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Abstract: The payload of garbage trucks may vary substantially over the time, affecting
both the vehicle performance and driving safety. Information on the load in real-time could
thus play a key role for monitoring and diagnostics. Unfortunately, physical sensors directly
measuring the vehicle mass are usually too costly for commercial trucks, while the correlation
between consecutive values of the load is not considered by most of existing approaches for
mass estimation. Since this correlation characterizes load variations in garbage trucks, this
paper proposes an ad-hoc approach for payload estimation, which relies on inertial sensors only.
To minimize the tuning effort, we introduce a strategy to automatically select the key tunable
parameters of the estimator. The effectiveness of the proposed approach is demonstrated on

experimental data collected on a real truck.

1. INTRODUCTION

Several automotive applications, including safety-oriented
controls and fault detection systems, require an accurate
knowledge of the vehicle mass to perform properly. Since
the mass of a heavy-duty vehicle can vary as much as
400% depending on its payload (Kidambi et al. (2014)),
retrieving reliable information on the load in real-time is
of paramount importance to optimize the performance of
the vehicle and detect potential safety hazards. A correct
estimation of the payload can also help improving fleet
management strategies (Stefansson and Lumsden (2008)),
ultimately leading to potential savings.

Multiple approaches have been already proposed to tackle
the problem of mass estimation (Kidambi et al. (2014)),
which are mainly model-based. These methods can be
divided into strategies relying on the model for the lateral
dynamics of the vehicle, e.g., Wenzel et al. (2004), and
the ones based on the model for its longitudinal dynamics,
as Fathy et al. (2008); Vahidi et al. (2003a,b); Winstead
and Kolmanovsky (2005). Available approaches for load
estimation can be further distinguished as methods that
return an estimate of the load regularly over time, and
techniques providing load estimates only when specific
events are detected. Even though most of these approaches
require a dedicated sensor setup, which can be fairly ex-
pensive, some methods do exist (see Reineh et al. (2014))
that require a set of (low-cost) inertial sensors only. How-
ever, due to their dependence on a mathematical model
for the vehicle dynamics, they might perform poorly when
the modelling assumptions are not satisfied. Additionally,

* This work was partially supported by E-Novia SpA., the Lom-
bardia region and the Cariplo foundation, under the project
Learning to Control (L2C), no. 2017-1520. Corresponding author:
valentina.breschi@polimi.it.

Copyright lies with the authors

Fig. 1. Experimental setup. The red circles indicate the
positions of the inertial sensors.

existing approaches for load estimation usually rely on the
hypothesis of constant /slowly varying loads, which is quite
unrealistic when considering garbage trucks. These issues
are bypassed by the frequency-based approach in Bottelli
et al. (2014) that relies on the offline identification of a
black-boxr model describing load variations, obtained as a
combination of spectral features of the available signals
that can be linked to variations in the payload. This ap-
proach has proven to enable the user to accurately detect
mass variations, while relying on a simple sensor setup
and operations that can be easily performed on-board of
commercial vehicles. Indeed, this approach requires the use
of a single Inertial Measurement Unit (IMU), which can
be integrated into garbage trucks with ease.

In this paper, we focus on real-time payload estimation
of garbage trucks, with the ultimate goal of reducing
their operating costs while detecting potentially unsafe
working conditions. Indeed, real-time estimation of the
load allows the driver to be notified before the vehicle is
overloaded, thus avoiding possible structural damages and
circumventing fees related to excessive payloads, see Ital-
ian Highway Code (1992). At the same time, by monitoring
load variations on-line, one can actively detect crossings of
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Fig. 2. Examples of low-frequency spectra of accelerations and angular rates.

acquisition.

critical thresholds, thus retrieving useful information for
diagnostic/prognostic purposes. Since the payload might
considerably vary each time the garbage truck stops to
collect waste, the approach in Bottelli et al. (2014) seems
the most suited for the problem at hand. Therefore, we
propose a method based on the detection of changes in
the frequency spectra to track variations in the payload
but, differently from Bottelli et al. (2014), we further
exploit the characteristics of the application at hand by
imposing a correlation between consecutive load estimates.
Moreover, as we rely on the sensor setup depicted in Fig. 1,
our vehicle is equipped with two IMUs. Therefore, unlike
in Bottelli et al. (2014), we can exploit more information,
at the price of additional efforts required to select relevant
signals and fuse the available information.

The paper is organized as follows. In Section 2, we describe
the experimental setup and discuss the results of a pre-
liminary data analysis. The approach for load estimation
is presented in Section 3, while an empirical solution to
reduce the tuning effort is discussed in Section 4. Exper-
imental results are presented in Section 5, and the paper
is ended by some concluding remarks.

2. EXPERIMENTAL SETUP AND DATA ANALYSIS

As shown in Fig. 1, we consider a garbage truck equipped
with two IMUs mounted on the rear axle and the dump
body of the truck, respectively. Both IMUs consist of three
accelerometers and three gyroscopes, all with sampling
rate at 100 Hz. The truck is further equipped with a Global
Positioning System (GPS), that returns the position of
the vehicle every 0.02 s. Since it is unlikely that even at
the same location the amount of collected waste is always
the same, e.g., because of seasonality, it is reasonable to
assume that GPS measurements provide little/no insights
on the current payload. Therefore, GPS measurements
are discarded, allowing us to neglect the difference in the
sampling rates.Therefore, the only data that can be used
to estimate the load are the accelerations and the angular
rates returned by the IMUs. As in Bottelli et al. (2014), we
analyze these signals by considering their frequency spec-
tra during the first and the last 15 minutes of acquisition,
so as to understand if they are affected by variations in
the payload. Since each acquisition terminates once the
truck is unloaded, these subsets of data are related to the
beginning and the end of the time interval in which the
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Fig. 3. Examples of vertical acceleration and pitch
rate low-frequency spectra obtained by splitting one
dataset into 5 equally long subsets. First (blue), third
(magenta) and last (black) segments. The dashed
vertical lines indicate the positions of the peaks.

garbage truck is in use and, thus, they can be associated
with the conditions of almost empty and full truck. Since
we are evaluating the differences in the spectra for two
opposite load configurations, our analysis is expected to
highlight which signals are actually influenced by varia-
tions in the load, so to eventually reduce the amount of
data to be fused. As shown in Fig. 2, changes in the spectra
are particularly evident at low frequencies, where the mag-
nitude of the spectral peaks clearly changes as a function
of the load. Moreover, the frequency of the spectral peaks
shifts based on the payload for the vertical acceleration
and the pitch rate only. Provided this additional property
of these signals, it seems reasonable to estimate the load by
exploiting vertical accelerations and pitch rates only. Note
that a similar conclusion is also reached by the authors in
Bottelli et al. (2014), hence endorsing our choice. As we
alm at retrieving an estimate of the load in real-time, the
vertical acceleration and the pitch rate are further ana-
lyzed to detect changes in the spectral peaks throughout
an acquisition. To this end, we split each dataset into 5
consecutive subsets of equal length, which are associated
with increasing values of the load. Then, we compute the
spectrum for each subset and we evaluate the magnitude
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Fig. 4. Interpolating linear function (black) vs ratio in-
dex/load pairs (blue). The ratio indexes are computed
for the pitch rate measured by the IMU mounted on
the rear axle of the truck.

and position of the spectral peaks with respect to prior
subsets. As a result, we observe a behavior similar to the
one shown in Fig. 3. This highlights that the position of
the spectral peaks does change according to variations in
the load.

3. DATA-DRIVEN LOAD ESTIMATION

Since the results reported in Section 2 are consistent with
the ones in Bottelli et al. (2014), the estimator is designed
by following a procedure similar to the one considered
there. Specifically, the vertical accelerations and pitch
rates are preprocessed to solely retain the information
that is useful for load estimation. After this preprocessing
phase, a black-box model is then learned, which returns
the value of the load for a given set of selected features.

Since load variations mainly affect the spectral peaks at
low frequencies, we extrapolate the information at these
frequencies by constructing the ratio index, a dimension-
less indicator already considered in Bottelli et al. (2014)
that provides information on the shape of the spectra. For
a given signal y, this index is computed as the following
power spectral ratio
Pyl

Ry = B, (1)
with P, and P,, being the spectral powers of the signals
y1 and yo, that are obtained by filtering y with two
distinct bandpass filters Fy(s, fi,, fu,) and Fa(s, fi,, fu,) L
The cutoff frequencies {f;,}?_; and {f,,}?_, are tunable
parameters, with f;, < f,, for i = 1, 2. It is worth pointing
out that a proper tuning of these cutoff frequencies is of
paramount importance to accurately reconstruct the load.
Since our ultimate goal is to estimate the load in real-time,
the ratio indexes have to be computed iteratively. In the
training phase, they can be obtained from data acquired
between consecutive measurements of the load. However,
when the estimator is deployed the load is not measured
and, thus, the ratio indexes can only be computed through
data collected over consecutive intervals of predefined
length.

As we have no prior knowledge on the relationship between
the load and the indexes, we consider a general estimator
belonging to the class:

M U(n,0) = g(6), (2)
where n € N is a counter whose value increases every time

the load is estimated. Both the parameter vector 6 € R™®
and g : R" — R in (2) have to be retrieved from data,

1

s denotes the Laplace variable.

since they are unknown. In particular, g(6) is generally
a nonlinear function of the unknown parameters 6 and
the information available up to the instant when the n-th
estimate of the load is computed, e.g., current and past
ratio indexes and either past measurements or estimates
of the load.

To select the structure of the estimator, we have prelimi-
narily analyzed the relationship between the ratio indexes
and the measurements of the load on the available dataset.
The results of this investigation are similar to the ones
shown in Fig. 4, leading us to the conclusion that the
relation between the ratio indexes and the load is ap-
proximately linear. As a consequence, we identify an affine
model by modifying (2) as follows

M: {(n,0) =X(n)o, (3)
with X (n) € R™ defined as
5 X(n
xw = [*{"). @)
and X (n) being a properly defined feature vector. Given a
training set {X(n), L(n)}Y_; comprising N features/load
pairs, the parameter vector § € R™ is identified by
minimizing the quadratic cost function
N
Jo =y _(L(n) = £(n,0))?, (5)
n=1
with respect to 6, through standard least-squares.

Inspired by Bottelli et al. (2014), we initially learn a static
affine model by using the feature vector X (n):

X(n)=[Ra.,1(n) Ra. 2(n) Ry, 1(n) Ry, 2(n)]" (6
Once the parameter vector 6 is learned, the estimate of
the load is obtained via a linear combination of the ratio
indexes of the vertical accelerometers and the pitch gyros,
respectively denoted as R,_; and R, ;, with ¢ = 1,2. This
choice entails that no priority is attributed to the data
collected from either of the two available sensors.

Although the static model (3)-(6) exploits the results of
our analysis in Section 2, it does not leverage a distinctive
feature of the considered problem, namely the correlation
between consecutive values of the load. This additional
information is accounted for by introducing an extended
linear model, with feature vector defined as

X(n) = [t(n—1) £(n,d,)] (7)

with K(n,és) being the estimate obtained by using the
static model. The new estimator resulting from (3)+(7)
accounts for the correlation between successive values of
the load, while fusing the information provided by the
available sensors as the static estimator. Note that, given
the load estimated via the static model, the unknown
parameters of the correlation-based estimator (3)+(7) are
still identified by minimizing the cost function in (5) with
respect to a new set of parameters # € R?. This dynamic
model can then be used for real-time load estimation
by exploiting previous estimates of the payload and the
current estimate of the payload obtained with the static
estimator.

4. AN AUTOMATIC TUNING PROCEDURE

The computation of the ratio indexes requires the design
of two different bandpass filters for each signal of interest,
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Fig. 5. Distribution of the peaks’ frequencies for the first
and last 90000 samples acquired during each round of
the garbage truck.

Maximum width of the filters equal to 0.5 Hz

Fig. 6. Filters width vs ratio index/load pairs (blue) and
their interpolating function (black). The ratio indexes
are computed for the pitch rate measured by the IMU
mounted on the rear axle of the truck.

so to isolate the frequency ranges in which the spectra are
more sensitive to load variations. This entails the selection
of 4 cutoff frequencies for each pair of filters. Given the
results of the analysis in Section 2, in our setting we need to
design eight different filters, namely to tune 16 parameters
to isolate frequencies around the spectral peaks.

For the ratio indexes to be informative, the frequency
ranges passed by Fi(s, fi,, fu,) and Fx(s, fi,, fu,) should
not overlap, so that the indexes combine different spectral
information. To account for this requirement, while reduc-
ing the number of parameters to be tuned, we impose the
following constraint:

ful = fl2' (8)
As the upper cutoff frequency of Fj is equal to the lower

cutoff frequency of F5, this guarantees that the ranges of
each pair of filters do not overlap.

Although it is crucial for the filters not to overlap, it
is equally important that the ratio indexes embed all
information that are useful for load estimation. Based on

Table 1. Auto-tuned parameters of the band-
pass filters.

S0 | a0 = Tm.0 | fue()
Vertical accelerometers | 1.00 Hz 1.22 Hz 1.44 Hz
Pitch Gyros 0.72 Hz 0.81 Hz 1.00 Hz

the results of Section 2, this implies that the filters must
isolate the frequencies around spectral peaks. A possible
approach to fulfill this requirement, is proposed in Bottelli
et al. (2014) and it can be easily modified to fit our setting.
However, this greedy method requires the evaluation of a
cost function for different choices of the unknown cutoff
frequencies until satisfactory results are attained. This
implies a time consuming tuning phase, to exhaustively
explore all the possible combinations of parameters. At
the same time, this procedure might lead to wunreliable
choices for the cutoff frequencies, if the space of all the
possible bandpass filters is not thoroughly searched. To
overcome these limitations, we introduce an alternative
tuning procedure that leverages on the results reported in
Section 2 and, in particular, on the fact that variations in
the payload lead to changes of the spectra in proximity
of the spectral peaks. Since this phenomena was also
observed by the authors in Bottelli et al. (2014), we expect
the proposed method to be fairly general.

As an initial step, we select the frequencies already con-
strained in (8) as follows:

Jun = fi, = s (9)
where 1 is the sample mean of the frequencies associated
with the spectral peaks. The remaining parameters are
then tuned based on the dispersion of the peaks’ frequen-
cies above and below the mean value p. Specifically, fi,
and f,, are chosen as

fo = n+Du(f), (10a)
fuz :M_du(f)’ (10b)

where D, (f) and d,(f) are the maximum absolute dis-
tances of the peaks’ frequencies from u above (f > u) and
below (f < p) the mean value itself, respectively. Note
that it is generally advisable to compute D, (f) and d,(f)
neglecting peaks that are too close to the mean value, while
trimming the tails of the peaks distribution.

By considering the specific experimental setting considered
in the paper, the analysis of the available dataset has
resulted in the distributions of the peaks’ frequencies
reported in Fig. 5. It is clear that the peaks always lie
within a fairly limited range of frequencies, which can
be easily isolated by selecting the bandpass filters as
proposed above. We have also noticed that the use of
filters of increasing width results in a loss of linearity in
the relation between the ratio indexes and the payload,
as shown in Fig. 6. The proposed tuning strategy should
allow us to trade off between two conflicting objectives,
namely reducing the width of the filters as much as possible
for the linear model to be representative of the actual
features/load relationship, while spanning a sufficiently
broad range of frequencies, not to filter out information
that might be useful.

5. EXPERIMENTAL RESULTS

The available experimental dataset consists of data col-
lected throughout 19 days, whose features are detailed
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Table 2. Features of the validation sets.

Dataset | Mean load py, | Maximum Load Lmaqz
#1 854.7 kg 1915.0 kg
#2 1875.5 kg 4000.0 kg
#3 3651.7 kg 7560.0 kg

Table 3. Reduced (5 parameters) vs complete
(13 parameters) static models.

RMSE [kg]
Dataset | Complete | Reduced
#1 518.1 422.3
#2 683.4 655.4
#3 524.2 511.2

Distribution of intervals between load measurements

0
00:00:00

00:15:00  00:30:00  00:45:00
Time [hh:mm:ss]

01:00:00

Fig. 7. Distribution of time intervals between consecutive
load acquisitions.

in Table 2. Both static and correlation-based models are
trained by using sixteen out of 19 dataset, so that the
training set is sufficiently heterogeneous. The remaining
3 datasets are used to validate the estimators. These sets
are chosen so that they are sufficiently diverse, therefore
allowing us to assess the performance of the estimators in
different settings of practical interest. As shown in Table 2,
we test the estimator for “light” (dataset #1), “interme-
diate” (dataset #2) and “heavy” (dataset #3) loads. In
the training phase, the ratio indexes are computed with
data collected between two consecutive measurements of
the load. On the other hand, in practice the estimator is
not aware of the instants when the payload is eventually
evaluated. Therefore, in validation the load is estimated
with a preselected rate. By looking at the distribution in
Fig. 7, the load is reconstructed every 10 minutes. Since
in validation any information on the load is used only
as ground-truth to assess the quality of our estimates,
when using the correlation-based estimator we construct
the regressor by replacing ¢(n—1) with the estimated load.
For the estimates to be coherent with the physical meaning
of the unknowns, the estimated load is set to zero every
time it is negative. By analyzing our datasets further, we
have also noticed that the average frequency of the spectral
peaks is around 1.20 Hz for both vertical accelerometers,
while it is around 0.85 Hz for the pitch gyros. Therefore,
it seems reasonable to design two distinct pairs of filters
only, customized for the vertical accelerometers and the
pitch gyros respectively, to compute the spectral indexes
required to construct the regressors in equations (6) and
(7). This leads to a significant reduction in the number
of tunable parameters, that is now equal to eight. The
remaining cutoff frequencies are selected via the tuning
procedure presented in Section 4, whose results are re-
ported in Table 1.

The performance of the estimators are quantitatively as-
sessed by using the Root Mean Square Error (RMSE) [kg],
that is defined as

100 150 200 250 300 350
t [min]

Fig. 8. Measured payload (blue) vs load estimated every

10 minutes with the static (black) and the correlation-
based (red) estimators.

Table 4. Static vs correlation-based model.

RMSE [kg]
Dataset | Static | Correlation-based
#1 422.3 230.5
#2 655.4 495.5
#3 511.2 357.6

Table 5. Estimator in Bottelli et al. (2014) vs
correlation-based estimator.

RMSE [kg]
Dataset | Bottelli et al. (2014) | Correlation-based
#1 422.8 230.5
#2 702.5 495.5
#3 515.4 357.6
1 N
- | = _ 4))2
RMSE = | ;(L(n) ((n,0))2, (11)

with accurate estimates corresponding to small values for
the RMSE. Notice that to compute this quality index, the
estimated load has to be compared with the measured
one. For this comparison to be fair, the load cannot be
estimated every 10 minutes, but it has to be computed
at the same unevenly spaced instants at which the actual
payload is measured. Accordingly, only when evaluating
these indexes we exploit this additional information on the
load.

To validate the results of the preliminary analysis in
Section 2, i.e., to show that the only signals that are
significant for load estimation are the vertical accelera-
tions and the pitch rates, we compare the performance
of two static models identified. One model is trained by
exploiting all 12 available signals, while the other one is
obtained by using the vertical accelerations and the pitch
rates only. As shown in Table 3, the use of more signals
leads to a slight deterioration on the performance of the
static estimator. This phenomenon can be related with the
increased complexity of the model to be trained, combined
with the use of data that are less relevant to the considered
estimation task. The static estimator is then compared
with the correlation-based one. As shown in Table 4 and
in Fig. 8, the introduction of the correlation between
consecutive values of the load enhances the quality of the
estimator and it leads to smoother estimates. It is worth
pointing out that the RMSESs are computed with respect to
estimates obtained at the same unevenly spaced instants
at which the actual load is measured, while the results
reported in Fig. 8 are obtained by reconstructing the load
every 10 minutes. The performance of the correlation-
based estimator is also compared with the one of the
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Load L vs estimated load { [kg]
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(b) Validation set: #2

Load L vs estimated load ¢ [kg]
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(c) Validation set: #3

Fig. 9. Measured payload (blue) vs load estimated every 10 minutes with the correlation-based estimator (black).

approach proposed in Bottelli et al. (2014). To adhere with
the framework presented in Bottelli et al. (2014), the load
is estimated exploiting only the vertical acceleration and
the pitch rate collected from the IMU mounted on the rear
axle. Differently from Bottelli et al. (2014), we estimate
the load by using an affine model, as the nonlinear one
proposed in Bottelli et al. (2014) performs poorly in our
setting. The RMSEs obtained with the two estimators are
reported in Table 5, proving that the introduction of the
correlation between consecutive estimates and the use of
the information provided by an additional IMU enhance
the quality of the estimate. In Fig.9 we finally show the
estimates obtained with the correlation-based estimator
for all validation datasets, along with the actual values of
the payload. Also in this case the estimate in retrieved ev-
ery 10 minutes by simulating the correlation-based model
in open loop, while the measurements of the load are
available at unevenly spaced instants. These results show
that the payload reconstructed with the correlation-based
estimator follows the actual variations in the load, with
an average error of approximately 12%. Moreover, Fig.9
indicates that the estimator performs better for the third
dataset, suggesting the potential need for multiple estima-
tors to handle different load configurations.

6. CONCLUSIONS

We have presented a frequency-based method to estimate
the load of a garbage truck. Inspired by the seminal work
in Bottelli et al. (2014), we resort to the estimation of
a model describing load variations, obtained by fusing
the information collected from two IMUs mounted on
the truck. Nonetheless, the proposed approach exploits on
the main feature of the considered problem, namely the
correlation between consecutive values of the load.
Future research includes a refinement of the model to
explicitly account for the monotonic increase of load.
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