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Abstract: Our study introduces a new model reference based approach to the design of sliding mode 
controller for discrete-time dynamical systems subject to external disturbances. We propose to begin the 
control design with generation of the reference trajectory for the system using its mathematical model 
and a hyperbolic tangent based sliding mode reaching law. Next, for the real disturbed plant, we propose 
a reaching function, which follows the reference trajectory in each step. Further, we prove that this 
approach ensures existence of quasi-sliding motion according to the definition of Gao et al. Moreover, 
the proposed controller offers a significant reduction of the width of the achieved quasi-sliding mode 
band in comparison to other sliding mode methodologies, which results in an improvement of the 
system’s robustness. The properties of our control scheme are finally illustrated with a simulation 
example. 
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1. INTRODUCTION 

Model reference control has been present in the control 
design literature for decades. It is known as one of the most 
intuitive control methods commonly used in adaptive 
controllers. Over the years, the advantages of model 
following control have been thoroughly studied by Landau 
(1979), Butler (1992), Nguyen (2018) and many others. A 
few authors also proposed using reference models in 
continuous-time sliding mode controllers, e.g. Zinober et al. 
(1982), Bartolini et al. (1988), Cunha et al. (2003), Muniandi 
et al. (2019). However, despite the recent rapid development 
of discrete-time systems theory, the application of reference 
models in discrete-time sliding mode controllers has not been 
investigated widely.  

The discrete-time sliding mode control was for the first time  
considered in 1985 by Milosavljević, who developed the 
necessary condition for the occurrence of the quasi-sliding 
motion. The sufficient conditions were later presented by 
Sarpturk et al. (1987) and Kotta et al. (1989). The stability 
and control design for the discrete-time sliding mode was 
also studied by Furuta (1990), who proposed a Lyapunov 
function approach. However, not until the seminal work of 
Gao et al. (1995) had the attributes of the quasi-sliding mode 
been clearly described. According to the paper of Gao, for the 
quasi-sliding mode to exist the following three conditions 
must be satisfied: 

 The system’s representative point, starting from any 
initial position, moves monotonically towards the 
sliding surface in the so-called reaching phase and 
crosses it in finite time.  

 After the first crossing of the sliding plane, the 
representative point moves along it with a zig-
zagging motion, recrossing it in each successive 
time step in the so-called sliding phase.  

 Once the representative point of the system enters an 
a priori known band around the sliding plane it will 
never leave it again. 

Gao et al. (1995) also proposed an innovative reaching law 
based control design. Afterwards, numerous researchers have 
followed their design path and several new reaching laws 
have been designed, e.g. Golo et al. (2000), Veselić et al. 
(2010), Qu et al. (2014), Leśniewski et al. (2015), 
Chakrabarty et al. (2016), Ma et al. (2019a, b).  

In this work we adopt the quasi-sliding mode definition of 
Gao et al. (1995) and introduce a model reference based 
approach to the control design. Our idea is to use the 
system’s mathematical model to obtain the desired profile of 
the sliding variable. Therefore, we apply the hyperbolic 
tangent reaching law of Leśniewski et al. (2015). In the next 
step, we develop a new model following reaching law to 
control the real disturbed system. Finally, we prove that this 
method not only ensures all three attributes of the quasi-
sliding mode but also guarantees a significant improvement 
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of the system’s robustness. A similar approach has been 
recently presented by Bartoszewicz et al. (2019). However, 
that work utilizes a different method of the desired trajectory 
generation. Therefore, the resulting properties of the closed-
loop system are different than presented further in this study.  

2. REFERENCE TRAJECTORY BASED SMC STRATEGY 

2.1  Problem statement 

Our aim is to develop a quasi-sliding mode control strategy 
for a disturbed discrete-time plant, represented with: 

        1 ,k k u k d k   x Ax b b  (1) 

where x(k) is an n × 1 state vector, A is the plant’s state 
matrix, vector b represents the input distribution, u(k) denotes 
the control signal and d(k) denotes the disturbance. For any 
k ≥ 0 the disturbance  satisfies: 

   max .d k d  (2) 

The system’s initial condition is represented by x0 = x(0) and 
the demand state is xd. For the design of a sliding mode 
controller we first choose the sliding variable as s(k) = ce(k), 
where c is an 1 × n vector, which satisfies (cb)−1 ≠ 0, and e(k) 
is the state error vector defined as: e(k) = xd − x(k). Next, we 
select the sliding surface: 

   0.s k   (3) 

Having chosen the sliding hyperplane, we denote the 
disturbance impact on the sliding variable with D(k) = cbd(k). 
Considering (2), for any k ≥ 0, D(k) satisfies: 

 |D (k)| ≤ Dmax = |cbdmax|. (4) 

As the disturbance is bounded, the control design is feasible. 
In the next sections we will present a new model following 
sliding mode controller for the system (1) and compare it 
with an existing control strategy using a hyperbolic tangent 
reaching law presented by Leśniewski et al. (2015).  

2.2  Hyperbolic tangent reaching law 

Control for system (1) may be designed according to one of 
many discrete-time sliding mode reaching laws developed 
over the years. Most of them are based on the original 
switching type reaching law of Gao et al. (1995), in the form: 

          1 1 sgn ,s k q s k s k D k        (5) 

where q, ε > 0 and q < 1 and the signum function is 
understood as: 

 
1for 0

sgn( ) .
1 for 0

z
z

z


  
 (6) 

To fulfil the switching condition the control parameters must 
satisfy: 

 
  max2

.
q D
q




  (7) 

This original reaching law consists of two parts: the 
proportional term responsible for the convergence of the 
system’s representative point to the sliding hyperplane and 
the signum term, which ensures recrossing the switching 
plane in the sliding phase. The strategy results in the zig-
zagging motion of the representative point inside the quasi-
sliding mode band, whose width is 2(ε + Dmax). 

Although the reaching law (5) was fundamental for the later 
development of quasi-sliding mode control, it causes some 
implementation difficulties. Namely, the further from the 
sliding plane the representative point of the system is, the 
greater the values of the proportional term are. This may 
result in unacceptably large magnitude of the control input. 
This observation led Leśniewski et al. (2015) to the 
development of a new hyperbolic tangent based reaching law. 
Their idea was to modify the proportional term in order to 
restrict the pace of convergence and therefore the control 
signal. They proposed the following reaching function: 

          1 tanh sgn ,
s k

s k s k r s k D k
r


 

        
 

 (8) 

where ε > Dmax and r > 0. The reaching law may be expressed 
as: 

   

   
 

   

sgn 1 1

sgn tanh sgn .

s k s k

s k
s k s k r s k D k

r


    
             

    

 (9) 

One may notice that in the reaching phase, when 
sgn[s(k + 1)] = sgn[s(k)], (8) becomes: 

   
 

   1 tanh sgn .
s k

s k s k r s k D k
r


 

         
  

 (10) 

Considering that ε is greater than Dmax and (4) holds, one may 
easily notice that the rate of change of s(k) is restricted as 
follows: 

     max0 1 .s k s k r D       (11) 

It may be concluded from (11) that the absolute value of the 
sliding variable decreases in each control step. Therefore the 
representative point of the system reaches the sliding surface 
in finite time. Moreover, as opposed to the Gao’s strategy, the 
reaching law (8) ensures limitation of the maximum rate of 
change of s(k). Consequently, with the application of the 
reaching law (8), the maximum control signal becomes 
limited as well.  
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On the other hand, when the sliding plane has been crossed 
for the first time and sgn[s(k + 1)] = −sgn[s(k)], then the 
absolute value of s(k + 1) becomes: 

 
 

     1 tanh sgn .
s k

s k r s k s k D k
r


 

         
  

 (12) 

As the hyperbolic tangent function satisfies: 

 
 

 tanh 0,
s k

r s k
r

 
  

  
 (13) 

then from (12) we conclude that the ultimate band width is 
expressed as 2(ε + Dmax). Finally, to ensure that after the first 
crossing of the sliding plane occurred, it will be crossed again 
in each successive time step the control parameters must 
satisfy: 

 max
maxtanh 2 .

D
r D

r
    

 
 (14) 

As the requirements (7) and (14) are different, the control 
strategy of Leśniewski and Bartoszewicz with an appropriate 
choice of r and ε, enables to restrict the maximum value of 
the control input and at the same time reduces the width of 
the quasi-sliding mode band.  

2.3  Reference model 

In this section we present a new control strategy utilizing the 
hyperbolic tangent function as well. Our idea is to use the 
hyperbolic tangent reaching law to obtain the desired 
evolution of the sliding variable and then use the generated 
profile to control the real disturbed system (1).  

We propose to use the mathematical model of the plant to 
generate the ideal evolution of the sliding variable. The 
model does not depend on disturbances and its trajectories 
may be generated in advance and saved in a look-up table. 
We propose to control the model with the nonperturbed 
version of the strategy of Leśniewski et al. (2015), which 
allows to control the pace of convergence of the system and 
guarantees a relatively small width of the ultimate band. We 
denote the model’s sliding variable with sm(k). Moreover, the 
model’s initial conditions satisfy: 

      0 0 .ms s  d 0c x x   (15) 

We propose to control the model according to the switching 
type reaching law presented by Leśniewski et al. (2015): 

        1 tanh sgn ,m
m m m

s
s r k

k
k k

r
s s

 
    


  


 (16) 

where r and ε are greater than zero.  

The hyperbolic tangent function is lower and upper bounded 
by ±1. Therefore, its application in the reaching law (16) lets 
us specify the maximum and minimum rate of change of the 
sliding variable. When sgn[sm(k + 1)] = sgn[sm(k)], the 
reaching law becomes: 

    
 

1 tanh .m
m m

s
s k s k r

k
r


 

    
  

  (17) 

Consequently, the rate of change of the model’s sliding 
variable satisfies: 

    1 .m ms k s k r        (18) 

As the minimum change of the sliding variable in one control 
step is ε, we notice that not later than at i ≤ |sm(0)| / ε + 1 the 
representative point crosses the sliding plane for the first time 
and the sign of the model’s sliding variable sm(i) becomes 
opposite than the sign of s(0). This proves that the sliding 
plane is crossed in finite time.   

If, for some k, sgn[sm(k + 1] = −sgn[sm(k)], then the reaching 
law (16) becomes: 

 

 

   
sgn ( 1) ( 1)

sgn ( 1) ( ) tanh .

m m

m
m m

s k s k

s k
s k s k r

r


  

        
    

  (19) 

After some transformations from (19) we get: 

 
 

( 1) tanh ( ) .m
m m

s k
s k r s k

r


 
    

  
 (20) 

One may notice that for any |sm(k)|: 

 
 

tanh ( ) 0m
m

s k
r s k

r

 
  

  
  (21) 

holds. Therefore, from (20) and (21) we notice that when the 
sign of the model’s sliding variable changes, its absolute 
value satisfies: 

  1 .ms k    (22) 

Next, we show that if the change of the sign occurred at step 
k + 1 it occurs at step k + 2 as well. For sm(k + 2) we may 
write: 

 

 

   
sgn ( 2) ( 2)

1
sgn ( 1) ( 1) tanh .

m m

m
m m

s k s k

s k
s k s k r

r


  

        
    

 (23) 

Considering (22), we may notice that, on the right hand-side 
of (23), the term in the curly brackets is always smaller than 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6318



 

 

 

     

zero. Therefore, the sign of the model’s sliding variable 
switches again. We conclude that for any k ≥ i the sign of 
sm(k) changes at each subsequent step and its absolute value 
satisfies (22). This proves that the evolution of the model’s 
sliding variable fulfils all the requirements for the existence 
of quasi-sliding mode, as stated by Gao et al. Next, we will 
use the model’s sliding variable as a reference for the real 
system subject to external disturbances. 

2.4  Model following reaching law 

In this part we present a model following reaching law for the 
system (1). We propose the following reaching function: 

      1 1 .ms k s k D k     (24) 

The idea of this new reaching function is to drive the 
system’s states, at each control step, to their desired values, 
determined by the model. As the model’s sliding variable 
sm(k) does not bear any disturbance influence, the plant’s 
sliding variable at step k is only influenced by D(k – 1). 
Meanwhile, in the previous strategies s(k) bore the impact of 
all the disturbance values from the beginning of the control 
process up to D(k – 1). Therefore, the model following 
control improves the robustness of the system. 

From (1), (3) and the reaching law (24) results the following 
control signal: 

        1 1 .mu k k s k     dcb cx cAx  (25) 

As the disturbance D(k) may push the representative point of 
the system away from the sliding hyperplane, the control 
parameters r and ε of the model must be selected in a specific 
way in order to provide the existence of the quasi-sliding 
motion.  

For the quasi-sliding mode to emerge the representative point 
of the system must cross the switching plane in finite time 
and remain inside its predefined vicinity, recrossing it at each 
consecutive time instant. It has already been proved in 
section 2.3 that the model’s representative point crosses the 
sliding plane in finite time. For the sake of clarity, we denote 
the first moment k when sgn[sm(k)] = −sgn[s(0)] with i. Next, 
for the real plant, we denote the first moment k when 
sgn[s(k)] = −sgn[s(0)] with k0. Further in the paper we will 
demonstrate that the finite k0 actually exists. According to 
Gao’s definition, for the quasi-sliding mode to emerge, the 
sliding variable must satisfy: 

    sgn sgn 1 ,s k s k          (26) 

for any k ≥ k0. 

Theorem 1: 

If rtanh[ε / r] > Dmax, then the sign of plant’s sliding variable 
is opposite to the sign of s(0) for the first time at step 
k0 ≤ i + 2. For any k ≥ k0 (26) is satisfied and the quasi-

sliding mode compliant with the definition of Gao et al. 
(1995) emerges. Moreover, for any k ≥ k0 + 1 the absolute 
value of s(k) is bounded by ε + Dmax. 

Proof: 

To begin, we express s(k + 1) using the reaching laws (24) 
and (16): 

   

   
 

 

sgn 1 1  

sgn tanh .m
m m

s k s k

s k
s k s k r D k

r


    
          

    

   (27) 

Considering that for any k ≥ i the model’s sliding variable 
satisfies (22), we notice that the term in the curly brackets in 
(27) is always negative. Moreover, from (4) we conclude that 
D(k) ≤ Dmax. Consequently, if:  

 maxtanh ,r D
r
   
 

 (28) 

then for any k ≥ i + 2: 

      sgn sgn 2 sgn 1 .ms k s k s k                 (29) 

We conclude that the finite k0 exists and (26) holds for any 
k ≥ k0, if  (28) is satisfied.  

Considering (24) we may calculate the ultimate band width. 
In section 2.3 we have shown that, for any k ≥ i, sm(k) 
satisfies (22). Therefore, for any k ≥ i, the absolute value of 
s(k) satisfies: 

   max ,s k D    (30) 

which ends the proof.  ∎ 

The width of the ultimate band obtained with the reaching 
laws (8) and (24) is expressed by 2(ε + Dmax). However, 
parameter ε in those control strategies is chosen differently.  
In the model following strategy the control parameters must 
satisfy (28), which after some calculations may be 
transformed to the form: 

 max2
21 .

1r

r D

e


 
   
  

 (31) 

Assuming that r > Dmax, from (31) we get: 

 max

max

2 ln .
r D

r r D
 



 (32) 

On the other hand, in the original strategy of Leśniewski et 
al. (2015), the control parameters must be chosen so that: 

 max
maxtanh 2 .

D
r D

r
    
 

 (33) 
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Following the same transformations as for the model 
reference strategy and assuming that r > 2Dmax, from (33) we 
get: 

 max max

max

2 22 ln .
2

D r D
r r r D
 
 


 (34) 

Comparing (32) and (34), we conclude that the greater the 
value of Dmax, the more beneficial the model following 
strategy becomes. First of all, in the model following strategy 
r must be greater than Dmax instead of 2Dmax, which gives a 
wider choice for the designer than the original strategy. 
Moreover, for the values of r close to 2Dmax, the right hand-
side of (34) reaches very high values, which results in much 
larger ε for the original strategy than for the new model 
following control. As parameter r determines the pace of the 
convergence, it determines the magnitudes of the control 
signal as well. Therefore, it is important to keep the value of r 
relatively small. This shows that the model following strategy 
offers a significant reduction of the achieved ultimate band 
width and an improvement of the robustness of the system, 
while keeping a restricted pace of convergence and a limited 
magnitude of the control signal.  

3. SIMULATION RESULTS 

To verify our results we carried out a simulation example. 
We considered a simple mechanical actuator represented by 

the transfer function   2
1
0.8

G s
s s




. We assume that the 

system is controlled through sample-and-hold devices, with 
the discretization period T = 1. Therefore, we obtain the 
following state space representation: 

        
1 0.688 0.389

1 .
0 0.449 0.688

k k u k d k   
          

   
x x  (35) 

The initial conditions are x0 = [−100 0]T and our objective is 
to achieve the demand state xd = [0 0]T. The disturbance d(k) 
changes in the whole control process between its extreme 
values ±10, i.e. for k ∈ [0, 20] d(k) = −10 and for k ∈ [21, 40] 
d(k) = 10. We choose vector c = [1 0.566], in order to 
guarantee stability of the closed-loop system and set the 
sliding hyperplane as s(k) = ce(k) = 0, obtaining the initial 
condition s0 = s(0) = 100. Therefore, the maximum 
disturbance impact Dmax is 7.784. To clearly illustrate the 
benefits of the model following concept we compare our 
strategy with the hyperbolic tangent reaching law of 
Leśniewski et al. (2015). We assume that the control signal is 
limited with umax = ±45. Therefore, according to (33), for the 
hyperbolic tangent strategy we set r = 22 and ε = 11.7. On the 
other hand, taking into account the control limitation and 
theorem 1, for the model following strategy we choose r = 27 
and ε = 8.05. The results obtained with our simulations are 
shown in figs. 1-4. For the sake of clarity, we used blue solid 
line to plot the results of the original strategy and red dashed 
line for the model reference strategy.  

s(
k)

 

Fig. 1 Evolution of the sliding variable for both strategies. 

u(
k)

 
Fig. 2 The control input. 
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Fig. 3 The first state variable x1. 

 

Fig. 4 The second state variable x2. 
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Fig. 1 exhibits the evolution of the sliding variable in both 
control cases. It may be seen that both strategies ensure the 
convergence of the system’s representative point to the 
switching plane and the quasi-sliding motion. The original 
strategy resulted in the quasi-sliding mode band width equal 
to 19.5, while with the model following control this band was 
reduced to 15.65. Fig. 2, which presents the control signal 
confirms that the control constraint was satisfied in both 
cases. Figs. 3 and 4 show the evolutions of the state variables. 
It may be easily noticed that the model reference control 
strategy ensured a reduction of the errors of both state 
variables in the sliding phase. 

4. CONCLUSIONS 

This work presents a new reference model following sliding 
mode controller for discrete-time disturbed dynamical 
systems. Our design method assumes using a mathematical 
model of the system to generate the demand evolution of the 
sliding variable. For the generation of the model’s trajectory 
we use a hyperbolic tangent switching type reaching law, 
which provides relatively fast convergence of the system and 
imposes a limitation on the maximum rate of change of the 
sliding variable. Therefore, the maximum control magnitude 
becomes limited as well. Next, we proposed a model 
following reaching law for the real system subject to external 
disturbances. We showed that our control method provides all 
three attributes of the quasi-sliding mode, defined by Gao et 
al. and at the same time improves the system’s robustness. It 
is worth mentioning that the benefits of our control strategy 
grow with the growing influence of disturbances. Therefore, 
the strategy is especially useful in strongly disturbed cases. 
Lastly, our results were illustrated with a simulation example. 
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