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Abstract: The task of maneuvering a multi-steered articulated vehicle in confined environments
is difficult even for experienced drivers. In this work, we present an optimization-based trajectory
planner targeting low-speed maneuvers in unstructured environments for multi-steered N-trailer
vehicles, which are comprised of a car-like tractor and an arbitrary number of interconnected
trailers with fixed or steerable wheels. The proposed trajectory planning framework is divided
into two steps, where a lattice-based trajectory planner is used in a first step to compute a
resolution optimal solution to a discretized version of the trajectory planning problem. The
output from the lattice planner is then used in a second step to initialize an optimal control
problem solver, which enables the framework to compute locally optimal trajectories that start
at the vehicle’s initial state and reaches the goal state exactly. The performance of the proposed
optimization-based trajectory planner is evaluated in a set of practically relevant scenarios for
a multi-steered 3-trailer vehicle with a car-like tractor where the last trailer is steerable.
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1. INTRODUCTION

In recent years, there has been a growing demand within
the transportation sector to increase efficiency and reduce
environmental impact related to transportation of both
people and goods. This has lead to an increased interest
for large capacity (multi-) articulated buses (Michalek,
2019) and long tractor-trailer vehicle combinations (Islam
et al., 2015). In order to improve these long vehicles’ ability
to maneuver in confined environments, some trailers (or
wagons) can be equipped with steerable wheels. In the
literature, these vehicles are commonly referred to as
multi-steered N-trailer (MSNT) vehicles (Orosco-Guerrero
et al., 2002), which is a generalization of single-steered N-
trailer (SSNT) vehicles. Compared to an SSNT vehicle,
the additional steering capability enables an MSNT vehicle
to be more flexible and agile, on the expense of increased
difficulty in manually maneuvering the vehicle by a human
driver. These difficulties partially arise due to the vehicle’s
increased degrees of freedom which are hard to successfully
cope with for a human operator, and because of the
specific kinematic and dynamic properties of an MSNT
vehicle (see, e.g., Tilbury et al. (1995); Michalek (2019);
Orosco-Guerrero et al. (2002); Islam et al. (2015)). To
aid the driver, several advanced driver assistance system
concepts have been proposed to automatically steer the
extra steerable wheel(s) in order to increase low-speed
maneuverability or to reduce the so-called off-tracking
effect during tight cornering (Odhams et al., 2011; Van
De Wouw et al., 2015; Michalek, 2019; Varga et al., 2018).

Although a large amount of different motion planning
techniques has been proposed in the literature for SSNT
vehicles (see, e.g., Sekhavat et al. (1998); Lamiraux et al.
(1999); Evestedt et al. (2016); Li et al. (2019); Ljungqvist
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et al. (2019)), there only exists a limited amount of work
that considers the trajectory planning problem for special
classes of MSNT vehicles (see e.g. Bushnell et al. (1995);
Tilbury et al. (1995); Vidal-Calleja et al. (2002); Bey-
ersdorfer and Wagner (2013); Yuan (2017)). As a conse-
quence, there is still a need to develop a trajectory planner
that is able to solve the trajectory planning problem for
a generic MSNT vehicle with a car-like tractor that: i)
can handle various state and input constraints, ii) allows
a mixture of on-axle/off-axle hitched and steerable/non-
steerable trailers, and iii) computes locally optimal trajec-
tories by combining forward and backward motion.

The contribution of this work is a trajectory planning
framework for an MSNT vehicle with a car-like tractor
targeting low-speed maneuvers in confined and unstruc-
tured environments. The framework extends some tech-
niques presented in our previous work in Ljungqvist et al.
(2019) and is inspired by Bergman et al. (2019, 2020);
Bergman and Axehill (2018). Here, a lattice-based tra-
jectory planner is developed and used in a first step to
compute a resolution optimal solution to a discretized
version of the trajectory planning problem. The lattice
planner uses a finite library of precomputed optimized
maneuvers restricted to move the MSNT vehicle within
a specified state-space discretization. In a second step,
the output from the lattice planner is used to initialize
a homotopy-based optimization step enabling the frame-
work to compute locally optimal trajectories that starts
at the vehicle’s initial state and reaches the desired goal
state exactly. To the best of the authors knowledge, this
paper presents the first trajectory planning framework for
a generic MSNT vehicle with a car-like tractor.

The reminder of the paper is organized as follows. In
Section 2, the kinematic vehicle model and the trajectory
planning problem for the considered MSNT vehicle are
presented, as well as an overview of the proposed trajec-
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tory planning framework. In Section 3 and Section 4, the
lattice-based trajectory planner and the homotopy-based
optimization step are presented, respectively. Simulation
results for an MS3T vehicle with a car-like tractor are
presented in Section 5 and the paper is concluded in
Section 6 by summarizing the contributions and discussing
directions for future work.

2. KINEMATIC VEHICLE MODEL AND PROBLEM
FORMULATION

The MSNT vehicle with a car-like tractor considered in
this work is illustrated in Fig. 1. The multi-body vehicle is
composed of N + 1 vehicle segments, including a car-like
tractor and N number of trailers that are equipped with
steerable or non-steerable wheels. Each vehicle segment
is characterized by a segment length Li > 0 and a
signed hitching offset Mi. Since low-speed maneuvers are
considered in this work, a kinematic vehicle model is
used. The model is based on the work in Michalek (2019)
and is derived based on various assumptions such as the
wheels are rolling without slipping and that the vehicle
is operating on a flat surface. Moreover, it is assumed
that the front wheel of the tractor is steerable and its
rear wheel is non-steerable. The vehicle configuration
consists of 4 +N + S variables (Michalek, 2019) where
S ∈ {1, . . . , N} denotes the number of steerable trailers:

– the steering angle of the tractor’s front wheel

β0 ∈ Q0 = [−β̄0, β̄0], β̄0 ∈ (0, π/2), (1)

– the global position (xN , yN ) and orientation θN of the
Nth trailer in a fixed coordinate frame

qN = [θN xN yN ]
T ∈ S× R2, (2)

where S = (−π, π],
– for i = 1, . . . , N, a number of N constrained joint angles

βi = θi−1 − θi ∈ Bi = [−β̄i, β̄i], β̄i ∈ (0, π), (3)

– and S ∈ {1, . . . , N} number of steering angles associated
with steerable trailer wheels

γs ∈ Qs = [−γ̄s, γ̄s], γ̄s ∈ (0, π/2), (4)

where index s ∈ Is ⊆ {1, . . . , N} specifies which trailers
that have steerable wheels. The configuration vector for
the MSNT with a car-like tractor will be defined as

q =
[
β0 β1 . . . βN γT

s q
T
N

]T ∈ Q, (5)

where γs represents a vector of trailer steering angles,
and Q = Q0 × B1 × . . .× BN ×Qs × . . .×Qs︸ ︷︷ ︸

S times

×S× R2.

The leading car-like tractor is described by a kinematic
single-track vehicle model and its orientation θ0 evolves as

θ̇0 = v0κ0(β0), (6)

where κ0(β0) = tan β0

L0
is the curvature of the tractor

and v0 is the longitudinal velocity of its rear axle. The
recursive formula for the transformation of the angular θ̇i
and longitudinal vi velocities between any two neighboring
vehicle segments are given by (Michalek, 2019; Orosco-
Guerrero et al., 2002):

[
θ̇i
vi

]
=

−
Mi

Li

cos (βi − γi)
cos γi

sin (βi − γi + γi−1)

Li cos γi

Mi
sinβi
cos γi

cos (βi + γi−1)

cos γi


︸ ︷︷ ︸

Ji(βi,γi,γi−1)

[
θ̇i−1

vi−1

]
, (7)

where γi denotes the steering angle of the ith trailer. For
the car-like tractor, we have that γ0 ≡ 0 since its rear
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Fig. 1. A schematic description of the geometric lengths and the
vehicle configuration for an MSNT vehicle with a car-like
tractor in a global coordinate system (inspired and adapted
from Michalek (2019)).

axle is non-steerable. Note that if the jth trailer is non-
steerable, it suffices to take γj = 0 in (7).

Each trailer’s steering angle γs, s ∈ Is and the tractors
steering angle β0 are modeled as double integrator systems

γ̇s = ωs, ω̇s = uωs
, s ∈ Is,

β̇0 = ω0, ω̇0 = uω0
,

(8)

where ω0, ωs, s ∈ Is and uω0 , uωs , s ∈ Is denote steering
angle rates and accelerations, respectively. This modeling
is used to be able to penalize large rates and accelerations,
and to enforce constraints in the form
ωs ∈ Ωs = [−ω̄s, ω̄s], uωs ∈ Us = [−Ω̄s, Ω̄s], s ∈ Is,
ω0 ∈ Ω0 = [−ω̄0, ω̄0], uω0 ∈ U0 = [−Ω̄0, Ω̄0],

(9)

where the steering angle accelerations uω0
and uωs

, s ∈ Is
are treated as control signals. Similarly, the longitudinal
velocity of the tractor v0 is constrained as v0 ∈ Ωv = [−v̄, v̄]
and its dynamics are modeled as a double integrator sys-
tem

v̇0 = a0, ȧ0 = uv (10)
in order to respect constraints on the longitudinal accelera-
tion a0 ∈ A = [−ā, ā] and jerk uv ∈ Uv = [−ūv, ūv]. During
the planning phase, the longitudinal jerk uv is treated as
a control signal.

The position of the last trailer evolves according to stan-
dard unicycle kinematics

ẋN = vN cos(θN + γN ),

ẏN = vN cos(θN + γN ),
(11)

where its angular rate θ̇N and longitudinal velocity vN are
given by[

θ̇N
vN

]
=

N−1∏
i=0

JN−i(βN−i, γN−i, γN−i−1)

[
v0κ0
v0

]
, (12)

which is derived by recursive usage of (7) N times together
with (6). Combining (11) and (12), it is possible to
compactly represent the model for the pose of the Nth
trailer qN = [θN xN yN ]

ᵀ
as q̇N = v0fqN

(q). In analogy,
by introducing the vector cᵀ = [1 0] together with (6)
and (7), the time derivative of (3) yields the joint-angle
kinematics

β̇i = θ̇i−1 − θi = cT
N−1∏

j=N−i−1

JN−j(βN−j , γN−j , γN−j−1)

[
v0κ0
v0

]

−cT
N−1∏
j=N−i

JN−j(βN−j , γN−j , γN−j−1)

[
v0κ0
v0

]
, v0fβi (q), (13)
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for i = 1, . . . , N . Introduce the augmented state vector
xᵀ = [qᵀ ω0 ω

ᵀ
s v0 a0] ∈ X and denote the control

signal vector as uᵀ = [uω0 u
ᵀ
ωs

uv] ∈ U , where ωs and
uωs

represent vectors of trailer steering angle rates and
accelerations, respectively, and

X = Q× Ω0 × Ωs × . . .× Ωs︸ ︷︷ ︸
S times

×Ωv ×A,

U = U0 × Us × . . .× Us︸ ︷︷ ︸
S times

×Uv,
(14)

where dim(X ) = 7+N+2S , n and dim(U) = 2 + S , m.
The constraints in (14) will be referred to the vehicle’s
physical constraints arising from, e.g., actuator, mechan-
ical or sensing limitations. Finally, the kinematic model
of the MSNT vehicle with a car-like tractor is given
in (8), (10) and (11)–(13), which can be represented as

ẋ = f(x,u), (15)

where f : Rn × Rm → Rn is continuous and continuously
differentiable with respect to x ∈ X and u ∈ U .

2.1 Problem formulation

The MSNT vehicle with a car-like tractor is assumed to
operate in a closed environment with only static obstacles
Xobs. The free-space where the vehicle is not in collision
with any obstacle is defined as Xfree = X \ Xobs. Here, it
is assumed that the obstacle-occupied region Xobs (hence
also Xfree) can be described analytically, e.g., using differ-
ent bounding regions (LaValle, 2006). Since the free-space
Xfree is defined as the complement set of Xobs, it is in
general a non-convex set.

The trajectory planning problem considered in this work
is defined as follows: Compute a feasible and collision-free
state and control signal trajectory (x(t),u(t)), t ∈ [0, tG]
that moves the vehicle from its initial state xI ∈ Xfree to
a desired goal state xG ∈ Xfree, while minimizing the cost
functional J . This problem can be posed as a continuous-
time optimal control problem (OCP) in the following form

minimize
u(·), tG

J = tG +

∫ tG

0

l(x(t),u(t)) dt

subject to ẋ(t) = f(x(t),u(t)),

x(0) = xI , x(tG) = xG,

x(t) ∈ Xfree, u(t) ∈ U ,

(16)

where the final time tG and u are optimization variables,
and l : Rn×Rm → R+ is called the Lagrange term or cost
function. In this work, the cost function is defined as

l(x,u) = ||x||2Q + ||u||2R, (17)

where the weight matrices Q � 0 and R � 0. It is
well-known that this OCP is in general hard to solve by
directly invoking a state-of-the-art OCP solver (Andersson
et al., 2018; Wächter and Biegler, 2006). This is mainly
because the vehicle model is nonlinear and the free-
space Xfree is in many applications non-convex. Hence, a
proper initialization strategy for any OCP solver is often
a necessity in order for it to converge to a good locally
optimal (or even feasible) solution (Bergman et al., 2020;
Zhang et al., 2020).

2.2 Trajectory planning framework

To efficiently and reliably solve the trajectory planning
problem (16) for an MSNT vehicle with a car-like tractor,
we propose a framework that combines a lattice-based

trajectory planner and an online optimization step. The
framework is based on and extends the previous works
in Ljungqvist et al. (2019); Bergman et al. (2019, 2020);
Bergman and Axehill (2018). The extensions are made to
account for the specific properties of an MSNT vehicle
with a car-like tractor. The general idea is that a lattice-
based trajectory planner is used in a first step to compute
an optimal solution to a discrete version of the trajectory
planning problem (16) using a discretized state-space and
a library of precomputed trajectories. The lattice planner
can be considered responsible for solving the combina-
torial aspects of the trajectory planning problem, e.g.,
taking left or right around obstacles, and thus provides
the latter optimization step with a proper initial guess.
While keeping the combinatorial parts fixed, the objec-
tive of the optimization step is to further improve the
initial guess computed by the lattice planner such that
the resulting trajectory is a locally optimal solution to
the original trajectory planning problem (16). However,
since the lattice planner uses a discretized state space,
in general its computed trajectory does not satisfies the
initial and goal state constraints in (16). Therefore, the
optimization step is also responsible for modifying the
initial guess computed by the lattice planner such that
the final optimized trajectory starts at the vehicle’s initial
state and reaches the goal state exactly. To handle this in a
structured and numerically stable way, a homotopy-based
optimization strategy is proposed that is inspired by the
work in Bergman and Axehill (2018).

The main steps of the trajectory planning framework
is summarized in Workflow 1, where the lattice planner
(Step 0 and 1) and the optimization step (Step 2) are
explained in detail in Section 3 and Section 4, respectively.

3. LATTICE-BASED TRAJECTORY PLANNER

The idea with lattice-based trajectory planning is to re-
strict the solutions of the trajectory planning problem (16)
to a lattice graph G = 〈V, E〉, which is a graph embedded
in an Euclidean space that forms a regular and repeated
pattern (Pivtoraiko et al., 2009). The lattice graph is
constructed offline by discretizing the vehicle’s state space
Xd ⊂ X and precompute a set of motion primitives
P. Each vertex v[k] ∈ V is a vehicle state x[k] ∈ Xd
and each edge ei ∈ E represents of a motion primitive
mi ∈ P. A motion primitive is a feasible trajectory
(xi(t),ui(t)), t ∈ [0, tif ] that moves the vehicle from an

initial state x[k] ∈ Xd to a final state x[k + 1] ∈ Xd while
satisfying xi(·) ∈ X and ui(·) ∈ U . A motion primitive
is in this way designed to connect two vertices in the
graph and the kinematic constraints (15) and the physical
constraints (14) are satisfied offline. The cardinality of the
motion primitive set is |P| = M and the motion primitives
that can be used from x[k] is denoted P(x[k]) ⊆ P.
Moreover, since the MSNT vehicle is position invariant,
the motion primitive set P can be computed from the
position of the Nth trailer at the origin. Each motion
primitive mi can then be translated and reused for all
other positions on the grid.

Let x[k+1] = fp(x[k],mi) denote the successor state when
motion primitive mi ∈ P is applied from x[k] and denote
Jp(mi) as the stage-cost associated to this transition,
which is given by

Jp(mi) = tif +

∫ tif

0

l(xi(t),ui(t)), (18)
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Workflow 1 The proposed trajectory planning framework
for a MSNT vehicle with a car-like tractor
Step 0 (offline) – State lattice construction:

a) State-space discretization: Specify the reso-
lution of the discretized state-space Xd

b) Motion primitive generation: Compute the
set of motion primitives P by specifying a set of
desired maneuvers and solve (20) using an OCP
solver

c) Heuristic function: Precompute a heuristic
look-up table (HLUT) by computing the optimal
cost-to-go on a grid in an obstacle-free environ-
ment

Step 1 – Online planning:
a) Initialization: Project the vehicle’s initial state
xI and desired goal state xG to Xd

b) Graph search: Solve the discrete graph search
problem (19) using a graph search algorithm

Step 2 – Homotopy-based optimization step:
a) Initialization: Initialize the homotopy-based

OCP solver with the solution computed by the
lattice planner

b) Optimization: Solve the relaxed trajectory
planning problem (24) using an OCP solver

c) Return: Send the computed solution to a
trajectory-tracking controller or report failure

where l(xi,ui) is defined in (17). The resulting trajec-
tory taken by the vehicle when motion primitive mi ∈ P
is applied from x[k], is collision-free if it does not
collide with any obstacle c(mi,x[k]) ∈ Xfree. Define
up : Z+ → {1, . . . ,M} as a discrete and integer-valued de-
cision variable that is selected by the lattice planner, where
up[k] specifies which motion primitive that is applied at
stage k. Now, the continuous-time trajectory planning
problem (16) is approximated by the following discrete-
time OCP (Ljungqvist et al., 2019):

minimize
{up[k]}

Np−1

k=0
, Np

JD =

Np−1∑
k=0

Jp(mup[k])

subject to x[k + 1] = fp(x[k],mup[k]),

x[0] = x̄I , x[Np] = x̄G,

mup[k] ∈ P(x[k]),

c(mup[k],x[k]) ∈ Xfree,

(19)

for k = 0, . . . , Np − 1, where x̄I and x̄G are obtained
by projecting the actual initial state xI and desired goal
state xG to the their closest neighboring state in Xd. The
decision variables to the problem in (19) are the motion

primitive sequence {up[k]}Np−1
k=0 and its length Np ∈ Z+.

A feasible solution is an ordered sequence of collision-

free motion primitives {mup[k]}
Np−1
k=0 , i.e., a trajectory

(x(t),u(t)), t ∈ [0, tG] that connects the projected initial
state x(0) = x̄I with the projected goal state x(tG) = x̄G.
Given the set of all feasible solutions to (19), an opti-
mal solution is one that minimizes the cost function JD.
During online planning, the discrete-time OCP in (19)
can be solved using classical graph-search algorithms such
as A∗ together with an informative precomputed free-
space heuristic look-up table (HLUT) as heuristic func-
tion (Knepper and Kelly, 2006). A HLUT significantly
reduces the online planning time, as it takes the vehicle’s
nonholonomic constraints into account and enables perfect
estimation of cost-to-go in free-space scenarios with no
obstacles.

3.1 State-space discretization

It is important that the resolution of the discretized state
space Xd and the cardinality of the motion primitive set
P are chosen such that the vehicle is sufficiently agile
to maneuver in confined environments. However, as they
also define the size of the lattice graph G, both the
resolution of Xd and the cardinality of P have to be chosen
carefully in order to maintain a reasonable search time
during online planning (Pivtoraiko et al., 2009). Motivated
by this, the position of the Nth trailer (xN [k], yN [k]) is
discretized to a uniform grid with resolution r and its
orientation is irregularly 1 discretized θN [k] ∈ Θ into
|Θ| = 16 different orientations as proposed in (Pivtoraiko
et al., 2009). Additionally, the longitudinal velocity of the
tractor is discretized as v0[k] ∈ V = {−v̄, 0, v̄}, where
v̄ is the tractor’s maximal allowed speed. All remaining
vehicle states are constrained to zero at each vertex in the
graph, which implies that the MSNT vehicle is arranged in
a straight configuration. This means that the joint angles
βi[k], i = 1, . . . , N , the steering angles β0[k], γs[k], the
steering angle rates ω0[k], ωs[k] as well as the longitudinal
acceleration of the tractor a0[k] are all constrained to zero
at each x[k] ∈ Xd. As a consequence, dim(Xd) = 4, since
only the pose pN [k] and the velocity of the tractor v0[k]
are allowed to vary between different vertices in the graph.
The proposed discretization will impose restrictions, but
is motivated to enable fast online planning. Moreover,
since the output from the lattice planner will be used to
warm start a second optimization step, the initial guess
computed by the lattice planner will be improved such
that the finally computed trajectory is a locally optimal
solution to the original trajectory planning problem (16).

3.2 Motion primitive generation

The motion primitives P is computed offline by solving a
finite set of OCPs from all initial states xis ∈ Xd with the
position of the Nth trailer at the origin, to a set of final
states xif ∈ Xd in an obstacle-free environment. This pro-
cedure can be performed manually as in Ljungqvist et al.
(2019) or using exhaustive search together with pruning
strategies as proposed in Pivtoraiko et al. (2009); Cirillo
et al. (2014). In both cases, the motion primitive gener-
ation procedure will become time consuming or requires
a designer with high system knowledge. Therefore, here
we use the maneuver-based motion primitive generation
framework introduced in Bergman et al. (2019). Instead
of selecting pairs of discrete vehicle states to connect, a
set of desired maneuvers from each initial state xis ∈ Xd
is selected and an OCP solver together with a rounding
heuristic are used to automatically select the optimal final
state xif ∈ Xd. Each maneuver is defined with a terminal

manifold in the form gi(xi(tif )) = 0 where g : Rn → Rl
and l < n, where n− l is the degrees of freedom for the ter-
minal state constraint. To compute a maneuver-specified
motion primitive mi ∈ P, the following continuous-time
OCP is first solved

minimize
ui(·), tip

Jp(mi)

subject to ẋi(t) = f(xi(t),ui(t)),

xi(0) = xis, gi(xi(tif )) = 0,

xi(t) ∈ X i, ui(t) ∈ U i.

(20)

1 Θ is the the set of unique angles −π < θN ≤ π that can be gener-
ated by θN = arctan 2(i, j) for two integers i, j ∈ {−2,−1, 0, 1, 2}.
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Here it is not required that xi(tif ) ∈ Xd. To ensure that

the final state xif = xi(tif ) ∈ Xd, a rounding heuristic
is used and the closest neighboring states represented in
the discretized state-space Xd from xi(tif ) are evaluated
and the solution with lowest objective functional value
is selected as the resulting motion primitive mi. Finally,
since the MSNT with a car-like tractor is orientation
invariant, rotational symmetries are exploited to reduce
the number of OCPs needed to be solved (Pivtoraiko
et al., 2009). For more details of the motion primitive
generation framework, the reader is referred to Bergman
et al. (2019). Note that the vehicle’s physical constraints
X i ⊆ X and U i ⊆ U in (20) are defined to be maneuver
dependent, which is not the case in Bergman et al. (2019).
This extension is made to automatically generate similar
maneuvers, i.e., same terminal manifold gi(xi(tif )) = 0,

but resulting in different optimal final states xif and final

times tif . This additional freedom can be used to design
a more flexible lattice planner or, e.g., to adapt to a
change in available trailer steering angles γs, s ∈ Is during
different maneuvers.

As proposed in Bergman et al. (2019), the motion primi-
tive set is built upon optimized straight, heading change
and parallel maneuvers. The heading change and parallel
maneuvers are only possible to use from states where
the tractor has nonzero velocity, i.e. v0,s = ±v̄, and are
designed to end up in the same final velocity v0,f = v0,s.
Additionally, short straight maneuvers from v0,s ∈ V to
some v0,f ∈ V are also optimized to enable the tractor to
reduce, increase and keep a constant longitudinal velocity.

Heading change maneuvers: By specifying the vehicle’s
physical constraints X i ⊆ X and U i ⊆ U , a heading
change maneuver from an initial state xis ∈ Xd with

pose piN,s =
[
0 0 θiN,s

]ᵀ
and vi0,s = ±v̄, to a user-defined

adjacent orientation θiN,f ∈ Θ \ θiN,s is optimized by

solving (20) using the following terminal constraint

gi
(
piN (tif ), vi0,f

)
=

[
θiN (tif )− θiN,f
vi0(tif )− vi0,s

]
= 0, (21)

which implies that xiN (tf ) and yiN (tf ) are free variables for
the OCP solver to select. Note that the vehicle states that
are left out from the argument to gi are all constrained
to zero to guarantee that xif ∈ Xd. Examples of computed

heading change maneuvers from (θ3,s, v0,s) = (π/2,±1)
are depicted in Fig. 2 for an MS3T vehicle with a car-
like tractor where the last trailer has steerable wheels, i.e.,
Is = {3}. Here, the allowed trailer steering angle |γ3| ≤ γ̄3
is alternated using γ̄3 = 0, 0.175 and 0.35 rad, resulting in
different types of optimal trajectories.

Parallel maneuvers: A parallel maneuver from an ini-
tial state xis ∈ Xd with pose piN,s =

[
0 0 θiN,s

]ᵀ
and

vi0,s = ±v̄, is defined with a user-defined lateral displace-

ment zilat in (xiN,f , y
i
N,f ) with respect to the initial orienta-

tion θiN,s. This maneuver can be optimized by solving (20)

using a terminal constraint gi(piN (tf ), vi0,f ) = 0, where

gi
(
pi

N (tif ), vi0,f
)

=

y
i
N (tif ) cos θiN,s + xi

N (tif ) sin θiN,s − zilat
θiN (tif )− θiN,s

vi0(tif )− vi0,s

 (22)

Here, the final position of the Nth trailer (xN (tif ), yN (tif ))

is restricted to a line defined by the first row in (22).

Fig. 2. A subset of the motion primitives in P for an MS3T
vehicle with a car-like tractor from initial position at the
origin (x3,s, y3,s) = (0, 0) to different final states xf ∈ Xd.
The colored lines are the trajectories in (x3(·), y3(·)) for the
different maneuvers. The set of heading change maneuvers from
(θ3,s, v0,s) = (π/2, 1) (black) and from (θ3,s, v0,s) = (π/2,−1)
(green). The set of parallel maneuvers from (θ3,s, v0,s) = (0, 1)
(blue) and from (θ3,s, v0,s) = (0,−1) (red).

Examples of computed parallel maneuvers for an MS3T
vehicle with a car-like tractor using γ̄3 = 0.35 rad from
(θ3,s, v0,s) = (0,±1) can be seen in Fig. 2.

When the motion primitive set P is computed, a free-
space heuristic look-up table (HLUT) is computed using
techniques presented in Knepper and Kelly (2006). The
HLUT is computed offline by solving several obstacle-
free graph-search problems (19) from all initial states
x̄I ∈ Xd with (xN,I , yN,I) = (0, 0), to final states x̄G ∈ Xd
with positions on a bounded grid around the origin.
This computation can be done efficiently using Dijkstra’s
search, as the optimal cost-to-come is simply recorded and
stored in the HLUT (Knepper and Kelly, 2006).

4. HOMOTOPY-BASED OPTIMIZATION STEP

Similar to (Bergman et al., 2020), the optimization step
is used to improve the initial guess (x(t),u(t)), t ∈ [0, tG]
computed by the lattice planner such that the final trajec-
tory (x∗(t),u∗(t)), t ∈ [0, t∗G] is a locally optimal solution
to (16). Since the lattice planner uses a discretized state
space Xd, in general its computed state trajectory does not
satisfy the initial and goal state constraints in (19). Thus,
the optimization step should not only improve the initial
guess but also make it feasible in the original problem
formulation (16). To handle this in a structured way,
a homotopy-based initialization strategy is used that is
inspired by the work in Bergman and Axehill (2018). The
idea is to start from a relaxed problem that is easy to solve
and then gradually transform the relaxed problem to the
original one. Here, these ideas are applied on the initial
and goal state constraints in (16) such that the solution
obtained from the lattice planner is feasible to the relaxed
problem. By letting εᵀp = [εp,I εp,G] ∈ [0, 1]2 denote the
homotopy parameters (Bergman and Axehill, 2018), the
initial and goal state constraints in (16) are relaxed to

x(0) = εp,I x̄I + (1− εp,I)xI ,
x(tG) = εp,Gx̄G + (1− εp,G)xG.

(23)

When εᵀp = [1 1], the initial guess from the lattice
planner is feasible in the relaxed version of (16) and when
εᵀp = [0 0], the original problem in (16) is obtained. One

possibility is to start with ε0p = [1 1]
ᵀ

and repeatedly
solve the relaxed version of (16) using an OCP solver
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where εkp is gradually decreased using a fixed step-size ∆εp
until εkp = [0 0]

ᵀ
is reached (Bergman and Axehill, 2018).

In this work, the idea is instead to let the OCP solver
automatically modify the homotopy parameters using a
penalty method (Nocedal and Wright, 2006). Define the
linear penalty as cᵀpεp, where cp ∈ R2

++ and define the
relaxed version of the trajectory planning problem (16) as

minimize
u(·), tG, εp

JH = J + cTp εp

subject to ẋ(t) = f(x(t),u(t)),

x(0) = εp,I x̄I + (1− εp,I)xI ,
x(tG) = εp,Gx̄G + (1− εp,G)xG,

x(t) ∈ Xfree, u(t) ∈ U , εp ∈ [0, 1]2,

(24)

which is initialized with the solution from the lattice
planner and εᵀp = [1 1]. By choosing cp sufficiently large,
the OCP solver will automatically adjust the step size
of εp and converge to εᵀp = [0 0] if a feasible solution
to (16) exists in the homotopy class selected by the lattice
planner (19) (Bergman and Axehill, 2018). As previously
mentioned, if ε∗p = [0 0]

ᵀ
is obtained, a locally optimal

solution (x∗(t),u∗(t)), t ∈ [0, t∗G] to the original trajectory
planning problem (16) is obtained which can then be sent
to a trajectory-tracking controller for plan execution.

Note that if cp is not chosen sufficiently large, a solution
with εᵀp = [0 0] may not be obtained even though one
exists (Nocedal and Wright, 2006). In that case, one may
need to increase cp and continue the solution process.
However, in extensive simulation trials presented in Sec-
tion 5, it is shown that the proposed homotopy-based op-
timization step is able to reliably compute locally optimal
solutions to (24) with εᵀp = [0 0] without modifying cp in
all problem instances.

5. SIMULATION RESULTS

In this section, the proposed trajectory planning frame-
work is evaluated in two complicated parking problem
scenarios for an MS3T with a car-like tractor where
only trailer N = 3 is steerable, i.e., Is = {3}, and
a mixture of off-axle (M1 6= 0) and on-axle hitching
(M2 = M3 = 0) is used. Using the recursive model
presented in Section 2 it is now straightforward to derive
the kinematic vehicle model (15) with configuration qᵀ =
[β0 β1 β2 β3 γ3 θ3 x3 y3], augmented state vector xᵀ =
[qᵀ ω0 ω3 v0 a0] and control signals uᵀ = [uω0 uω3 uv].
Thus, dim(x) = 12 and dim(u) = 3. The values of the
vehicle’s parameters used in this section are summarized
in Table 1. The cost function is chosen as

l(x,u) =
1

2

(
β2
0 + γ2s + 10ω2

0 + 10ω2
3 + a20 + uTu

)
, (25)

which is used in all steps of the trajectory planning frame-
work. The linear cost on the homotopy parameters in
the optimization step is chosen as cᵀp = [1000 1000]. The
obstacles and vehicle bodies are described by bounding
circles (LaValle, 2006), where in total, the vehicle bod-
ies are described using 8 bounding circles of radius 2
m. The lattice planner is implemented in C++, whereas
the motion primitive generation and the homotopy-based
optimization step are both implemented in Python using
CasADi (Andersson et al., 2018), where IPOPT is used
as nonlinear programming problem solver. All simulations
are performed on a standard laptop computer with an Intel
Core i7-4600U@2.1GHz CPU.

Table 1. Vehicle parameters for the MS3T vehicle.

Vehicle parameter Value

Tractor’s wheelbase L0 4.6 m
Length of the off-hitch M1 1.6 m
Length of trailer 1 L1 2.5 m
Length of trailer 2 L2 7.0 m
Length of trailer 3 L3 7.0 m
Maximum joint angles β̄i, i = 1, 2, 3 0.87 rad
Maximum steering angle tractor β̄0 0.73 rad
Maximum steering-angle rate tractor ω̄0 0.8 rad/s
Maximum steering-angle acceleration tractor Ω̄0 10 rad/s2

Maximum steering angle trailer 3 γ̄3 0.35 rad
Maximum steering-angle rate trailer 3 ω̄3 0.4 rad/s
Maximum steering-angle acceleration trailer 3 Ω̄3 10 rad/s2

Maximum longitudinal speed tractor v̄ 1 m/s
Maximum longitudinal acceleration tractor ā 1 m/s2

Maximum longitudinal jerk tractor ūv 40 m/s2

The motion primitive set consists of heading change, par-
allel and straight maneuvers where a subset of the mo-
tion primitive set PMS3T (|PMS3T| = 2080) can be seen in
Fig. 2. From each initial heading with nonzero longitudi-
nal velocity, there are 20 parallel and 24 heading change
maneuvers. The heading change maneuvers are computed
using three different limits on the trailer steering angle
γ̄3 = 0, 0.175 and 0.35 rad, respectively, and the parallel
maneuvers using γ̄3 = 0.35 rad. After the motion primitive
set is computed, a free-space HLUT is computed on a
square grid 80 × 80 m centered around the origin. To
evaluate if the trajectory planner is able to exploit the
additional trailer steering, it is compared with an SS3T
vehicle, i.e., γ̄3 = 0, with the same vehicle parameters and
the difference that only 8 heading change maneuvers exist
in the motion primitive set PSS3T (|PSS3T| = 1124).

The first planning scenario is a loading-bay parking prob-
lem that is illustrated in Fig. 3. The objective of the
trajectory planner is to plan a trajectory from 32 different
initial states xI ∈ Xd (see Fig. 3) to the goal state xG.
One solution example is provided for the lattice planner
(dashed line) and optimization step (solid line) for SS3T
(orange) and MS3T (green), respectively, for symmetric
planning problems. The results show that the planned tra-
jectory for MS3T is purely in backward motion, compared
to SS3T which needs to combine forward and backward
motion due to less steering capability. A summary of the
simulation results are provided in Table 2. The average
computation time for the lattice planner is only 0.1 s for
both SS3T and MS3T, whereas the optimization step takes
in average 3.0 s for MS3T and 9.0 s for SS3T. However,
a signification reduction of both average cost and time
improvement of the solutions are obtained. Note that the
average time improvement of the solutions computed by
the optimization step t̄G,imp is significantly larger than
the optimization step’s average computation time t̄ocp.
Thus, when the optimization step is added, the sum of the
average computation and execution time becomes lower.

Table 2. Results from loading-bay parking scenario in Fig. 3 for
32 problems. t̄lat and t̄ocp is average computation time for lattice
planner and optimization step, respectively. J̄D and J̄H is average
objective functional value for the solutions from lattice planner
and optimization step, respectively. r̄imp and t̄G,imp is average
cost and time improvement between the lattice planner’s and the

optimization step’s solutions, respectively.

Vehicle t̄lat[s] t̄ocp[s] J̄D J̄H r̄imp t̄G,imp[s]

SS3T 0.11 9.3 170.8 128.4 -25% -26.8
MS3T 0.09 3.0 126.8 100.8 -21% -14.4
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xG

Fig. 3. Loading-bay parking scenario using the proposed trajectory planner for SS3T and MS3T from two initial positions (pAI and pBI ),
symmetric with respect to the loading bay, initial orientations θ3,I ∈ Θ and zero initial joint angles, to the goal state xG. The solutions

for the position (x∗3(·), y∗3(·)) from 1029 perturbed initial states for SS3T (pAI ) and MS3T (pBI ) are displayed by blue (red) solid lines for
MS3T (SS3T). The initial guess computed by the lattice planner for (x3(·), y3(·)) and optimization step for (x∗3(·), y∗3(·)) from straight
configuration is marked with green (orange) dashed line and green (orange) solid line, respectively, for MS3T (SS3T).

To evaluate how the homotopy-based optimization step
handles an infeasible initialization, 1029 perturbed initial
states for both SS3T and MS3T are evaluated (see Fig. 3),
where blue and red trajectories are related to MS3T and
SS3T, respectively. The initial joint angles are perturbed
with βi = −30◦,−20◦, . . . , 30◦, i = 1, 2, 3 and initial ori-
entation with θ3,I = −10◦, 0◦, 10◦. In all cases, the used
optimization step is able to handle the infeasible initial
guess obtained from the lattice planner, i.e., the value of
the computed optimal homotopy parameter is ε∗p,I = 0 in
all cases. That is, in all cases, a solution to the original
trajectory planning problem (16) is obtained. Moreover,
the average computation time of the optimization step is
3.4 s for MS3T and 26.2 s for SS3T. Hence, the active
trailer steering seems to reduce the computation time of
the OCP solver.

The second planning scenario is a parallel parking problem
with 18 different problem instances that is illustrated in
Fig. 5 and the results are summarized in Table 3. This sce-
nario is a confined environment which affects the average
computation time of the lattice planner t̄lat, which is 11.3 s
for MS3T and 5.6 s for SS3T. This is because the HLUT is
drastically underestimating the cost-to-go in this confined
environment. Because of the confined environment, both
the average cost improvement r̄imp (MS3T: −52%, SS3T:
−55%) and time improvement t̄G,imp (MS3T: −80.4 s,
SS3T: −109.6 s) of the optimization step are significant.
The confined environment does however not significantly
affect the average computation time of the optimization
step which is 2.4 s for MS3T and 8.4 s for SS3T. Moreover,
as can be seen in the three highlighted planning problems
in Fig. 5, the final optimized solutions for the MS3T only
need to reverse, as opposed to the SS3T which needs
to combine forward and backward motion in two cases.
Finally, Fig. 4 shows the difference between the trajectories
from the lattice planner and the optimization step for the
selected planning problem from position p3I in Fig. 5. As
can be seen, the state trajectories for the two steering
angles, the longitudinal velocity and the joint angles are
significantly smoother after the optimization step, at the
same time as the final time is decreased from 96 s to 70 s.

6. CONCLUSION

An optimization-based trajectory planner for multi-steered
articulated vehicles is proposed that targets low-speed
maneuvers in unstructured environments. The proposed
trajectory planner is divided into two steps, where a lattice
planner is used in a first step to compute an optimal
solution to a discretized version of the trajectory planning

problem using a library of precomputed trajectories. In a
second step, the output from the lattice planner is then
used to initialize a homotopy-based optimization step,
which enables the framework to compute a locally optimal
solution that starts at the vehicle’s initial state and reaches
the goal state exactly. The performance of the proposed
optimization-based trajectory planner is evaluated in a
set of practically relevant scenarios for a multi-steered 3-
trailer vehicle where the last trailer is steerable. In the
simulations, it is shown that the framework can solve
challenging trajectory planning problems and that the
proposed optimization step provides a significant improve-
ment in terms of reduced objective functional value and
final time, at the same time as it enables the framework
to plan from and to a larger set of different vehicle states.

As future work we would like to develop a trajectory-
tracking controller and evaluate the framework in real-
world experiments on a full-scale test vehicle.

Table 3. Results from parallel parking scenario in Fig. 5 for 18
problems. See Table 2 for description of the variables.

Vehicle t̄lat[s] t̄ocp[s] J̄D J̄H r̄imp t̄G,imp[s]

SS3T 5.6 8.4 270.6 122.4 -55% -109.6
MS3T 11.3 2.4 207.9 98.1 -52% -80.4

(a) The joint angle between tractor and trailer 1 β1(·) (black),
joint angle between the trailer 1 and trailer 2 β2(·) (blue), and
joint angle between the trailer 2 and trailer 3 β3(·) (red). Their
limits are displayed by dashed black lines.

(b) The steering angle of the tractor β0 (blue), velocity v0 (black)
and steering angle of trailer 3 γ3 (red). Their limits are displayed
by dashed-dotted lines.

Fig. 4. A subset of the resulting state trajectories for the parallel
parking scenario in Fig. 5 from initial state p3

I with MS3T for
optimized (solid lines) and lattice initial guess (dotted lines).
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Fig. 5. Parallel parking scenario using the proposed trajectory planner for SS3T and MS3T from three different initial positions (p1
I , p2

I and

p3
I), six different initial orientations θ3,I and zero initial joint angles, to the goal state xG. The blue (red) lines illustrate the planned

trajectories after the optimization step for the position of trailer 3 (x∗3(·), y∗3(·)) for MS3T (SS3T) from three selected initial states.

REFERENCES

Andersson, J.A.E. et al. (2018). CasADi – A software
framework for nonlinear optimization and optimal con-
trol. Mathematical Programming Computation.

Bergman, K. and Axehill, D. (2018). Combining homotopy
methods and numerical optimal control to solve motion
planning problems. In Proceedings of the 2018 IEEE
Intelligent Vehicles Symposium, 347–354.

Bergman, K., Ljungqvist, O., and Axehill, D. (2019).
Improved optimization of motion primitives for motion
planning in state lattices. In Proceedings of the 2019
IEEE Intelligent Vehicles Symposium.

Bergman, K., Ljungqvist, O., and Axehill, D. (2020).
Improved path planning by tightly combining lattice-
based path planning and optimal control. Ac-
cepted for publication in IEEE Transactions on
Intelligent Vehicles. Pre-print available at arXiv:
https://arxiv.org/abs/1903.07900.

Beyersdorfer, S. and Wagner, S. (2013). Novel model based
path planning for multi-axle steered heavy load vehicles.
In Proceedings of the 16th International Conference on
Intelligent Transportation Systems, 424–429.

Bushnell, L.G. et al. (1995). Steering three-input non-
holonomic systems: the fire truck example. The Inter-
national Journal of Robotics Research, 14(4), 366–381.

Cirillo, M., Uras, T., and Koenig, S. (2014). A
lattice-based approach to multi-robot motion planning
for non-holonomic vehicles. In Proceedings of the
2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 232–239.

Evestedt, N., Ljungqvist, O., and Axehill, D. (2016). Mo-
tion planning for a reversing general 2-trailer configu-
ration using Closed-Loop RRT. In Proceedings of the
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3690–3697.

Islam, M.M. et al. (2015). A comparative study of multi-
trailer articulated heavy-vehicle models. Proceedings
of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering, 229(9), 1200–1228.

Knepper, R.A. and Kelly, A. (2006). High performance
state lattice planning using heuristic look-up tables.
In Proceedings of the 2006 IEEE/RSJ International
conference on Intelligent Robots and Systems, 3375–
3380.

Lamiraux, F. et al. (1999). Motion planning and control for
hilare pulling a trailer. IEEE Transactions on Robotics
and Automation, 15(4), 640–652.

LaValle, S.M. (2006). Planning algorithms. Cambridge
University Press.

Li, B. et al. (2019). Tractor-trailer vehicle trajectory
planning in narrow environments with a progressively
constrained optimal control approach. IEEE Transac-
tions on Intelligent Vehicles.

Ljungqvist, O. et al. (2019). A path planning and path-
following control framework for a general 2-trailer with a
car-like tractor. Journal of Field Robotics, 36(8), 1345–
1377.

Michalek, M.M. (2019). Modular approach to compact
low-speed kinematic modelling of multi-articulated ur-
ban buses for motion algorithmization purposes. In
Proceeding of the 2019 IEEE Intelligent Vehicles Sym-
posium, 2060–2065.

Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

Odhams, A. et al. (2011). Active steering of a tractor–
semi-trailer. Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering,
225(7), 847–869.

Orosco-Guerrero, R. et al. (2002). Modeling and dynamic
feedback linearization of a multi-steered n-trailer. IFAC
Proceedings Volumes, 35(1), 103–108.

Pivtoraiko, M. et al. (2009). Differentially constrained
mobile robot motion planning in state lattices. Journal
of Field Robotics, 26(3), 308–333.

Sekhavat, S. et al. (1998). Multilevel path planning for
nonholonomic robots using semiholonomic subsystems.
The International Journal of Robotics Research, 17(8),
840–857.

Tilbury, D. et al. (1995). A multisteering trailer system:
conversion into chained form using dynamic feedback.
IEEE Transactions on robotics and automation, 11(6),
807–818.

Van De Wouw, N. et al. (2015). Active trailer steering
for robotic tractor-trailer combinations. In Proceeding
of the 54th IEEE Conference on Decision and Control,
4073–4079.

Varga, B. et al. (2018). Robust tracking controller design
for active dolly steering. Proceedings of the Institution
of Mechanical Engineers, Part D: Journal of Automobile
Engineering, 232(5), 695–706.

Vidal-Calleja, T., Velasco-Villa, M., and Aranda-Bricaire,
E. (2002). Real-time obstacle avoidance for trailer-
like systems. In Proceeding of the 3th International
Symposium on Robotics and Automation.
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