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Abstract: This paper treats global asymptotic stability of a limit cycle, determined by the
designer, for continuous-time switched affine systems, taking into account sampled and non-
sampled switching rules. More specifically, our goal is to design a state-dependent switching
function assuring global asymptotic stability of a limit cycle, which is determined from criteria
of interest related to the system steady-state response. The conditions, expressed in terms of
differential linear matrix inequalities, are based on a time-varying quadratic Lyapunov function
and take into account a guaranteed cost, which assures a suitable performance level for the
system transient response. These conditions can be converted into two linear matrix inequalities,
making the problem simple-to-solve. An academic example is used for validation and comparison.
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1. INTRODUCTION

Switched affine systems are composed of a set of subsys-
tems and a switching function (rule) responsible to acti-
vate one of them at each instant of time. These systems are
very common in several engineering areas, mainly in the
power electronics domain, see Cardim et al. (2009), Egidio
et al. (2017), Sferlazza et al. (2019) and Beneux et al.
(2019), among others. They present several equilibrium
points composing a region in the state space. One of the
control problems of great interest is to design a state or
output dependent switching function in order to govern
the state trajectories to a desired equilibrium point inside
this region. References Deaecto et al. (2010), Deaecto
(2016), Trofino et al. (2009) and Seatzu et al. (2006) have
accomplished this goal by means of conditions that assure
global asymptotic stability. Generally, the desired equilib-
rium point is not common to any subsystem and, conse-
quently, an arbitrarily high switching frequency is required
to maintain the trajectories at this point. In this case,
the switching rule may be impossible to be implemented
due to physical limitations, as response time of switches
or sampling period in embedded systems. Moreover, a
high switching frequency yields chattering, an undesired
phenomenon that may cause equipment damage and im-
pair control performance. To circumvent this inconvenient,
several contributions deal with sampled-data switching
function design or study switched affine systems in the
discrete-time domain, where the switching rate is naturally
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limited by the discrete nature of the system. References
Sferlazza et al. (2019), Hauroigne et al. (2011), Hetel and
Fridman (2013), Sanchez et al. (2019), in the continuous-
time domain, and Deaecto and Geromel (2017), Egidio
and Deaecto (2019), in the discrete-time domain, are some
examples. In all these cases, practical stability is taken
into account, where the trajectories are orchestrated by the
switching function to a region as small as possible contain-
ing the desired equilibrium point. Unfortunately, nothing
can be concluded about the steady-state behaviour of the
state trajectories once inside this region.

This paper deals with global asymptotic stability of a limit
cycle for continuous-time switched affine systems. The
limit cycle of interest is designed based on criteria chosen
by the designer related to system steady-state behaviour.
As a first step, conditions for global asymptotic stability of
a desired equilibrium point are provided based on a convex
time-varying Lyapunov function, which are less conserva-
tive than other methodologies available in the literature
based on quadratic Lyapunov functions. Afterwards, these
conditions are generalized to cope with asymptotic sta-
bility of a desired limit cycle, considering sampled and
non-sampled switching functions. The literature presents
few results dealing with this topic. Very recently, reference
Benmiloud et al. (2019) has approached this theme but
assuring only local stability and in Egidio et al. (2020)
global asymptotic stability of a limit cycle defined in the
discrete-time domain has been studied. Unlike the latter,
the proposed continuous-time approach adopts conditions
described in terms of differential linear matrix inequalities
(DLMIs), which can be rewritten as the solution of simple
linear matrix inequalities (LMIs), permitting to employ
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readily available tools for the design step. Additionally,
these conditions allow for a guaranteed cost that assures a
suitable performance level for the transient response. An
illustrative example is used for comparison and validation.

The notation is standard. For real vectors or matrices,
(′) refers to their transpose. For symmetric matrices, (•)
denotes each of their symmetric blocks. The symbols
R and N denote the sets of real and natural numbers,
respectively. The set K = {1, · · · , N} is composed of the
N first positive natural numbers. For a symmetric matrix,
X > (<) 0 denotes a positive (negative) definite matrix.
The unit simplex Λ is composed of all nonnegative vectors
λ ∈ R

N , such that
∑

j∈K
λj = 1. The convex combination

of matrices {X1, · · · , XN} is denoted by Xλ =
∑

i∈K
λiXi,

λ ∈ Λ. For a vector w ∈ R
m, norms are denoted as

‖w‖2 =
√
w′w and ‖w‖∞ = max1≤i≤m |wi|. Finally, the

greatest integer less or equal to a is denoted as ⌊a⌋. In
general, but not always, we denote f(tn) = f [n] where
0 ≤ tn ∈ R and n ∈ N.

2. PROBLEM STATEMENT

Consider a switched affine system with realization

ẋ(t) = Aσ(t)x(t) + bσ(t), x(0) = x0 (1)

z(t) = Eσ(t)x(t) (2)

defined for all t ≥ 0, where x ∈ R
nx is the state, z ∈ R

nz

is the controlled output and σ(t) : R → K is the switching
function that selects one of the subsystems (Ai, bi, Ei)
as active at each switching instant. The signal σ(t) is
piecewise constant being modelled as follows

σ(t) = σ[n], ∀t ∈ [tn, tn+1) (3)

where tn and tn+1 are two successive switching instants
such that t0 = 0 and tn+1 − tn = h > 0, ∀n ∈ N.

Let us assume that system (1)-(2) admits a periodic
solution xe(t) with period T = nhh > 0, for some nh ∈ N

chosen by the designer. The switching signal along this
trajectory is a periodic sequence c[0], c[1], · · · with period
nh meaning that c[n+nh] = c[n] for all n ∈ N, which yields
σ(t) = c[n], ∀t ∈ [tn, tn+1). The limit cycle associated to
this switching function is given by

Xe(c) = {xe(t) : xe(t) = xe(t+ T ), t ≥ 0} (4)

where xe(t) for an arbitrary t ∈ [tn, tn+1) is given by

xe(t) = eAc[n](t−tn)xe(tn) +

∫ t

tn

eAc[n](t−τ)dτ bc[n] (5)

valid for all n ∈ N and respecting the boundary condition
xe(t0) = xe(tnh

). This solution clearly satisfies equation
(1).

Defining the auxiliary state variable ξ(t) = x(t) − xe(t),
we obtain the following system

ξ̇(t) = Aσ(t)ξ(t) + ℓσ(t)(t), ξ(0) = ξ0 (6)

ze(t) = Eσ(t)ξ(t) (7)

where ℓi(t) = Aixe(t) + bi − ẋe(t) for all i ∈ K, ze(t) =
z(t)−Eσ(t)xe(t) and ξ0 = x(0)−xe(0). Notice that, ẋe(t) is
well defined in each time interval [tn, tn+1) for each n ∈ N.
Whenever ξ(t) = 0 the limit cycle xe(t) is reached by the
solution of system (1)-(2). Moreover, for σ(t) such that
ℓσ(t)(t) = 0, we obtain the limit cycle (4).

Our main goal is to design a state-dependent switching
function σ(t) = u(x(t)) : Rnx → K to assure global asymp-
totic stability of the limit cycle Xe(c). In other words, we
want to design σ(t) = u(x(t)) in order to guarantee that
the origin ξ = 0 of (6)-(7) is a globally asymptotically
stable equilibrium point, assuring a suitable upper bound
for the cost

J =

∫ ∞

0

ze(t)
′ze(t)dt (8)

The design conditions are based on the following convex
time-varying Lyapunov function

v(ξ(t), t) = ξ(t)′P (t)ξ(t) (9)

with P (t) = P (t + T ) > 0. Among other possibilities
provided in Gonçalves et al. (2019), we consider that P (t)
is a piecewise linear function. Indeed, taking into account
that the time interval [0, T ) is split into nT subintervals of
length η = T/nT and that nT is a multiple of nh, we have

P (t) = Pp +
Pp+1 − Pp

η
(t− pη) (10)

valid in the time segment t ∈ [pη, (p + 1)η) for each
p = 0, · · · , nT − 1 with matrices Pp to be determined.
Notice that this function is continuous and piecewise
differentiable but may not be continuously differentiable at
the isolated points tp = pη. Moreover, the function (9) has
been recently adopted in several contexts that deal with
DLMIs, see for instance, Gonçalves et al. (2019), Allerhand
and Shaked (2013) and Baldi et al. (2018) where the
last two references treat the problem of switched systems
stabilization.

3. MAIN RESULTS

This section presents our main results. Firstly, a method-
ology to generate a set of limit cycle candidates is provided
employing criteria based on the desired system steady-
state behaviour. Afterwards, the design conditions as-
suring asymptotic stability of an equilibrium point are
presented, which are generalized to cope with limit cycle
global asymptotic stability taking into account an associ-
ated guaranteed cost.

3.1 Limit cycle generation

The key point to determine the continuous-time trajectory
xe(t), associated to the sequence c[n] ∈ K, is to find
the subset of points xe(tn) at which the switching events
occur. The remaining points of xe(t) are obtained directly
from (5). Hence, evaluating the limit cycle (5) only at
the switching instants tn, we can define the following
equivalent discrete-time switched affine system

xe[n+ 1] = Fc[n]xe[n] + gc[n] (11)

where xe[n] = xe(tn), ∀n ∈ N, and

Fi = eAih, gi =

∫ h

0

eAiτdτ bi (12)

Before continuing, let us provide some definitions borrowed
from Deaecto and Geromel (2018). For a given positive
value nh ∈ N, which defines the number of switching
events inside the period T , let C(nh) = K

nh be the set
obtained from the Cartesian product of K by itself nh

times. It contains Nnh elements c ∈ C(nh), which are
finite sequences c = (c[0], · · · , c[nh − 1]). Associated to
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each c ∈ C(nh) there exists a limit cycle Xe(c) with points
xe(tn) obtained from the linear equation

F̃ (c)x̃e = −g̃(c) (13)

where x̃e = [xe[0]
′ xe[1]

′ · · · xe[nh − 1]′]′, matrix

F̃ (c) =









Fc[0] −I 0 · · · 0
0 Fc[1] −I · · · 0
...

...
...

. . .
...

−I 0 0 · · · Fc[nh−1]









(14)

and g̃(c) = [g′
c[0] g

′
c[1] · · · g′c[nh−1]]

′. Notice that the bound-

ary condition xe(t0) = xe(tnh
) has been taken into account

in (13). After determining xe(tn) for n = {0, · · · , nh − 1},
the points between two successive switching events can
be obtained from (5), completing the entire trajectory
xe(t). The Nnh different sequences of C(nh) allows us to
determine a family of possible limit cycles as being

X = {Xe(c) : c ∈ C(nh)} (15)

The search for a suitable limit cycle X ∗
e ∈ X can be

constrained to a subset Xs ⊆ X, which is related to some
criterion specified by the designer. Given a reference point
x∗, a possible one can be expressed as

Xs =

{

Xe ∈ X :
1

T

∫ T

0

‖Γ(xe(t)− x∗)‖2 dt < α

}

(16)

which contains limit cycles whose medium distance be-
tween Γxe(t) and Γx∗ over t ∈ [0, T ) is smaller than α, with
the matrix Γ and the positive scalar α being provided by
the designer. Alternatively, when the goal is to bound the
ripple amplitudes of the state trajectories, another option
to be adopted is the subset

Xs =

{

Xe ∈ X : max
t∈[0,T )

‖Γ(xe(t)− x∗)‖∞ < α

}

(17)

with, as in the former case, the matrix Γ and the scalar
α are provided by the designer. Notice that the criterion
choice depends exclusively on the interest of the designer
with respect to the steady-state behaviour of the system
trajectories leading to different sets Xs. The set of se-
quences c associated with each Xe(c) ∈ Xs is defined as
Cs(nh) ⊆ C(nh). The next subsection deals specifically
with the design of a state-dependent switching function.

3.2 Stability and guaranteed cost

After obtaining the subset Xs ∈ X containing all the
limit cycles candidates satisfying the criteria chosen by
the designer, the idea is to determine a state-dependent
switching function to govern the state trajectories of
the system (1)-(2) asymptotically towards the limit cycle
Xe(c

∗) ∈ Xs that minimizes an upper bound for the cost
defined in (8).

Non-sampled switching function

At this first moment, let us consider a simpler case where
the switching frequency is arbitrary and the goal is to
assure global asymptotic stability of the equilibrium point
xe ∈ Xe with

Xe = {xe : xe = −A−1
λ bλ, λ ∈ Λ} (18)

known as the set of attainable equilibrium points, see
Deaecto et al. (2010). This problem has already been

treated in the literature adopting different Lyapunov func-
tions, as for instance, the quadratic one (Deaecto et al.
(2010), Deaecto (2016)), the max-type one (Scharlau et al.
(2014)), among others. The next theorem provides a solu-
tion based on the time-varying Lyapunov function given
in (9).

Theorem 1. Consider system (1)-(2), let T > 0 and the
equilibrium point xe ∈ Xe with its associated vector λ ∈ Λ
be given. Defining Qi = E′

iEi, if there exists P (t) > 0
satisfying the differential linear matrix inequality

Ṗ (t) +A′
λP (t) + P (t)Aλ +Qλ < 0 (19)

for all t ∈ [0, T ) with the boundary condition P (0) =
P (T ) > 0, then the state-dependent switching function
σ(t) = u(ξ(t), t) with

u(ξ, t) = argmin
i∈K

ξ′(2P (t)Ai +Qi)ξ + 2ℓ′iP (t)ξ (20)

where ξ(t) = x(t)−xe, assures global asymptotic stability
of the equilibrium point xe ∈ Xe. Moreover, the following
guaranteed cost

J < ξ′0P (0)ξ0 (21)

corresponding to the initial condition ξ(0) = ξ0 6= 0 is
satisfied.

Proof: To ease the notation the time dependency of some
variables is omitted. The time derivative of the Lyapunov
function v(ξ, t) provided in (9) along an arbitrary trajec-
tory of system (6)-(7), in the time interval t ∈ [0, T ), yields

v̇(ξ, t) = ξ̇′Pξ + ξ′P ξ̇ + ξ′Ṗ ξ

= ξ′(A′
σP + PAσ +Qσ + Ṗ )ξ + 2ℓ′σPξ − z′eze

= min
i∈K

ξ′(A′
iP + PAi +Qi + Ṗ )ξ + 2ℓ′iPξ − z′eze

= min
λ∈Λ

ξ′(A′
λP + PAλ +Qλ + Ṗ )ξ + 2ℓ′λPξ − z′eze

≤ ξ′(A′
λP + PAλ +Qλ + Ṗ )ξ + 2ℓ′λPξ − z′eze

< −z′eze (22)

where the third equality comes from the switching function
(20), the fourth one is due to a known property of the
minimum operator and the last inequality is a consequence
of (19) and the fact that ℓλ = Aλxe + bλ = 0 because
xe ∈ Xe. Due to the boundary condition P (0) = P (T ) > 0
and the periodic continuation P (t) = P (t+ T ), inequality
(22) holds for all t ≥ 0 proving the asymptotic stability of
the equilibrium point xe ∈ Xe. Now, integrating both sides
of (22) from t = 0 until t → ∞, we obtain the guaranteed
cost (21), concluding thus the proof. ✷

The fact that Ṗ (t) is sign undefined contributes to reduce
the conservatism of the conditions compared with others
available in the literature, see Deaecto and Santos (2015),
Sanchez et al. (2019), and Sferlazza et al. (2019) as some
examples.

At this point, an important remark is how to solve the
differential linear matrix inequality (19). As it has been
proposed in Gonçalves et al. (2019), there are different
manners depending on the class of functions considered
for P (t). In this paper, we have adopted P (t) piecewise
linear as in (10), which implies that (19) can be converted
into two LMIs as presented in the next lemma borrowed
from Gonçalves et al. (2019).

Lemma 1. Let nT ≥ 1 be given. The piecewise linear
function P (t) : [0, T ) → R

nx×nx given in (10) is a solution
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of the differential linear matrix inequality

L(Ṗ (t), P (t)) < 0 (23)

if and only if for each p = 0, · · · , nT − 1, the LMIs

L
(

Pp+1 − Pp

η
, Pp

)

< 0 (24)

L
(

Pp+1 − Pp

η
, Pp+1

)

< 0 (25)

with η = T/nT are feasible.

This lemma will be very useful to solve the DLMIs pre-
sented throughout this paper. Applying Lemma 1, Theo-
rem 1 can be solved by the solution of the following convex
optimization problem

inf
P

ξ′0P0ξ0 (26)

where P = {P0, · · · , PnT
}, subject to Pp > 0 and

A′
λPp + PpAλ +Qλ +

Pp+1 − Pp

η
< 0 (27)

A′
λPp+1 + Pp+1Aλ +Qλ +

Pp+1 − Pp

η
< 0 (28)

for all p = 0, 1, · · · , nT−1 and η = T/nT and the boundary
condition P0 = PnT

> 0. These conditions are certainly
less conservative than the available ones based on a single
Lyapunov matrix. However, when the state trajectories
reach the equilibrium point, the switching frequency is
arbitrarily high in order to maintain them at this point,
causing an undesired phenomenon known as chattering,
see Hauroigne et al. (2011) and Sanchez et al. (2019).
In order to avoid the occurrence of this phenomenon
during the steady state response of the system, instead
of considering a single equilibrium point let us govern the
state trajectories towards a suitable limit cycle Xe(c) ∈ Xs.
The next theorem presents design conditions regarding
this goal.

Theorem 2. Consider system (6)-(7) with ξ(0) = ξ0 6= 0
and let T > 0, nh ∈ N and the set of limit cycle candidates
Xe(c) ∈ Xs with the correspondent c ∈ Cs(nh) be given.
Define Qi = E′

iEi, if there exists P (t) > 0 satisfying the
optimization problem

min
Xe(c)∈Xs

inf
P (t)>0

ξ′0P (0)ξ0 (29)

subject to the differential linear matrix inequality

Ṗ (t) +A′
c(t)P (t) + P (t)Ac(t) +Qc(t) < 0 (30)

in the time interval t ∈ [0, T ), c(t) = c[n] ∈ K, ∀t ∈
[tn, tn+1), with c ∈ Cs(nh), n = 0, · · · , nh − 1 and the
boundary condition P (0) = P (T ) > 0, then the state-
dependent switching function σ(t) = u(ξ(t), t) with

u(ξ, t) = argmin
i∈K

ξ′(2P (t)Ai +Qi)ξ + 2ℓi(t)
′P (t)ξ (31)

assures the global asymptotic stability of the limit cycle
Xe(c

∗) and the optimal solution of (29), associated to c∗,
is a suitable upper bound for the cost (8).

Proof: Performing the time derivative of v(ξ, t) along a
trajectory of (6)-(7) in the time interval t ∈ [0, T ), and
taking into account the switching function σ(t) = u(ξ(t), t)
given in (20), we obtain

v̇(ξ, t) = min
i∈K

ξ′(A′
iP + PAi +Qi + Ṗ )ξ + 2ℓ′iPξ − z′eze

≤ ξ′(A′
cP + PAc +Qc + Ṗ )ξ + 2ℓ′cPξ − z′eze

< −z′eze (32)

where the first inequality is a consequence of the minimum
operator and the last one comes directly from the validity
of (30) and the fact that ℓc(t)(t) = 0 since Xe(c) ∈ Xs.
Finally, the guaranteed cost follows the same reasoning as
in Theorem 1. ✷

Although chattering still can occur during the transient re-
sponse, Theorem 2 avoids its occurrence during the steady-
state response, making it more amenable for practical
implementations when compared with Theorem 1. About
the solution of Theorem 2, it is important to remark that
the time interval [0, T ) has been split into nT subintervals
for the Lyapunov function and in nh switching events
c(t) ∈ K. Nevertheless, it is not necessary that nT be
a multiple of nh, this makes the problem easier to be
implemented. Indeed, considering that nT ≥ nh and using
Lemma 1, Theorem 2 can be solved as the solution of the
following convex optimization problem

min
Xe(c)∈Xs

inf
P

ξ′0P0ξ0 (33)

where P = {P0, · · · , PnT
}, subject to Pp > 0 and

A′
c[n]Pp + PpAc[n] +Qc[n] +

Pp+1 − Pp

η
< 0 (34)

A′
c[n]Pp+1 + Pp+1Ac[n] +Qc[n] +

Pp+1 − Pp

η
< 0 (35)

where η = T/nT , n = ⌊p/θ⌋ with θ = nT /nh, for all
p = 0, 1, · · · , nT − 1, c[n] ∈ Cs(nh) and the boundary
condition P0 = PnT

. The next topic treats the case where
the switching function is piecewise constant, which is our
main concern in this paper.

Sampled-data switching function

Consider now that the switching function satisfies the
constraint (3) for all t ≥ 0, avoiding chattering occurrence
during the transient and steady-state responses. In this sit-
uation, global asymptotic stability of a single equilibrium
point is generally impossible to be assured. Most of the
results available in the literature deals with practical sta-
bility, where the trajectories are guided to a region as small
as possible containing the equilibrium point, see Hetel and
Fridman (2013), Hauroigne et al. (2011), Sferlazza et al.
(2019), among others. However, nothing is imposed to the
state trajectories once inside this region. In order to control
the steady-state response of the system, the idea is to
govern the trajectories asymptotically towards a desired
limit cycle. Very recently, reference Benmiloud et al. (2019)
has treated this problem using an approach based on the
hybrid Poincaré map, but assuring only local stability. For
a periodic switching function, the next corollary presents
conditions for the global asymptotic stability of a desired
limit cycle.

Corollary 1. The conditions of Theorem 2 remain valid
whenever the switching function (31) is replaced by σ(t) =
c(t) with c(t) = c[n], ∀t ∈ [tn, tn+1), c ∈ Cs(nh) and
c[n+ nh] = c[n].

Proof: The proof is very simple and is based on the fact
that the periodic switching function σ(t) = c(t) is known
for all t ∈ [0, T ). Indeed, the time derivative of v(ξ, t)
becomes

v̇(ξ, t) = ξ′(A′
cP + PAc +Qc + Ṗ )ξ + 2ℓ′cPξ − z′eze

< −z′eze (36)
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where the last inequality comes from (30) and the fact that
ℓc(t)(t) = 0 since Xe(c) ∈ Xs. The proof is concluded. ✷

Based on this result, the idea is to obtain a sampled-
data switching function that provides a true cost smaller
than the one of Corollary 1. In this sense, we can adopt
a different switching function, which is state-dependent,
and consists in choosing at each switching instant the
subsystem that guarantees stability and enhances the per-
formance with respect to the periodic switching function.

Corollary 2. Considering c(t) = c[n], ∀t ∈ [tn, tn+1) with
c ∈ Cs(nh) and c[n+nh] = c[n], the conditions of Theorem
2 remain valid whenever the switching function (31) is
replaced by σ(t) = σ[n] = ν(ξ(tn)), ∀t ∈ [tn, tn+1) and
n ∈ N with

ν(ξ(tn)) = argmin
i∈K

{

∫ tn+1

tn

ξ(t)′Qiξ(t)dt

+ ξ(tn+1)
′P (tn+1)ξ(tn+1)

}

(37)

where ξ(tn+1) = Fiξ(tn) + ĝic[n] with Fi = eAih,

ĝic[n] =

∫ tn+1

tn

eAi(tn+1−τ)ℓ̂ic[n](τ)dτ (38)

and ℓ̂ic[n](t) = (Ai−Ac[n])xe(t)+(bi−bc[n]) and h = T/nh.

Proof: Theorem 2 assures the existence of P (t) solution
of the DLMI (30) in the time interval t ∈ [0, T ). Hence
v(ξ, t) satisfies the inequality

v(ξ(tn), tn) ≥
∫ tn+1

tn

ξ(t)′Qc[n]ξ(t)dt+ v(ξ(tn+1), tn+1)

(39)

with c[n] ∈ K. In particular, it holds for c[n] = c∗[n] ∈ K

where c = c∗ ∈ Cs(nh) and, consequently, we have

v(ξ(tn), tn) ≥
∫ tn+1

tn

ξ(t)′Qc[n]ξ(t)dt + v(ξ(tn+1), tn+1)

≥
∫ tn+1

tn

ξ(t)′Qσ[n]ξ(t)dt + v(ξ(tn+1), tn+1)

(40)

The conclusion is that the sampled-data switching strategy
(37) assures global asymptotic stability and the same
guaranteed cost as c∗ does. The proof is concluded. ✷

It is important to stress that the guaranteed cost provided
by Theorem 2 is not reduced by the sampled-data switch-
ing control strategy (37). However, the true cost is, in
general, smaller due to the minimization performed with
respect to all i ∈ K. For completeness, let us point out
how to calculate the sampled-data switching function (37).
Defining

Aic[n] =

[

Ai 0 bi
0 Ac[n] bc[n]
0 0 0

]

for t ∈ [tn, tn+1), n ∈ N we have

ξ(t) =

[

I
−I
0

]′

eAic[n](t−tn)

[

x(tn)
xe(tn)

1

]

Then, the switching function (37) can be rewritten as

ν(ξ(tn)) = argmin
i∈K

[

x(tn)
xe(tn)

1

]′

Qic[n]

[

x(tn)
xe(tn)

1

]

(41)

where

Qic[n] =

∫ h

0

eA
′

ic[n]τ

[

I
−I
0

]

Qi

[

I
−I
0

]′

eAic[n]τdτ

+ eA
′

ic[n]h

[

I
−I
0

]

P (tn+1)

[

I
−I
0

]′

eAic[n]h (42)

The next example illustrates the proposed techniques.

4. NUMERICAL EXAMPLE

In this section, we evaluate the previous results by means
of a numerical example whose data were borrowed from
Egidio et al. (2020). Consider a discrete-time switched
affine system (1)-(2) defined by matrices

A1 =

[

−4 3
−3 2.5

]

, A2 =

[

4 −1
1 −2

]

, b1 =

[

0
−2

]

, b2 =

[

0
8

]

(43)

that describes two unstable subsystems. The goal is to
design a switching function capable of governing the state
trajectories to some adequate steady-state behaviour such
that the mean value of the first state component is as
close as possible to −9. However, the switching frequency
must not exceed 10 Hz, which can be fulfilled by adopting
a switching function of the form (3) with h = 0.1 s.
In order to obtain a globally asymptotically stable limit
cycle with period T = 1 s, we choose nh = 10. The
adoption of Γ = [1 0], x∗ = [9 r]′ where r is of no
account and α = 1 leads to a set of candidate limit
cycles Xs as in (16) with 10 candidates. Solving the
optimisation problem (33) for nT = 50 an optimal solution
P along with c∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 2) was found. This
solution provides the optimal limit cycle X ∗

e = Xe(c
∗) and

allows the implementation of the sampled-data min-type
switching function (37) given in Corollary 2. By numerical
simulation we have obtained the system response starting
from x0 = [5 5]′ that is shown in continuous-blue in Figure
1, on the state space and in Figure 2 as a function of
time along with the resulting switching signal σ(t). For
comparison, a periodical switching function σ(t) = c(t)
and a non-sampled one, given in (20), were adopted and
the resulting curves are given in Figure 1, respectively in
dot-dashed red and dashed green. Moreover, the integral
(8) was calculated for the trajectories obtained from the
min-type sampled, periodic and non-sampled switching
functions, providing J = 387.53, J = 754.06 and J =
411.26, respectively. Notice that all of them respected the
obtained guaranteed cost ξ′0P0ξ0 = 1,215.85 > J and that,
as it can be seen, the actual cost related to the min-
type sampled switching function was smaller than the non-
sampled one.

5. CONCLUSION

Throughout this paper, sufficient conditions for the global
asymptotic stability of a limit cycle X ∗

e , satisfying a desired
steady-state criterion, are provided for continuous-time
switched affine systems. The conditions are based on a
convex time-varying Lyapunov function and described in
terms of DLMIs, which are easy to solve, since they can
be converted as the solution of a finite set of LMIs.
Moreover, they taken into account a guaranteed cost that
assure a good performance for the transient response. An
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Fig. 1. System trajectories x(t) with sampled switch-
ing function (37) (solid blue), non-sampled one (20)
(dashed-green) and periodic one (dot-dashed red)
along with the desired limit cycle X ∗

e (dashed-black)
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Fig. 2. Translated system response ξ(t) and associated
switching signal σ(t) over time for the sampled switch-
ing function (left) and the non-sampled one (right).

academical example was used to validate the proposed
control technique.
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