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Abstract: The paper describes a recently introduced relay shifting method for process identification 
using a single relay feedback test. The aim is to obtain a process model for automatic tuning of PID 
controllers. This method is applicable for open-loop stable, unstable and integrating systems if there is 
sustained oscillation in a biased-relay feedback test. For this purpose the identification method uses a 
filter called a “shifting filter” which enables to estimate the next point on a process frequency 
characteristic. Furthermore, this additional point can be used to estimate the parameters of the process 
transfer function with multiple parameters, including static gain, even under a static load disturbance. In 
the paper, a new more robust algorithm for fitting a second-order time delayed model is introduced. It can 
be used for the PID controller design of the most processes describable by linear models. For the first 
time the shifting filter is also applied for the relay feedback identification of unstable systems. The 
method is demonstrated on examples of stable, unstable and integrating systems. 

Keywords: System identification, relay control, parameter estimation, frequency characteristic, static 
gain, time-delay, auto-tuning.  

 

1. INTRODUCTION 

There are many methods for automatic tuning of PID 
controllers. The relay method belongs among those 
successfully applied in practice. Rotac (1961) originally used 
this approach for process identification. Åström and 
Hägglund (1984) proposed the relay identification method for 
controller auto-tuning as an alternative to Ziegler-Nichols 
continuous cycling method (Ziegler and Nichols, 1943). The 
relay method enables to find the ultimate gain and the 
ultimate frequency like the Ziegler-Nichols method but in a 
short experimental time and in a controllable manner.  

Successful results obtained by using the relay feedback to 
process identification have generated interest in this 
approach, leading to the design of new relay identification 
methods. These methods can be categorized into three groups 
for single-input-single-output (SISO) systems: Describing 
function method, curve fitting approach and frequency 
response estimation for model fitting (Liu, Wang and Huang, 
2013). Currently, there are several review publications 
focused on relay feedback identification, e.g. Yu (1999), Liu 
and Gao (2012), Liu, Wang and Huang (2013), Chidambaram 
and Sathe (2014), Kalpana and Thyagarajan (2018), 
Ruderman (2019). The presented methods mostly assume 
linear low-order time delayed models with low number of 
parameters, which are sufficient for modelling of many 
industrial processes. But only a few presented relay methods 
are able to obtain all model parameters using one relay test 
without a priori information. In addition, some methods of 
the relay identification do not take into account problems 
with the effects from load disturbance, measurement noise 

and nonzero initial process conditions that are in practical 
applications often encountered.  

This paper aims to describe in summary the relay 
identification method which enables one to estimate up to 
three points on a process frequency characteristic from a 
single relay feedback test using a filter called a “shifting 
filter” without any assumption about a model (Hofreiter, 
2015). These points can then be used for estimation up to five 
parameters of a process transfer function from a single relay 
feedback experiment. For this purpose the paper introduces a 
new more robust algorithm for fitting the second order time 
delayed model (called the SOTD model) which can be used 
for automatic tuning of PID controllers. For the first time the 
shifting filter is also applied for the relay feedback 
identification of unstable systems. 

2. RELAY SHIFTING METHOD  

2.1 Specifications 
Consider a process that can be described by a time invariant 
linear dynamical model around its operating point. The 
process is under a two-position biased relay control, see 
Fig. 1, where w denotes the desired variable, y is the 
controlled variable, u is the manipulated variable and e is the 
control error. The process is described by the frequency 
transfer function GP(jω), where ω is the angular frequency 
and j is the imaginary unit. The relay shifting method uses a 
biased relay. The steady state characteristic of the two-
position biased relay with hysteresis is depicted in Fig. 2. The 
steady state characteristic is selected so that there is stable 
oscillation with the period Tp (Tp=T1+T2, T1≠T2) during the 
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relay feedback test, see Fig. 3. The biased relay with a 
hysteresis reduces the influence of noisy environment and 
enables application of the shifting filter for the fitting model.  

Fig. 1. Closed-loop system with two-position biased relay. 

Fig. 2. The steady state characteristic of the two-position 
biased relay with hysteresis.  

Fig. 3. The time courses of u and y during the relay feedback 
test.  

2.2 Estimation of Frequency Response Points 
The basic idea of the shifting method consists in determining 
the time courses of the auxiliary variables ua(t) and ya(t) 
using the shifting filter with the frequency transfer function 
filter 
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FG j e
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The filter filters out all odd harmonic frequencies, including 
the fundamental harmonic frequency ω1, and amplifies twice 
the even harmonic frequencies, including ω2, where 
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2

pT

πω = , (2) 

 2 12ω ω= ⋅ . (3) 

The block diagram of this filter is shown in Fig. 4.  

The auxiliary variables ua and ya can be easily calculated 
from the time courses u and y by 
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Fig. 4. The block diagram with the shifting filter (1)  

The time courses of u and y during the relay feedback test, 
together with calculated ua and ya, are shown in Fig. 5.  

  

Fig. 5. The time courses of u and y during the relay feedback 
test together with calculated ua and ya.  

The frequency response points G(jω1) and G(jω2) can be 
determined according to Hofreiter (2015) or by 
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where tL is the time when the stable oscillation was achieved, 
and the integrals in the numerators are computed by 
numerical integration. 

The newly obtained point G(jω2) determined by the shifting 
method permits the estimation of two other model parameters 
from a single relay feedback test. The position of the points 
G(jω1) and G(jω2) in the Nyquist frequency characteristic of 
a proportional system is shown in Fig. 6. In Fig. 6, the point 
G(0) corresponding to the static gain K of a proportional 
system is also depicted. The value K is often assumed to be 
known a priory, e.g. Luyben (1987) or more relay tests are 
necessary, e.g. Li, Eskimat and Luyben (1991). The static 
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gain can be also determined by the following formula 
(computed by numerical integration) if the asymmetrical 
relay is used and the working point (u0,y0) is known exactly, 
see Shen, Wu and Yu (1996) or Berner, Hägglund, and 
Åström (2016). 
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Fig. 6. The Nyquist frequency characteristic of a proportional 
system with the points G(jω1), G(jω2) and the point G(0) 
corresponding to the static gain K. 

Remark 1 
A great advantage of the above procedure is that the location 
of the points G(jω1) and G(jω2) is based on the relay 
experiment without assuming any model structure. The newly 
obtained point G(jω2) determined by the shifting method 
allows the estimation of two other parameters of the model 
from a single relay test. It is possible due to the use of the 
second-order harmonic of the relay oscillations. Therefore, 
this approach can be applied to models with more 
parameters and different structures.  

Remark 2 
The next advantage of this approach is that the presence of a 
static load disturbance with a magnitude of dA does not have 
any influence on the calculation G(jω1) and G(jω2) as it 
holds 
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The vector θ of model parameters can be determined by 
minimizing the criteria 
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where M(jωi,θ) is the frequency response point of a linear 
model at the frequency ωi and with parameters given by the 
vector θ. 

The value of the parameter vector θ that minimises the 
criterion (10) can be determined by 

 ( )arg min Kr
θ

θ θ
∈Θ

= , (11) 

where Θ is a set of possible values of θ. 

3. MODIFICATIONS OF RELAY SHIFTING METHOD 
FOR PRACTICE 

3.1 Moving the positions of G(jω1) and G(jω2) 
In some cases the position of the frequency response point 
G(jω2) is not very convenient for model fitting. A better 
position of this point can be achieved by a transport delay D 
or by an integrator additionally inserted into the closed loop 
(Hofreiter, 2018), see Fig. 7, where s is the complex variable 
in Laplace transform. This solution allows to place the points 
G(jω2) and G(jω1) to the 3rd and 4th quadrant (see Fig. 8). 

Fig. 7. The relay feedback test with an additional a) transport 
delay D, b) integrator. 

 

Fig. 8. The Nyquist frequency characteristic of a proportional 
system with the points G(jω1), G(jω2) and G(0) obtained 
from the relay feedback test with additional integrator/delay 
in a closed loop. 

3.2 Estimation of the static gain K 
The static gain K cannot be calculated according to formula 
(8) if we do not know a priory the values u0, y0, e.g., due to a 
static load disturbance d with a magnitude of dA. But if we 
use the relay shifting method and the SOTD model with 4 
parameters, we can roughly estimate the static gain K from a 
proportional model estimated only from the points G(jω1), 
G(jω2). 

4. SOTD MODEL FITTING 

Most industrial processes can be described near the operating 
point using the SOTD model with the transfer function 
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where K, a2, a1, τ are estimated parameters, and s is the 
complex variable in the Laplace transform. This model is 
very versatile and can be used to describe both oscillating and 
non-oscillating systems, as well as stable and unstable 
systems. As this model has only four parameters they can be 
estimated only from points G(jω1), G(jω2). It means 
including the static gain K without any further information. 

The parameters K, a2, a1 and τ of the model (11) can be 
determined based on the knowledge of the values ω1, ω2, 
G(jω1) and G(jω2) obtained by the shifting method from a 
single relay feedback test. For this purpose we can use the 
criterion (10) where the vector of model parameters 

 2 1[ ]TK a aθ τ= , (13) 

where “T” denotes the transpose of a matrix. 

For a stable system the value of the vector θ that minimises 
the criterion (10) can be determined by 

 ˆ arg min ( )Kr
θ

θ θ
∈Θ

= , (14) 

where Θ={(K, a2, a1, τ): K>0, a2>0, a1>0, τÎá0,τmñ} and τm 

see Fig. 3. 
 
By denoting the real and imaginary part of the complex 
values G(jω1) and G(jω2) 
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where Δτ is the chosen precision of the estimation τ and 
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Remark 3 
If we know, for example, the static gain K or the transport 
delay τ, the number of estimated parameters will be reduced 
and a similar procedure may be used. A similar procedure 
can be also used for fitting the SOTD model of an unstable 
process or for an integrating process described by a model 
with the transfer function 

 ( ) ( )2 1

1 s
IM s e

s a s a
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+
. (18) 

5. EXAMPLES 

The relay shifting method can be demonstrated on different 
types of processes (stable /unstable /integrating, 
oscillating/non-oscillating, with/without transport delay). In 
all simulated examples, the model parameters are estimated 
only from the points G(jω1), G(jω2) obtained by the shifting 
method. The biased relay with a hysteresis has, for the first 
two examples, the following parameters, see Fig. 2: 

 uA=2, uB=-1, εA=0.1, εB=-0.1 (19) 

5.1  Example #1- Stable Process 
A process with the transfer function 

 ( )
( )1 5

1

1
P s

s
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+
  (20) 

is controlled by the biased relay with the additional 
integrator, see Fig. 7b. The time course of the relay output u 
and the output y of the process P1(s) are depicted in Fig. 9, 
provided that the process was initially in a steady state. From 
the time courses u and y it follows that the period of stable 
oscillation 
 21.9PT =  s. (21) 

From (2)÷(7) 

 1
2

0.287
pT

πω = = rad·s-1, 2
4
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pT

πω = =  rad·s-1 (22) 

 ( )1 0.13 0.81G j jω = − , ( )2 0.43 0.24G j jω = − −  (23) 

 0.2mτ = s  (24) 

The model transfer function M1(s) obtained by minimizing 
the criterion (16), is 

 ( ) 1.54
1 2
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4.1 3.36 1
sM s e

s s
−=
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Fig. 9 The time courses of the relay output u and the process 
output y obtained from the relay feedback experiment with 
integrator. 

The Nyquist frequency characteristics of the transfer 
functions P1(s) and M1(s) are shown in Fig. 10. In the same 
figure, the points G(jω1) and G(jω2) are depicted as well. The 
step response hP1 of the process P1 and the step response hM1 
of the model M1 are shown in Fig. 11. 

Fig. 10 The Nyquist frequency characteristics of the transfer 
functions P1(s) and M1(s). 
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Fig. 11 The step response hP1 of the process P1 and the step 
response hM1 of the model M1. 

5.2  Example #2- Integrating Process with Delay 
An integrating process with the transfer function 
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is controlled by the biased relay, see Fig. 1. The time course 
of the relay output u and the output y of the process P2(s) are 
depicted in Fig. 12. From the time courses u and y it follows 
that the period of stable oscillation 
 41.1PT = s. (27) 

Fig. 12 The time courses of the relay output u and the 
integrating process output y. 

From (2), (3), (4), (5), (6) and (7) 
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 ( )1 6.27 1.22G j jω = − − , ( )2 1.19 2.74G j jω = − −  (29) 

 11.3mτ = s  (30) 

The model transfer function M2(s), obtained by the shifting 
method is  

 ( ) 7.6
2 2
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1.45
sM s e

s s
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+
  (31) 

 
Fig.13 The Nyquist frequency characteristics of P2 and M2. 
 

The Nyquist frequency characteristics of the transfer 
functions P2(s) and M2(s) are shown in Fig. 13. The step 
response hP2 of the process P2 and the step response hM2 of 
the model M2 are shown in Fig. 14. 

Fig. 14 The step response hP2 of the process P2 and the step 
response hM2 of the model M2.  

5.3  Example #3- Unstable Process with Delay 
An unstable process with the transfer function 
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is controlled by the biased relay, see Fig. 1. In this case, the 
parameters of the biased relay are  
 uA=2, uB=-1.7, εA=0.1, εB=-0.1. (33) 
The time course of the relay output u and the output y of the 
process P3(s) are depicted in Fig. 15. From the time courses u 
and y it follows that the period of stable oscillation 

 24.5PT = s (34) 

From (2)÷(7) 
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 ( )1 0.54 0.09G j jω = − − , ( )2 0.25 0.03G j jω = − + ,(36) 

 5.6mτ = s. (37) 

The model transfer function M3(s), obtained by the shifting 
method, is  

 ( )3 2
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10.82 3.04 1
M s

s s
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 . (38) 

The Nyquist frequency characteristics of the transfer 
functions P3(s) and M3(s) are shown in Fig. 16. The step 
response hP3 of the process P3 and the step response hM3 of 
the model M3 are shown in Fig. 17. 

Fig. 15 The time courses of the relay output u and the 
unstable process output y. 
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Fig. 16 The Nyquist frequency characteristics of the transfer 
functions P3(s) and M3(s). 

 Fig. 17 The step response hP3 of the process P3 and the step 
response hM3 of the model M3. 

6. CONCLUSION 

The relay shifting method has the following properties: 
• The obtained frequency points G(jω1) and G(jω2) are 
determined from a single relay test without any prior 
knowledge of the model. 
• The static load disturbance has no effect on the positions of 
the frequency points G(jω1) and G(jω2). 
• The method enables to estimate all the parameters of the 
SOTD model from a single relay feedback test. 
• By using the SOTD model, it is possible to estimate the 
static gain even in the presence of a constant load 
disturbance.  
• The shifting method can be used for 
overdamped/underdamped systems, for time-delayed systems 
and noisy environment. 
• The relay shifting method is primarily proposed for the 
automatic tuning of controllers. 
• The shifting method can also be used for integrating and 
unstable systems if there are stable oscillations for the relay 
feedback test.  
• The shifting method is appropriate only for systems 
describable by linear and time invariant models. 
 
In addition to the simulation examples, the relay shifting 
method was also successfully used for PLC Tecomat Foxtrot 
automatic tuning. This PLC was used to control the 
laboratory apparatuses called “Air Aggregate”, “Water 
Levitation” and “Air Levitation”. For this purpose, an 
integrated development package for PLC Tecomat, known as 
Mosaic, was used (Hornychová and Hofreiter, 2019).  
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