
i∈Sp ẋ

p
i to verify the invari-

ance of the simplex ∆p(πp), i.e.,∑
i∈Sp

ẋpi =
∑
i∈Sp

∑
j∈Sp

xpj%
p
ji(x

p, fp(xp), Ap)

−
∑
i∈Sp

∑
j∈Sp

xpi %
p
ij(x

p, fp(xp), Ap) +
∑
i∈Sp

δpi (xp),

= 0,

for all p ∈ P, for which ∆p(πp) is invariant under (2).
Moreover, if Dp(xp) ≥ 0 holds for all xp ∈ ∂∆p

+(πp) and
p ∈ P. Then, when xpi = 0, ẋpi ≥ 0 showing the invariance
of ∆p

+(πp). �

Proposition 2. Let Dp(xp) ≥ 0 holds for all xp ∈ ∂∆p
+(πp)

and p ∈ P. The population simplex ∆p
+(πp) is locally

asymptotically stable under the density-dependent mean
dynamics in (2) with the reproduction rate (3). �

Proof. Consider the following Lyapunov function (Poveda

and Quijano [2015]): L1(xp) = 1
2

(∑
i∈Sp x

p
i − πp

)2
, where

L1(xp) > 0 for all xp /∈ ∆p
+(πp), and L1(xp) = 0 for all

xp ∈ ∆p
+(πp). Therefore,

L̇1(xp) =

(∑
i∈Sp

xpi − πp
) ∑
i∈Sp

ẋpi ,

= −αpnp
(∑
i∈Sp

xpi − πp
)2

≤ 0.
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Since Dp(xp) ≥ 0 holds for all xp ∈ ∂∆p
+(πp) and p ∈ P,

then L̇1(xp) = 0 holds only if xp ∈ ∆p
+(πp). Then ∆p

+(πp)
is asymptotically stable completing the proof. �

Corollary 1. Let conditions stated in Proposition 2 hold.
Then, the social state π = [πp]p∈P asymptotically con-
verges to the social simplex ∆s. �

Proof. It immediately follows from the definition of the
social simplex ∆s in (1), i.e., if xp ∈ ∆p

+(πp), for all p ∈ P
(Proposition 2), then it implies π ∈ ∆s. �

Theorem 1. Let fp(xp) be a full-potential game with
strictly concave potential function V p(xp), and the revision
%pij(x

p, fp(xp), Ap) be a pair-wise comparison protocol (see

Definition 5). Then, the Nash equilibrium over graphs
xp∗ ∈ ∆p(πp)\∂∆p(πp) is locally asymptotically stable
under the dynamics in (2). �

Proof. The stability analysis under the distributed dy-
namics in (2) is developed by using the potential function
V p(xp) to define a Lyapunov function, i.e., consider the fol-
lowing Lyapunov function candidate: Lp2(xp) = V p(xp∗)−
V p(xp), where Lp2(xp) > 0, for all xp 6= xp∗, and Lp2(xp∗) =
0. Hence,

L̇p2(xp) = −[∇V p(xp)]>ẋp = −
∑
j∈Sp

ẋpjf
p
j (xp),

since it is assumed that xp ∈ ∆p
+(πp), then δpi (xp) = 0. It

follows that

L̇p2(xp) = −
∑
j∈Sp

∑
i∈Sp

xpi %
p
ij(x

p, fp(xp), Ap)fpj (xp)

+
∑
j∈Sp

∑
i∈Sp

xpj%
p
ji(x

p, fp(xp), Ap)fpj (xp),

since the revision protocol is of the form %pij(x
p, fp(xp), Ap) =

aijφ(xp)[fpj (xp) − fpi (xp)]+, with φ(xp) > 0, for all xp ∈
∆p(πp)\∂∆p(πp), and due to the fact Ap = Ap>

L̇p2(xp) = −
∑
j∈Sp

∑
i∈Sp

aijφ(xp)xpi [f
p
j (xp)− fpi (xp)]2+ ≤ 0.

Notice that the term in the latter inequality is equivalent
to have ẋp>fp(xp) ≥ 0, which is the positive correlation

property in Sandholm [2010]. Hence, notice that L̇p2(xp) =
0 if and only if xp ∈ NEG(fp(xp), Ap) (assuming Gp
is connected, then L̇p2(xp) = 0 if and only if xp ∈
NE(fp(xp))). Therefore, applying the LaSalle-invariance
principle, it is concluded that the equilibrium point xp∗ is
locally asymptotically stable. �

3. ESTIMATION AND MIGRATION DYNAMICS

3.1 Distributed Estimations About Collective Information

Each population dynamics in (2) are not distributed since
the reproduction rate depends on the population mass
deviation, which is computed by using both the total
desired population mass πp and the knowledge about the
current population mass

∑
i∈Sp x

p
i . In order to make the

evolutionary dynamics in (2) non-centralized, two differ-
ent distributed projection-based estimators are proposed.
Therefore, consider auxiliary variables for each population
wp ∈ ∆p(0) with a possible interaction given by the
population graph Gp. Also, let hpi : ∆p(0) → R be an

auxiliary fitness function. Hence, the distributed projec-
tion dynamics introduced in Barreiro-Gomez et al. [2017]
are given by

ẇpi =
∑
j∈Sp

apij
(
hpj (w

p
j )− hpi (wpi )

)
, ∀i ∈ Sp, p ∈ P. (4)

In addition, let hpi (w
p
i ) = −wpi − cpi , with i ∈ Sp, where

cpi ∈ R≥0 is a constant related to the information to
propagate, for all i ∈ Sp, p ∈ P.

Corollary 2. Let Gp be connected. Then, the set ∆p(0)
is invariant under the dynamics in (4), and the Nash
equilibrium over graphs wp∗ ∈ ∆p(0), such that hp(wp∗) ∈
span{1np}, is locally asymptotically stable under the dy-
namics in (4). . �

Proof. Notice that (4) is equivalent to (2) considering
wp = xp, hp(wp) = fp(xp), and the pairwise compari-
son revision protocol %pij(x

p, fp(xp), Ap) = apij [f
p
j (xp) −

fpi (xp)]+/x
p
i . Hence, both claims immediately follow from

Proposition 1, and Theorem 1 taking into account that Gp
is connected, and the fact hp(wp) = fp(xp) represents a
full-potential game as in Definition 2, and also a monotone
fitness function as in Definition 1. �

Proposition 3. The equilibrium point in (4) is given by
wp∗i =

∑
j∈Sp c

p
j/n

p − cpi , for all i ∈ Sp and p ∈ P. �

Proof. The equilibrium fitness is given by hp(wp∗) ∈
span{1np}. Therefore,

hpi (w
p∗
i ) = −wp∗i − cpi , ∀i ∈ Sp,

=
1

np

∑
j∈Sp

hpj (y
p∗
j ) = − 1

np

∑
j∈Sp

cpj ,

since wp ∈ ∆p(0), showing that wp∗i = 1
np

∑
j∈Sp c

p
j − cpi ,

for all i ∈ Sp, which is the desired result. �

Using the result in Proposition 3, the dynamics in (4) can
be performed as a distributed estimator about collective
information as discussed in the folowing Sections.

Estimating Mean State Within Populations: In the dy-
namics (2), information about the mean population state
is required. These dynamics are centralized within the
population since information from all the portion of agents
is required at each strategy. Let zp ∈ Rnp

, for all p ∈ P.
Each element zpi is associated to the estimation of the mean
state

∑
j∈Sp x

p
j/n

p for the corresponding strategy i ∈ Sp
in the population p ∈ P. The estimation is performed by
using following dynamics:

żpi =
∑
j∈Sp

apij

((
zpi + xpi

)
−
(
zpj + xpj

))
, (5)

for all i ∈ Sp, p ∈ P.

Corollary 3. Let xp be fixed and zp ∈ ∆p(0), for all p ∈ P.

Then, zp∗i + xpi →
∑
j∈Sp

xp
j

np , for all i ∈ Sp, p ∈ P. �

Proof. Notice that dynamics in (5) are equivalent to (4)
considering zp = wp, and hpi (z

p
i ) = −zpi − xpi , for all

i ∈ Sp, p ∈ P. Then, the result immediately follows from
Proposition 3 where it is shown that zp∗i =

∑
j∈Sp x

p
j/n

p−
xpi , for all i ∈ Sp, then, zp∗i + xpi →

∑
j∈Sp x

p
j/n

p, for all
i ∈ Sp, p ∈ P completing the proof. �
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Estimating Mass Within Populations: Dynamics in (2)
also require centralized knowledge about the desired pop-
ulation mass πp, for all p ∈ P. Moreover, notice that this
information is only known by the corresponding migration
node Mp (only one according to Assumption 1). Hence,
information πp should be propagated from Mp to all
other nodes Sp\M within the same population, and in
a distributed fashion. To this end, let yp ∈ Rnp

, for all
p ∈ P, and consider the distributed estimator given by

ẏpi =
∑
j∈Sp

apij

((
ypi + rpi

)
−
(
ypj + rpj

))
, (6a)

rpi =

{
πp if i ∈Mp

0 otherwise
, (6b)

for all i ∈ Sp, p ∈ P.

Corollary 4. Let πp be fixed and yp ∈ ∆p(0), for all p ∈ P.

Then, yp∗i → πp

np , for all i ∈ Sp\Mp, and p ∈ P. �

Proof. Notice that dynamics in (6a) are equivalent to (4)
considering yp = wp, and hpi (y

p
i ) = −ypi −rpi , for all i ∈ Sp,

p ∈ P. Then, according to Proposition 3, it is known
that, yp∗i =

∑
j∈Sp r

p
j /n

p − rpi , for all i ∈ Sp. Hence, the

result immediately follows since yp∗i + rpi → πp/np and
considering that rpi = 0, for all i ∈ Sp\Mp. �

3.2 Distributed Migration Dynamics Among Populations

Consider there is a strategic interaction among the hetero-
geneous populations throughout the migration strategies.
To this end, let the migration nodesM perform as leaders
of each population by using information fpi (xp∗) where
i ∈ Mp, for all p ∈ P, i.e., i ∈ Mp makes decisions based
on the population fitness, which is inferred from its own
fitness at equilibrium.

In this regard, the strategic interaction among populations
is represented by the graph G shown in Figure 1(g). The
population strategic interaction can be seen as a game with
q strategies from the setM (for simplicity P, according to
Assumption 1) whose respective fitness functions can be
seen as gp(πp), for all p ∈ P. Notice that the function gp

is monotone decreasing with respect to πp assuming that
gp(πp) = fpi (xp∗) where xp∗ is the population equilibrium
for a given population mass πp. The population mass
dynamics are

π̇p =
∑
q∈M

apq(g
p(πp)− gq(πq)), ∀p ∈ P, (7)

which corresponds to the distributed projection dynamics
of the same form as in (4).

Proposition 4. The simplex set ∆s in (1) is invariant
under dynamics in (7), and the Nash equilibrium over
graphs πp∗ ∈ ∆s, such that gp(πp∗) ∈ span{1m}, is locally
asymptotically stable under the dynamics in (7) with region
of attraction ∆s. �

Proof. Notice that (7) is equivalent to (2) considering π =
xp, g(π) = fp(xp), being g(π) = [g1(π1) . . . gm(πm)]>,
and the pairwise comparison revision protocol

%pij(x
p, fp(xp), Ap) = apij [f

p
j (xp)− fpi (xp)]+/x

p
i .

Hence, the invariance claims immediately follow from
Proposition 1. However, notice that even though gp(πp)

is monotone decreasing with respect to πp for all p ∈
P, Theorem 1 cannot be applied since the game is not
full potential. Therefore, we use a different Lyapunov
function as in [Barreiro-Gomez et al. 2017, Theorem 4],
i.e., L3(π) =

∑
p∈M

∑
q∈M

apq
2 [gq(πq)− gp(πp)]2+, it follows

that

∂

∂π`
L3(π) =

∑
p∈M

∑
q∈M

(
apq[g

q(πq)− gp(πp)]+

− apq[gp(πp)− gq(πq)]+
)

∂

∂π`
gq(πq),

=
∑
q∈M

π̇q
∂

∂π`
gq(πq). (8)

Then, we compute L̇3(π) by using expression in (8), i.e,

L̇3(π) = [∇L3(π)]>π̇, or equivalently L̇3(π) = π̇>Dg(π)π̇.
It follows that π̇>Dg(π)π̇ ≤ 0 since Dg(π) � 0 according

to Definition 1. Therefore, it is concluded that L̇3(π) ≤ 0,

and equality L̇3(π) = 0 holds only when π ∈ NE(g)
completing the proof. �

4. OVERALL DISTRIBUTED HETEROGENEOUS
MULTI-POPULATION DYNAMICS

Thanks to the previously presented mathematical analysis,
it is possible to establish the following distributed hetero-
geneous multi-population game dynamics approach:

βpẋpi =
∑
j∈Sp

xpj%
p
ij(x

p, fp(xp), Ap) (9a)

− xpi
∑
j∈Sp

%pji(x
p, fp(xp), Ap) + αp (ypi − zpi − xpi ) ,

εpẏpi =
∑
j∈Sp

apij

((
ypi + rpi

)
−
(
ypj + rpj

))
, (9b)

εpżpi =
∑
j∈Sp

apij

((
zpi + xpi

)
−
(
zpj + xpj

))
, (9c)

π̇p =
∑
q∈M

apq(g
p(πp)− gq(πq)), (9d)

rpi =

{
πp if i ∈Mp,

0 otherwise.
(9e)

for all i ∈ Sp, p ∈ P. Initial conditions are xp(0), yp(0),
zp(0) ∈ Rnp

, for all p ∈ P; and π(0) ∈ Rq≥0.

Remark 1. Notice that the system in (9) is totally dis-
tributed (all the sums have the corresponding entry from
the adjacency matrix, i.e., (9) can be written in term of
the set of neighbors for each node in the graphs Gp, for all
p ∈ P, and G), and that the dynamics of the portion of
agents (9a) is an initialization-free algorithm. �

The algorithm in (9) has three different time scales, i.e.,
the parameters εp and βp are selected such that the
distributed estimations about collective information in
(9b) and (9c) are the fastest dynamics, and dynamics
in (9d) are the slowest. This implies that dynamics in
(9a) become the dynamics in (2) since yp∗i − zp∗i − xpi =(
πp −∑j∈Sp x

p
j

)
/np according to Corollaries 3 and 4.

It follows that at each population, a Nash equilibrium
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Fig. 2. Distributed heterogeneous multi-population evo-
lutionary dynamics performing as a distributed eco-
nomic dispatch solver. Evolution of: (a) population
states, (b) population fitness functions, (c) population
mass (society mass is shown in dashed line), and (d)
cost function (optimal cost is shown in dashed line).

is achieved for the corresponding mass πp according to
Proposition 2 and Theorem 1. Finally, depending on the
comparison of the fitness functions for different migration
nodes, dynamics in (9d) adjust the population masses such
that all the fitness functions get the same value for the
whole population.

5. DISTRIBUTED OPTIMIZATION: ECONOMIC
DISPATCH PROBLEM

Let us consider a distributed power system that provides
electricity to q = 6 towns, i.e., P = {1, . . . , 6}. Each
town has installed a set of distributed electric generators
(DGs). The number of DGs of town 1,. . . , 6 is 14, 8, 15,
11, 13 and 18, respectively. Therefore, the power system
has a total of 79 DGs. Let xpi ∈ R≥0 be the power
generated by the generator i ∈ Sp in the town p ∈ P.
The distributed power system has to supply an electric
demand given by πs ∈ R, i.e., it is necessary to guarantee
that

∑
p∈P

∑
i∈Sp x

p
i = πs. The objective is to minimize

the cost of generating the demanded power, considering
that each DG has an associated cost function gpi : R→ R
given by gpi = api (x

p
i )

2
+ bpi x

p
i , where api ∈ R>0 and bpi ∈ R

are cost function’s parameters. Thus, the problem can be
formulated as follows:

min
x1,...,xq

g(x1, . . . , xq) =
∑
p∈P

∑
i∈Sp

gpi (xpi ),

s.t.
∑
p∈P

∑
i∈Sp

xpi = πs, 0np ≤ xp, ∀p ∈ P,

where g : R
∑

p∈P
np

→ R is convex. For simulation pur-
poses, cost function’s parameters are randomly selected
from the intervals api ∈ [1, 2] and bpi ∈ [−1, 1]. Furthermore,
we assume that the demand is πs = 1149 p.d.u.. Therefore,
a full-potential game for each population emerges with
potential function Vp =

∑
i∈Sp g

p
i (xpi ) and fitness functions

given by fpi (xpi ) =
∂Vp

∂xp
i

= −2xpi c
p
i − bpi , for all i ∈ Sp, and

p ∈ P. Results of the distributed algorithm in (9) applied
for solving the economic dispatch problem are shown in
Figure 2. Notice that the proposed algorithm asymptot-
ically reaches the optimal solution while constraints are
satisfied all time.

6. CONCLUSIONS

We have proposed novel distributed heterogeneous multi-
population evolutionary dynamics including stability cer-
tificates. The presented approach discussed in this pa-
per considers a society composed of multiple popula-
tions, which evolve by using different revision protocols,
i.e., populations evolve according to different distributed
evolutionary dynamics. We motivate the approach as an
alternative to consider heterogeneous types or classes of
agents in a strategic interaction. Furthermore, the pro-
posed multi-population approach allows migration among
strategies within the same population, but also migration
among different populations. Besides, diverse population
communication structures or migration constraints are
taken into account. Finally, populations can be isolated,
preserving the classical population dynamics counterpart.
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