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Abstract: The concept of robustness against indirect invasions is well-known for symmetric
games. We are concerned with the technical aspects and relevance of this concept for asymmetric
games with continuous strategy space. For such games, we show that the set of all indirect neutral
mutants of a robust profile is equivalent to a minimal evolutionarily stable set. It is also proved
that a globally strong uninvadable profile is robust and the set of its indirect neutral mutants
is a singleton. The results are illustrated using examples.
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1. INTRODUCTION

Evolutionary game theory has been one of the significant
branches of game theory. Evolutionary games can be
categorized as symmetric and asymmetric.

Symmetric games are those wherein the roles of players
do not have any influence on their strategies and payoffs.
Maynard Smith and Price (1973) initiated evolutionary
approach to game theory by introducing the concept of an
evolutionarily stable strategy (ESS) for symmetric games.
Further, the concept of an evolutionarily stable set (ES
set) was discussed in Thomas (1985) and Balkenborg
and Schlag (2001). Significant majority of the research
done in evolutionary game theory is regarding symmetric
games; see Bomze (1991), Hofbauer and Sigmund (1998),
Oechssler and Riedel (2001), Oechssler and Riedel (2002),
Cressman (2003), Shaiju and Bernhard (2009), Van Veelen
(2012), Hingu et al. (2018) and the references therein.

Numerous game theoretical models in bargaining theory
(see for example Qin et al. (2019)), oligopoly theory
(see for example Leininger and Moghadam (2018)), war
of attrition theory (see for example Hammerstein and
Parker (1982)) are asymmetric but there has been very
limited research done concerning the evolutionary aspects
of these problems. Selten (1980) has been the first to
study asymmetric evolutionary games followed by Samuel-
son (1991), Samuelson and Zhang (1992), Ritzberger and
Weibull (1995), Cressman (2009), Cressman (2010). Fur-
ther, Mendoza-Palacios and Hernández-Lerma (2015) in-
troduced the concept of strong uninvadable profile (SUP)
for asymmetric games having continuous strategy space.
Moving in a similar direction, Narang and Shaiju (2019a)
established that a polymorphic SUP has to be necessarily
monomorphic. In addition, they extended the definition of
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strong uninvadability to sets of profiles and proved related
results. To study more general profiles/sets of profiles
than the polymorphic profiles, Narang and Shaiju (2019b)
introduced the concepts of globally strong uninvadable
profiles/sets of profiles.

The concept of ESS has a rather weaker form known
as neutrally stable strategy (NSS). For neutrally stable
strategies in the games where neutral mutants are nat-
ural, it is better to check if these neutral mutants that
do not have an edge over evolutionary natural selection
themselves have a possibility of being harmful or not when
they open way for other mutants that do have an edge
over evolutionary natural selection in case the fraction of
those neutral mutants in the existing population is high
enough. Such different situations are better understood by
the notion of robustness against indirect invasions.

Van Veelen (2012) introduced the concept of robustness
against indirect invasions for finite symmetric games and
proved the equivalence of a ‘Balkenborg and Schlag ES set’
and a ‘Thomas ES set’ which in turn is used to establish
the equivalence of the set of all (indirect) neutral mutants
of a strategy (which is robust against indirect invasions
(RAII)) and a minimal (Balkenborg and Schlag) ES set.
This enabled to derive various dynamic stability results for
the set of (indirect) neutral mutants of a RAII strategy.
He also proved that if a strategy is RAII, then the set of its
(indirect) neutral mutants is a Balkenborg and Schlag ES
set and hence, robustness against indirect invasions comes
out as a simple check to explore if a strategy is an element
of a Thomas ES set. These results of Van Veelen (2012)
were further generalized by Hingu (2017) for continuous
symmetric games.

In the present paper, we extend these results for continu-
ous asymmetric games. As our main result, we prove that if
µ̄ is a RAII profile, then SNM (µ̄) is equivalent to a minimal
Balkenborg and Schlag ES set where SNM (µ̄) is the set
containing µ̄ and its (indirect) neutral mutants. We also
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show that a globally strong uninvadable profile µ̄ is RAII
and in this case, SNM (µ̄) = {µ̄}.
The paper is structured as follows. Section 2 introduces the
preliminary notations and definitions. Section 3 discusses
the auxiliary and main results followed by three illustrative
examples in Section 4. We end the paper with some
concluding remarks in Section 5.

2. PRELIMINARIES: NOTATIONS AND
DEFINITIONS

Let us consider a model (introduced by Mendoza-Palacios
and Hernández-Lerma (2015)) of asymmetric evolutionary
games involving n-player contests. Here, the set of players
is denoted by I := {1, 2, . . . , n}. The set of pure strategies
for player i ∈ I is a Polish space denoted by Ai. A generic
pure strategy of player i is notated as ai ∈ Ai. For i ∈ I,
each a = (a1, . . . , an) ∈ A := A1× · · ·×An can be written
as (ai, a−i) where a−i := (a1, . . . , ai−1, ai+1, . . . , an) ∈
A−i := A1×· · ·×Ai−1×Ai+1×· · ·×An. The Borel σ- alge-
bra of Ai is denoted by B(Ai). Moreover, P(Ai) is the set of
mixed strategies for player i where µi ∈ P(Ai) denotes a
typical mixed strategy and µ = (µ1, . . . , µn) ∈ P(A1) ×
· · · × P(An) is a mixed strategy profile. The notations
µ = (µi, µ−i) and µ−i := (µ1, . . . , µi−1, µi+1, . . . , µn) ∈
P(A1)× · · · ×P(Ai−1)×P(Ai+1)× · · ·×P(An) are used in
the case of mixed strategies like the case of pure strategies.

The payoff function Ji : P(A1)×· · ·×P(An)→ R for player
i is defined as

Ji(µ1, .., µn) =

∫
A1

..

∫
An

Ui(a1, .., an) µn(dan)..µ1(da1)

(1)
where Ui : A1×· · ·×An → R is assumed to be measurable
and bounded.

The present game model can be expressed as

Γ = [I, {P(Ai)}i∈I , {Ji(·)}i∈I ]. (2)

To define stable sets of profiles, we also require the ‖ · ‖∞-
norm defined as

‖µ‖∞ = ‖(µ1, . . . , µn)‖∞ := maxi∈I ‖µi‖ (3)

where ‖µi‖ is the variational or strong norm of the strategy
µi (see for example p. 360 of Shiryaev (1995), Narang and
Shaiju (2019a)).

Based on the asymmetric evolutionary game model (2)
with continuous strategy space, we now introduce a strong
Thomas ES set (analogous to the definition of a strong
Thomas ES set in symmetric games by Thomas (1985)).

Definition 1. (Strong Thomas ES Set). A set of popula-
tion profiles Π = Π1 × · · · × Πn ⊆ P(A1) × · · · × P(An)
is said to be a strong Thomas ES set if it is nonempty and
satisfies the following three properties:

(a) Πi is closed for all i ∈ I,
(b) Each µ̄ = (µ̄1, . . . , µ̄n) ∈ Π is a Nash equilibrium of

Γ (that is, Ji(µ̄i, µ̄−i) ≥ Ji(µi, µ̄−i) for all i ∈ I and
for all µi ∈ P(Ai)),

(c) Each µ̄ ∈ Π has some neighborhood N(µ̄) (w.r.t.
‖ · ‖∞-norm defined in (3)) such that whenever there
are µ ∈ N(µ̄) and i ∈ I satisfying Ji(µ̄i, µ̄−i) =

Ji(µi, µ̄−i), we have Ji(µ̄i, µ−i) ≥ Ji(µi, µ−i) with
strict inequality for µi /∈ Πi.

Now, analogous to the definition of a Balkenborg and
Schlag ES set in symmetric games by Balkenborg and
Schlag (2001), we define a Balkenborg and Schlag ES set
in asymmetric games.

Definition 2. (Balkenborg and Schlag ES Set). A set of
population profiles Π = Π1×· · ·×Πn ⊆ P(A1)×· · ·×P(An)
is said to be a Balkenborg and Schlag ES set if it is
nonempty and satisfies the following three properties:

(a) Πi is closed for all i ∈ I,
(b) Each µ̄ = (µ̄1, . . . , µ̄n) ∈ Π is a Nash equilibrium of

Γ,
(c) If for µ̄ ∈ Π, we have Ji(µ̄i, µ̄−i) = Ji(µi, µ̄−i) for

some i ∈ I and µi ∈ P(Ai), then Ji(µ̄i, µ−i) ≥
Ji(µi, µ−i) where strict inequality holds for µi /∈ Πi.

Before moving on to define the robustness of a profile
against indirect invasions, we need to define the following
for a profile µ̄ ∈ P(A1)× · · · × P(An):

(a) SE(µ̄) = {µ ∈ P(A1) × · · · × P(An) : Ji(µi, µ̄−i) =
Ji(µ̄i, µ̄−i) and Ji(µ̄i, µ−i) = Ji(µi, µ−i) ∀i ∈ I}, the
set of (evolutionarily) equal performers against µ̄.

(b) SB(µ̄) = {µ ∈ P(A1) × · · · × P(An) : ∃i ∈
I such that ‘Ji(µi, µ̄−i) > Ji(µ̄i, µ̄−i)

′ or ‘Ji(µi, µ̄−i) =
Ji(µ̄i, µ̄−i) and Ji(µ̄i, µ−i) < Ji(µi, µ−i)

′}, the set of
(evolutionarily) better performers against µ̄.

The set SE(µ̄) in (a) above can also be written as
SE(µ̄) = {µ ∈ P(A1) × · · · × P(An) : µi ∈ SE(µ̄i) ∀i ∈
I} where SE(µ̄i) = {µi ∈ P(Ai) : Ji(µi, µ̄−i) =
Ji(µ̄i, µ̄−i) and Ji(µ̄i, µ−i) = Ji(µi, µ−i)} is the set of
(evolutionarily) equal performers against µ̄i. We can call
the elements of SE(µ̄) as the neutral mutants of µ̄. More-
over, if µ ∈ SE(µ̄), then µ̄ ∈ SE(µ).

We use the sets SE(µ̄) and SB(µ̄) to define the robustness
against indirect invasions. A strategy which is RAII is
a midway between ESS and NSS. Such a strategy is a
slightly relaxed form of ESS as it permits neutral mutants
but a more rigid form of NSS as it does not permit those
neutral mutants which indirectly pave way for some other
mutants which have an edge over evolutionary natural
selection, if the proportion of these mutants is high enough
in the population. We now define the robustness of a profile
against indirect invasions in an asymmetric evolutionary
game.

Definition 3. (Robustness Against Indirect Invasions). A
profile µ̄ ∈ P(A1)× · · · × P(An) is robust against indirect
invasions (RAII) if

(a) SB(µ̄) = φ and,
(b) there does not exist µ1, . . . , µm, m ≥ 2 such that

µ1 ∈ SE(µ̄), µj ∈ SE(µj−1), µm ∈ SB(µm−1), 2 ≤
j ≤ m− 1.

Now, we group a RAII profile µ̄ with all its (indirect)
neutral mutants into a set SNM (µ̄) as given below.
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SNM (µ̄) = {µ ∈ P(A1)× · · · × P(An) : ∃µ1, . . . , µm,

m ≥ 1 such that µ1 ∈ SE(µ̄), µj ∈ SE(µj−1),

µ ∈ SE(µm), 2 ≤ j ≤ m}.

Remark 4. From the above definitions, it is clear that if
µ̄ is RAII and µ ∈ SNM (µ̄), then µ is also RAII and
SNM (µ̄) = SNM (µ). Hence, the profile µ̄ does not play
any distinctive role in SNM (µ̄).

We next define a similar set for a component µ̄i of a RAII
profile µ̄ = (µ̄1, . . . , µ̄n):

SNM (µ̄i) = {µi ∈ P(Ai) : ∃µ1
i , . . . , µ

m
i , m ≥ 1 such that

µ1
i ∈ SE(µ̄i), µ

j
i ∈ SE(µj−1

i ), µi ∈ SE(µm
i ),

2 ≤ j ≤ m}.

It is obvious that SNM (µ̄) = SNM (µ̄1) × · · · × SNM (µ̄n).
We assume SNM (µ̄i) to be closed for all i ∈ I in the
remainder of the paper (Note that the continuity of the
payoff functions Ji in µi guarantees the closedness of
SNM (µ̄i)). This is required for establishing the results in
the next section.

We end this section with the definition of a globally
strong uninvadable profile (Narang and Shaiju (2019b)).
We prove in Theorem 11 that such a profile µ̄ is RAII and
in this case, SNM (µ̄) = {µ̄}.

Definition 5. (Globally Strong Uninvadable Profile). A
profile µ̄ = (µ̄1, . . . , µ̄n) ∈ P(A1) × · · · × P(An) is
said to be globally strong uninvadable if Ji(µ̄i, µ−i) ≥
Ji(µi, µ−i); i ∈ I, µ ∈ P(A1) × · · · × P(An) with strict
inequality whenever µi 6= µ̄i.

3. MAIN RESULTS

In this section, we first establish three auxiliary results
needed to prove the main result (Theorem 10) regarding
the equivalence of SNM (µ̄) (the set containing a RAII
profile µ̄ and all its (indirect) neutral mutants) and a
minimal Balkenborg and Schlag ES set. We also present
a result concerning the RAII property of globally strong
uninvadable profiles.

Lemma 6. Let Π = Π1 × · · · ×Πn ⊆ P(A1)× · · · × P(An).
Then Π is a strong Thomas ES set iff it is a Balkenborg
and Schlag ES set.

Proof. Let Π be a Balkenborg and Schlag ES set. By
taking N(µ̄) = P(A1) × · · · × P(An) in Definition 1, for
each µ̄ ∈ Π, it follows that Π is a strong Thomas ES set.

For the converse, let Π be a strong Thomas ES set. This
implies that Πi is closed for all i ∈ I and each profile in Π
is a Nash equilibrium of Γ which verify conditions (a) and
(b) of a Balkenborg and Schlag ES set.
If possible, let condition (c) (in Definition 2) be not
satisfied. This would imply that there exists µ̄ ∈ Π for
which, either

(i) ∃j ∈ I and µj ∈ P(Aj) such that Jj(µj , µ̄−j) =
Jj(µ̄j , µ̄−j) and Jj(µ̄j , µ−j) < Jj(µj , µ−j), or,

(ii) ∃j ∈ I and µj /∈ Πj such that Jj(µj , µ̄−j) =
Jj(µ̄j , µ̄−j) and Jj(µ̄j , µ−j) = Jj(µj , µ−j).

Let µ̂ = (µ̂1, . . . , µ̂n) be such that

µ̂i = µ̂i(α) := αµ̄i + (1− α)µi, i ∈ I, (4)

where α ∈ [0, 1].

If (i) holds true, then by using (4), it is clear that
Jj(µ̄j , µ̄−j) = Jj(µ̂j , µ̄−j) and Jj(µ̂j , µ̂−j) > Jj(µ̄j , µ̂−j).
For any given neighborhood N(µ̄) of µ̄ (w.r.t. ‖ · ‖∞-norm
defined in (3)), one can always choose α close to 1 so that
µ̂ ∈ N(µ̄). This results in a violation of condition (c) of
Definition 1 (of a strong Thomas ES set).

If (ii) holds true, then we have Jj(µ̂j , µ̄−j) = Jj(µ̄j , µ̄−j)
and Jj(µ̄j , µ̂−j) = Jj(µ̂j , µ̂−j). Since Πj is closed, µ̄j ∈ Πj

(as µ̄ ∈ Π), and µj /∈ Πj , it follows that there exists at
least one α̃ such that µ̃j := µ̂j(α̃) ∈ Πj but there is no
strong neighborhood N(µ̃j) for which all strategies µ̂j(α)
that are in N(µ̃j) are also elements of Πj . This contradicts
the fact that Π is a strong Thomas ES set.

Now, both (i) and (ii) lead to contradictions to the as-
sumption that Π is a strong Thomas ES set. Hence, Π is
a Balkenborg and Schlag ES set. 2

Lemma 7. If µ̄ is RAII, then SNM (µ̄) is a Balkenborg and
Schlag ES set.

Proof. Let µ̄ be RAII. Since SNM (µ̄i) is closed for all i ∈
I, condition (a) of Definition 2 is satisfied. As mentioned
in Remark 4, any µ ∈ SNM (µ̄) is also RAII and hence,
by Definition 3, SB(µ) = φ for all µ ∈ SNM (µ̄). This
implies that SNM (µ̄) contains only Nash equilibria thereby
satisfying condition (b) of Definition 2.

If SNM (µ̄) were not a Balkenborg and Schlag ES set, then
we would have the violation of condition (c) in Definition
2 which in turn yields, either

(i) ∃i ∈ I and µi ∈ P(Ai) such that Ji(µi, µ̄−i) =
Ji(µ̄i, µ̄−i) and Ji(µ̄i, µ−i) < Ji(µi, µ−i), or

(ii) ∃i ∈ I and µi /∈ SNM (µ̄i) such that Ji(µi, µ̄−i) =
Ji(µ̄i, µ̄−i) and Ji(µ̄i, µ−i) = Ji(µi, µ−i).

If (i) holds true, then µ ∈ SB(µ̄) which is a contradiction
to the fact that SB(µ̄) = φ (as µ̄ is RAII).

If (ii) holds true, then there exists i ∈ I such that
µi ∈ SE(µ̄i) which in turn implies that µi ∈ SNM (µ̄i)
(by the definition of SNM (µ̄i)). This contradicts the fact
that µi /∈ SNM (µ̄i).

As (i) and (ii) both lead to contradictions, we conclude
that SNM (µ̄) is a Balkenborg and Schlag ES set. 2

Remark 8. The above lemma shows that if a profile is
RAII, then the set containing this RAII profile and its
(indirect) neutral mutants is a ES set which is an extension
of the stability of ESS in the set form. An evolutionary
game with no RAII profile will have no (Thomas) or
(Balkenborg and Schlag) ES set.

Lemma 9. If Π = Π1×· · ·×Πn ⊆ P(A1)×· · ·×P(An) is a
Balkenborg and Schlag ES set and µ̄ ∈ Π, then the profile
µ̄ is RAII.
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Proof. Let Π be a Balkenborg and Schlag ES set, µ̄ ∈ Π
and µ ∈ SE(µ̄). We now claim that all profiles of the form
µ(α) = αµ̄ + (1 − α)µ also belong to Π for α ∈ [0, 1]. If
this is not true, then using the closedness of Π, there exists
α ∈ [0, 1] for which µ(α) ∈ Π but every neighborhood N
(w.r.t. the norm in (3)) of µ(α) contains a profile µ(β) /∈ Π
such that Ji(µi(α), µ−i(β)) = Ji(µi(β), µ−i(β)) for all
i ∈ I. This contradicts the fact that Π is a strong Thomas
ES set (by the equivalence of a ‘Balkenborg and Schlag ES
set’ and a ‘strong Thomas ES set’ as established in Lemma
6) and hence the claim.
We can repeatedly apply this argument to prove that
SNM (µ̄) ⊆ Π.

Now, assume that µ̄ is not RAII. This implies that either
SB(µ̄) 6= φ or ∃µ1, . . . , µm, m ≥ 2 such that µ1 ∈
SE(µ̄), µj ∈ SE(µj−1), µm ∈ SB(µm−1) where 2 ≤ j ≤
m−1. We look at the case when SB(µ̄) 6= φ as the latter is
similar because in that case µm−1 ∈ Π (since SNM (µ̄) ⊆ Π
and µm−1 is an indirect neutral mutant of µ̄) and we would
then focus on SB(µm−1) 6= φ instead.

If SB(µ̄) 6= φ, then there exists µ ∈ P(A1) × · · · × P(An)
for which either there is at least one i ∈ I such that
Ji(µi, µ̄−i) > Ji(µ̄i, µ̄−i), or
there exists i ∈ I such that Ji(µi, µ̄−i) = Ji(µ̄i, µ̄−i) and
Ji(µ̄i, µ−i) < Ji(µi, µ−i).
Both cases lead to the contradiction that Π is not a Balken-
borg and Schlag ES set (The former and latter violate
conditions (b) and (c) of Definition 2 respectively). 2

We now present our main result (for a RAII profile µ̄)
concerning the equivalence of SNM (µ̄) and a minimal
Balkenborg and Schlag ES set. This is important because
being RAII makes the profile to be a member of a minimal
ES set and opens doors to relate this stability concept to
nice dynamic properties.

Theorem 10. The following statements are equivalent for
a set Π = Π1 × · · · ×Πn ⊆ P(A1)× · · · × P(An):

(i) Π = SNM (µ̄) for some µ̄ ∈ P(A1) × · · · × P(An) and
µ̄ is RAII.

(ii) Π is a minimal Balkenborg and Schlag ES set.

Proof. Assume (i). Now, as µ̄ is RAII, by Lemma 7,
SNM (µ̄) is a Balkenborg and Schlag ES set. The definition
of SNM (µ̄) makes Π a minimal Balkenborg and Schlag ES
set.

Conversely, let (ii) be true. As Π is a Balkenborg and
Schlag ES set, by Lemma 9, any µ̄ ∈ Π is RAII. As µ̄
is RAII, SNM (µ̄) is a Balkenborg and Schlag ES set by
Lemma 7. Since Π is minimal, Π ⊆ SNM (µ̄). Moreover, as
in the proof of Lemma 9, SNM (µ̄) ⊆ Π. This implies that
Π = SNM (µ̄) for any µ̄ ∈ Π. 2

We move on to our next result regarding the robustness of
a globally strong uninvadable profile.

Theorem 11. If µ̄ is a globally strong uninvadable profile,
then it is RAII and SNM (µ̄) = {µ̄}.

Proof. Let µ̄ be a globally strong uninvadable profile.
This implies that,

Ji(µ̄i, µ−i) ≥ Ji(µi, µ−i); i ∈ I, µ ∈ P(A1)× · · · × P(An)
(5)

with strict inequality whenever µi 6= µ̄i.

Also, a globally strong uninvadable profile is a Nash equi-
librium of Γ (see Theorem 5.7 of Mendoza-Palacios and
Hernández-Lerma (2015)). Therefore, by the definition of
Nash equilibrium, we have

Ji(µ̄i, µ̄−i) ≥ Ji(µi, µ̄−i); i ∈ I, µi ∈ P(Ai). (6)

Now, (5) and (6) imply that SB(µ̄) = φ which proves the
first condition in the definition of a RAII profile.

If possible, let there be µ1, . . . , µm, m ≥ 2 such that
µ1 ∈ SE(µ̄), µj ∈ SE(µj−1), µm ∈ SB(µm−1) where
2 ≤ j ≤ m− 1.

It is clear that µ1 ∈ SE(µ̄) implies for all i ∈ I,

Ji(µ
1
i , µ̄−i) = Ji(µ̄i, µ̄−i), (7)

and

Ji(µ̄i, µ
1
−i) = Ji(µ

1
i , µ

1
−i). (8)

By (5) and (8), we have that µ1
i = µ̄i for all i ∈ I which

in turn gives µ1 = µ̄. Similarly, µ2 ∈ SE(µ1) = SE(µ̄)
implies that µ2 = µ̄. Applying this argument repeatedly,
we get µm−1 = µ̄. Now, we know that µm ∈ SB(µm−1)
i.e. µm ∈ SB(µ̄). This is a contradiction to the already
established fact that SB(µ̄) = φ. Hence, µ̄ is RAII.

We next prove that SNM (µ̄) = {µ̄}. If µ ∈ SNM (µ̄),
then there exists µ1, . . . , µm,m ≥ 1 such that µ1 ∈
SE(µ̄), µj ∈ SE(µj−1), µ ∈ SE(µm) where 2 ≤ j ≤ m.
As in the first part of this proof, µ1 ∈ SE(µ̄) implies
that µ1 = µ̄ (because µ̄ is globally strong uninvadable).
Applying this argument repeatedly, we get µm = µ̄. Now,
µ ∈ SE(µm) gives µ ∈ SE(µ̄) which in turn yields µ = µ̄.
Therefore, SNM (µ̄) = {µ̄}. 2

4. ILLUSTRATIVE EXAMPLES

We provide three illustrative examples below.

Example 1 Consider an n-person game where the strat-
egy sets A1, . . . , An are Polish spaces and the payoff
functions are Ui(ai, a−i) = ri(ai) + si(a−i), i ∈ I =
{1, 2, . . . , n}. Here ri : Ai → R and si : A−i → R
are bounded and measurable functions. Let ri achieves
its maximum exactly at xi ∈ Ai for all i ∈ I and
µ̄ = (µ̄1, . . . , µ̄n) = (δx1

, . . . , δxn
).

For µ = (µ1, . . . , µn) ∈ P(A1)× · · · × P(An) and i ∈ I, we
have
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Ji(µ̄i, µ−i) =

∫
Ai

∫
A−i

Ui(ai, a−i) µ−i(da−i) µ̄i(dai)

=

∫
Ai

ri(ai) µ̄i(dai) +

∫
A−i

si(a−i) µ−i(da−i)

=

∫
Ai

ri(ai) δxi
(dai) +

∫
A−i

si(a−i) µ−i(da−i)

= ri(xi) +

∫
A−i

si(a−i) µ−i(da−i)

≥
∫
Ai

ri(ai) µi(dai) +

∫
A−i

si(a−i) µ−i(da−i)

=

∫
Ai

∫
A−i

(ri(ai) + si(a−i)) µ−i(da−i) µi(dai)

=

∫
Ai

∫
A−i

Ui(ai, a−i) µ−i(da−i) µi(dai)

= Ji(µi, µ−i). (9)

It is clear that strict inequality holds in (9) when µi 6= µ̄i =
δxi , and hence µ̄ is a globally strong uninvadable profile
which in turn, by Theorem 11, is RAII and SNM (µ̄) = {µ̄}
which is a Balkenborg and Schlag ES set by Lemma 7.

Example 2 Consider the previous example with the
change that ri : Ai → R achieves its maximum exactly at
xi, yi ∈ Ai for all i ∈ I. We show that µ̄ = (µ̄1, . . . , µ̄n) =
(δx1 , . . . , δxn) is a RAII profile.

We use the notations ν̄ = (ν̄1, . . . , ν̄n) := (δy1
, . . . , δyn

)
and µmix := (α1δx1

+(1−α1)δy1
, . . . , αnδxn

+(1−αn)δyn
)

where αi ∈ [0, 1] for all i ∈ I.

In order to prove that µ̄ is a RAII profile, we need to show
the following:

(i) SB(µ̄) = φ and,
(ii) there does not exist µ1, . . . , µm, m ≥ 2 such that

µ1 ∈ SE(µ̄), µj ∈ SE(µj−1), µm ∈ SB(µm−1) where
2 ≤ j ≤ m− 1.

If possible, let SB(µ̄) 6= φ. This (by the definition of
SB(µ̄)) would give rise to two possibilities. In the first
case, there would exist µ ∈ P(A1) × · · · × P(An) and
i ∈ I such that Ji(µi, µ̄−i) > Ji(µ̄i, µ̄−i). This implies
that

∫
Ai
ri(ai) µi(dai) > ri(xi) which is a contradiction

because ri achieves its maximum at xi.
In the second case, there would be µ ∈ P(A1) × · · · ×
P(An) and i ∈ I such that Ji(µi, µ̄−i) = Ji(µ̄i, µ̄−i) and
Ji(µ̄i, µ−i) < Ji(µi, µ−i). This also leads to a contradiction
by similar arguments. Hence, SB(µ̄) = φ. Similarly, we can
also prove that SB(µmix) = φ.
To prove (ii), if possible, let there be µ1, . . . , µm, m ≥ 2
such that µ1 ∈ SE(µ̄), µj ∈ SE(µj−1), µm ∈ SB(µm−1)
where 2 ≤ j ≤ m−1. As µ1 ∈ SE(µ̄), µ1 = µmix. Similarly,
µ2 ∈ SE(µ1) leads to µ2 ∈ SE(µmix) which in turn implies
that µ2 = µmix. Applying the same argument repeatedly,
we get µm−1 = µmix and µm ∈ SB(µm−1) which is a
contradiction to the fact that SB(µmix) = φ. This proves
(ii) and hence the fact that µ̄ is a RAII profile.

Now, SNM (µ̄) is the collection of all profiles µmix where
(α1, . . . , αn) runs over [0, 1]n. Note that SNM (µ̄) can also
be viewed as the Cartesian product of line segments joining
µ̄i and ν̄i; i = 1, 2, . . . , n. As µ̄ is RAII, by Lemma 7, the set

(SNM (µ̄)) of its indirect neutral mutants is a Balkenborg
and Schlag ES set. It is worth mentioning that as µ̄ is RAII
then so is µmix and SNM (µ̄) = SNM (µmix) using Remark
4.

Example 3 Consider the n-person game discussed in
previous examples with a change that ri : Ai → R
achieves its maximum exactly at x1i , x

2
i , . . . , x

ki
i ∈ Ai

for all i ∈ I. By similar arguments as Example 2, it
is clear that µ̄ = (µ̄1, . . . , µ̄n) = (δx1

1
, δx1

2
, . . . , δx1

n
) is a

RAII profile and SNM (µ̄) is the set of all profiles µmix

where (µmix)i := α1
i δx1

i
+ · · · + αki

i δxki
i

, αj
i ∈ (0, 1] for

j ∈ {1, . . . , ki},
∑ki

j=1 α
j
i = 1 and i ∈ I. Now, by Remark

4, µmix ∈ SNM (µ̄) is RAII and SNM (µ̄) = SNM (µmix).

In continuation of this example, we consider the problem
of the use of common property resources as discussed in
Example 2.12 of Aliprantis and Chakrabarti (2012) and
Example 6.2.3 of Hingu (2017) with respect to a common
utility function of the players involved but here we assume
asymmetry in the utility functions of the players. One of
the problems of the use of common property resources
is the imbalance in ecology and the depletion of fish
stocks and other marine species due to the overfishing
of the fishing grounds of the world (a common resource
property) by different countries. Assume that there are n
countries/players who have the permit to fish in the open
seas of the world and every country attains some of this
common resource. This situation can be modelled by a n-
person normal form continuous game. Let Â =

∑n
i=1 ai

be the total attained resource where ai is the resource
attained by the ith country and vi : (0,∞) → (0,∞)
be the utility function (which is assumed to be concave)
for the ith country. The cost of attaining a certain ai
amount of the resource by the ith country depends on the
attained amount of resource ai and also on the amount
of resource attained by other countries which is given by
Â − ai. For simplification, the cost function c : (0,∞) ×
(0,∞)→ (0,∞) is assumed to take the form:

c(ai, Â− ai) = h(ai) + g(Â− ai)
where h, g : (0,∞)→ (0,∞) are both convex. In addition,
we assume that the marginal cost at zero is strictly less
than the marginal utility at zero. This relationship is given
by

lim
ai→0+

d

dai
h(ai) < lim

ai→0+

d

dai
vi(ai).

The profit of the country i by the attainment of ai amount
of the common resource is the quantity vi(ai)− h(ai) and
the payoff function is defined as Ui(ai, a−i) = vi(ai) −
h(ai) − g(Â − ai). In the absence of a restricting or
governing body, the countries would want to attain as
much resource as required to gain maximum/desired profit
but this may lead to a situation in which some countries
may not get enough resource or the resource may be over
depleted to ever get replenished. In order to escape such a
scenario, the governing body can put some restrictions on
the amount of the resource to be attained or on the profit
gained by attaining a certain amount of the resource.

Let us consider a special case of this situation where
only two countries are involved in this competition, i.e.
i ∈ I = {1, 2}. The utility functions for both the players
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are given as v1(a1) =
√
a1+a1 and v2(a2) =

√
a2+0.5. The

cost functions are h(ai) = g(ai) = a2i . It is clear that for
i ∈ I, vi is concave function, h, g are convex functions and
the marginal cost at zero is strictly less than the marginal
utility at zero for these functions. The payoffs for both the
countries/players are as follows:

U1(a1, a2) =
√
a1 + a1 − a21 − a22,

U2(a2, a1) =
√
a2 + 0.5− a22 − a21.

Note that this game is a part of Example 2 where ri(ai) =

vi(ai)−h(ai), si(a−i) = −g(Â− ai). The maximum value
of the profit gained by each country is 0.8 due to the
restriction by the government. Now, the maximum value
0.8 of r1 is achieved at the points x11 = 0.3337, x21 =
1.2553 and the maximum value 0.8 of r2 is achieved at
the points x12 = 0.0956, x22 = 0.7538. Let µmix be of
the form discussed in the beginning of this example for
ki ∈ {1, 2} and i ∈ I = {1, 2}, then µmix is RAII.
Moreover, SNM (µmix) is the set of those profiles whose
ith components are convex combinations of x1i and x2i .
By Lemma 7, SNM (µmix) is a Balkenborg and Schlag
evolutionarily stable set.

5. CONCLUSION

The paper adopts the concepts of evolutionarily equal and
better performers and show that they can be used to
define RAII profiles for asymmetric games with continuous
strategy space. The equivalence between ‘strong Thomas’
and ‘Balkenborg and Schlag’ ES sets is shown to be
true for these games. The main result (Theorem 10)
establishes the fact that a set of profiles is a minimal
evolutionarily stable set iff it is the set of indirect neutral
mutants of a RAII profile. Furthermore, a globally strong
uninvadable profile is proved to be RAII and in this case
the set of indirect neutral mutants is singleton. These
results are illustrated using three examples. The main
theorem (Theorem 10) motivates a deeper study of the
dynamic stability properties of ES sets in asymmetric
games with continuous strategy space as these properties
would provide more insight about RAII profiles and their
indirect neutral mutants.
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