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Abstract: We study the problem of source seeking for an acceleration-controlled unicycle.
The objective is to asymptotically stabilize the unicycle around states where a smooth position-
dependent signal (or cost) function attains a minimum value. An implementation of the proposed
control strategy only requires measurements of the cost function value at the current position.
We do not assume that the unicycle can measure its current positions or its current forward
velocity. For this purpose, we extend a recently introduced approach to extremum seeking
control, which is based on the approximation of symmetric products of vector fields. An
additional high-gain observer is used to estimate the derivative of the sensed cost signal. The
estimates provided by the observer compensate for the missing velocity measurements and
allow a reduction of the kinetic energy without velocity-dependent damping. Under suitable
assumptions on the cost function, the control law leads to semi-global practical asymptotic
stability.
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1. INTRODUCTION

The problem of source seeking describes the task for an
autonomous agent to locate an extremum of a position-
dependent scalar signal. For example, the agent might be
a wheeled robot, the signal might be the strength of an
electric or magnetic field, and the objective is to find a
point at which the field strength attains an extreme value.
It is assumed that the agent is equipped with a suitable
sensor so that it can measure the signal at its current
position at any given time. Additional information about
the signal, like the gradient, is not available to the agent.

There are many different approaches in the literature
to solve the source seeking problem for various types of
agent models. For example, in Zhang et al. (2007b); Stan-
ković and Stipanović (2009); Dürr et al. (2011) for single-
integrator points, in Zhang et al. (2007a); Cochran and
Krstić (2009); Matveev et al. (2011) for velocity-controlled
unicycles, and in Zhang et al. (2007b); Stanković and
Stipanović (2009); Scheinker (2018) for double-integrator
points. In Suttner (2019a), there is a first source seeking
control law for an acceleration-controlled unicycle. An
implementation of the feedback law in Suttner (2019a)
requires measurements of the source signal and the forward
velocity. However, this means that the sensed variables
(source signal and forward velocity) contain more informa-
tion than the actively controlled variable (source signal).
It is therefore natural to ask whether the source seeking
problem for an acceleration-controlled unicycle can be also
solved when no measurements of the forward velocity are
available. The results in Zhang et al. (2007b) for double-
integrator point agents indicate that information about

the current velocity can be extracted from changes of the
sensed source signal. A crucial assumption in Zhang et al.
(2007b) is that the agent can be steered instantaneously
in any desired direction at any given time. For a more
realistic second-order agent model, like the unicycle model,
there is no suitable approach in the literature so far. The
contribution of this paper is to propose the first source
seeking control law for the second-order unicycle model
that does neither rely on measurements of the position
nor on measurements of the forward velocity.

Source seeking with nonholonomic unicycles can be per-
formed, in principle, in many different ways: by adjusting
angular or forward velocity, by adjusting angular or for-
ward acceleration, and by doing so around either zero or
nonzero values. In Table 1, we survey the different methods
that have appeared in the literature, based on which of the
inputs are used for tuning. Generally speaking, methods
that use tuning around zero angular velocity (Cochran
and Krstić (2009), and its extensions Ghods and Krstić
(2010); Raisch and Krstić (2017)) generate trajectories
that approach the source in the most direct manner but
have a problem with overshooting the source, whereas
the methods that use tuning around the zero forward
velocity or acceleration (Zhang et al. (2007b); Dürr et al.
(2013), and the present paper) approach the source most
inefficiently but are efficient at staying near the source.
Methods that tune the angular velocity around a nonzero
value (Scheinker and Krstić (2014); Dürr et al. (2017);
Raisch and Krstić (2017) represent a tradeoff; they gene-
rate trajectories that drift towards the source in a circular
manner and, in such a fashion, they have a less direct
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angular velocity around zero × × ×
angular velocity around nonzero × × ×
forward velocity around zero × ×
forward velocity around nonzero ×
angular acceleration around zero

angular acceleration around nonzero

forward acceleration around zero ×
forward acceleration around nonzero

Krylov-Bogolyubov averaging × × × ×
Lie bracket approximation × × ×
symmetric product approximation ×

Table 1. Collection of some of the existing papers on source seeking control for the unicycle
model. The methods are categorized based on whether they perform tuning of the angular or
longitudinal (forward) degree of freedom, whether they actuate velocity or acceleration, whether
the tuning is around a zero value (with sinusoids) or a nonzero value (without sinusoids). The
abbreviations of the references correspond to the last name initials and the years in the reference

list. The last three rows indicate the averaging techniques, which are used in the analysis.

convergence to the source than the methods like Cochran
and Krstić (2009) but are more efficient than the methods
with back-and-forth arc-like motions as in Zhang et al.
(2007b); Dürr et al. (2013) and the present paper.

As in Suttner (2019a), the control law in the present
paper is based on an approximation of so-called symmetric
products of vector fields. The underlying approximation
property can be traced back to averaging results for mecha-
nical systems under vibrational control in Bullo (2002). It
is shown in Suttner (2019a); Suttner and Sun (2019) that
symmetric products of suitably chosen vector fields can be
used to get access to the gradient of a sensed objective
(or cost) function. This approach is closely related to ex-
tremum seeking control by Lie bracket approximations as
in Dürr et al. (2013); Scheinker and Krstić (2013); Suttner
(2019b) for first-order kinematic systems. For second-order
mechanical systems, an approximation of symmetric pro-
ducts has the practical advantage that the velocity of the
closed-loop system remains bounded in the high-frequency,
high-amplitude limit of the employed oscillatory inputs.

To overcome the problem of missing velocity measure-
ments, we use a high-gain observer to estimate the de-
rivative of the sensed scalar signal. A detailed averaging
analysis reveals that the trajectories of the closed-loop
system approximate the trajectories of a unicycle under a
gradient-like control law. To be more precise, the gradient
of the signal function in the averaged system is scaled
in a suitable way by the derivative of the sensed signal.
This additional scaling of the gradient induces a damping
effect and consequently leads to a loss of kinetic energy.
In particular, a velocity-induced damping as in Suttner
(2019a) becomes obsolete. These findings might be also
helpful for the purpose of sources seeking in environments
with almost no friction; for example, when the agent is an
autonomous underwater vehicle or a satellite in space.

2. PROBLEM STATEMENT AND CONTROL LAW

We consider the second-order unicycle model

ṗ1 = v cos θ, (1a)

ṗ2 = v sin θ, (1b)

v̇ = a, (1c)

θ̈ = τ, (1d)

where p = (p1, p2)> ∈ R2 is the position, θ ∈ R is an
angle to describe the orientation, and v ∈ R is the forward
velocity. It is assumed that the forward acceleration a ∈ R
and the angular acceleration τ ∈ R can be controlled.
Moreover, we assume that the unicycle can constantly
measure the value

y = ψ(p) (2)

of a smooth, position-dependent cost function ψ : R2 → R.
One can interpret (2) as a position-dependent signal that
is sensed by the unicycle. We do not demand that the
unicycle can measure its current position p or its current
forward velocity v. Only real-time measurements of (2)
can be used for a feedback law. The control objective is
to steer the unicycle to a state at which the cost function
attains a minimum value. The gradient of ψ is treated as
an unknown quantity.

To solve the above problem, we propose the subsequent
control law. We assume that the angle θ as a function of
the time parameter t is of the form

θ(t) = θ0 + C cos(Ωt+ Φ) (3)

with some arbitrary but fixed constants θ0,Φ ∈ R and
C,Ω > 0. This can be ensured by applying a suitable
periodic torque t 7→ τ(t). The actual values of θ0, φ, C,Ω
and the current value of θ do not need to be known to
implement the control law for the forward acceleration,
which is described below. Roughly speaking, the time-
varying alignment in (3) ensures that the unicycle can
explore changes of the sensed signal along different directi-
ons in the plane. It is also possible to allow a different time
dependence of θ. A comment on the particular choice (3)
for the angle is given in Remark 4 in Section 4. Since the
angle θ is given by (3), the alignment of the unicycle can
be described by the vector

eq(t) :=

(
cos θ(t)
sin θ(t)

)
at any time t ∈ R.

To state the control law for the forward acceleration a,
we introduce several control parameters and functions.
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Choose constants ϕ ∈ R and c > 0. For every ω > 0,
define uω : R→ R by

uω(t) := c ω cos(ωt+ ϕ). (4)

The oscillatory signal uω has the purpose to induce an
approximation of symmetric products of vector fields as
in Bullo (2002) for sufficiently large values of ω. Next, we
introduce two suitable design functions α1, α2. A detailed
averaging analysis in Section 3 will reveal that α1, α2 have
the purpose to get access to a suitably scaled gradient
of ψ through the symmetric product approximations. This
step in the construction of the control law is similar to
the choice of suitable design functions in the context of
extremum seeking control by Lie bracket approximations
as in Dürr et al. (2013); Scheinker and Krstić (2013);
Grushkovskaya et al. (2018); Suttner and Sun (2018). The
purpose of α1, α2 is further explained after the definition of
the control law. First, choose a smooth function α1 : R→
R such that

• (α1α
′
1)(0) > 0,

• α1 and its derivative are bounded on R.

For example, we may define α1 by

α1(ξ) := 1 + tanh(ξ). (5)

Second, choose a smooth function α2 : R→ R such that

• α2(0) 6= 0,
•
(
α2

2(ξ)− α2
2(0)

)
ξ > 0 for every ξ 6= 0,

• α2 and its derivative are bounded on R.

For example, we may define α2 by

α2(ξ) :=
√

2 + tanh(ξ). (6)

Choose constants h1, h2 > 0. We propose the control law

a = uω(t)α1(y − z1)α2(z2) (7)

for the forward acceleration, where z1, z2 are the state
variables of an ω-dependent high-gain observer

ż1 = z2 + h1 ω
1/4 (y − z1), (8a)

ż2 = h2 ω
1/2 (y − z1). (8b)

Note that an implementation of (7) requires no other
information than measurements of (2). It is known from
Khalil (2002) that, with increasing observer gains h1 ω

1/4

and h2 ω
1/2, the variable z1 approximates y and the

variable z2 approximates the derivative ẏ. In other words,
an extra integration of the sensed signal y results in an
approximate differentiation of y for large values of ω. The
transfer function from y to y − z1 and from y to z2 is
shown in Figure 1. Before we begin with the averaging and
stability analysis for the proposed control law, we briefly
indicate the purpose of the terms α1(y − z1) and α2(z2)
in (7) and the above assumptions on α1 and α2.

The averaging analysis in Section 3 will show that, in the
limit ω → ∞, the term α1(y − z1) in (7) leads to the
contribution

− (α1α
′
1)(0)∇ψ(p)>eq(t) (9)

in the forward acceleration of the averaged system, which
is derived later in equation (15). Because of our goal to
minimize the value of ψ, we are interested in the negative
gradient direction −∇ψ(p). This explains the assumption
(α1α

′
1)(0) > 0 on α1: it ensures that the unicycle is forced

into a descent direction of ψ along its current alignment.
However, a pure negative gradient force would lead to

τ(t)
a ṗ = v

(
cos θ(t)
sin θ(t)

)
, v̇ = a

p
ψ(·)

y

1

s2+h1ω
1
4 s+h2ω

1
2

[
s2

h2ω
1
2 s

]y − z1

z2

α1(·)

α2(·)

uω(t)

Fig. 1. Extremum seeking control for the unicycle model.
With increasing parameter ω > 0, the sinusoid uω

induces a symmetric product approximation, and the
variables z1 and z2 approximate y and ẏ, respectively.

undamped oscillations around minima of ψ. To circumvent
this problem, a damping effect is induced by the following
feature. In the limit ω →∞, the term α2(z2) in (7) leads
to the additional scaling factor

α2
2(ẏ) (10)

of the negative gradient in (9). The assumption α2(0) 6= 0
ensures that the scaling factor (10) is positive for ẏ = 0.
On the other hand, we also demand that α2 satisfies
(α2

2(ξ) − α2
2(0)) ξ > 0 for every ξ 6= 0. This has the

purpose to reduce the kinetic energy in the following sense.
If the unicycle drives into a descent direction of ψ, then ẏ
is negative and the scaling factor (10) becomes smaller.
Conversely, if the unicycle drives into an ascent direction
of ψ, then ẏ is positive and the scaling factor (10) becomes
larger. This means that the negative gradient force (9) is
reduced if the unicycle drives into a descent direction of ψ,
and amplified if the unicycle drives into an ascent direction
of ψ. The stability analysis in Section 4 will show that the
scaled gradient force leads to a loss of kinetic energy in the
averaged system. Because of the approximation property,
the same is also true for the closed-loop system if ω is
sufficiently large. Finally, we comment on the choice of
the exponents 1/4 and 1/2 of ω in (8). This ensures two
properties. On the one hand, it ensures that the observer
gains grow with increasing ω. On the other hand, the
factors ω1/4 and ω1/2 grow slower than the amplitude ω
of the sinusoid uω in (4), which is important to ensure a
good approximation of the averaged system.

For the sake of a compact notation, we define a function
α : R× R2 → R to be the product

α(y, z) := α1(y − z1)α(z2)

on the right-hand side of (7). Moreover, to represent the
linear system (8), we introduce the matrices

Aω :=

(
−h1ω

1/4 1

−h2ω
1/2 0

)
and Bω :=

(
h1ω

1/4

h2ω
1/2

)
. (11)

Now, using the above notation, the closed-loop system is
the ω-dependent, time-varying system

ṗ = v eq(t), (12a)

v̇ = uω(t)α(ψ(p), z), (12b)

ż = Aωz +Bωψ(p) (12c)

on R2×R×R2. In the next section, we study the behavior
of (12) in the limit ω →∞.

3. AVERAGING ANALYSIS

Our goal is to apply the averaging approach from Bullo
(2002) to the closed-loop system (12). For every z ∈ R2,
define a time-varying vector field f(·, ·, z) on R2 by
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f(t, p, z) := α(ψ(p), z) eq(t).

Then, equation (12b) can be written as

v̇ = uω(t) f(t, p, z)>eq(t). (13)

Next, for every z ∈ R2, the so-called (fixed-time) sym-
metric product of f(·, ·, z) with itself is the time-varying
vector field 〈f : f〉(·, ·, z) on R2 that is given by

〈f : f〉(t, p, z) := 2
∂f

∂p
(t, p, z)f(t, p, z),

where ∂f
∂p (t, p, z) denotes the derivative of f(t, ·, z) at p. A

direct computation shows that

〈f : f〉(t, p, z) = 2
(∂α
∂y

)
(ψ(p), z)

(
∇ψ(p)>eq(t)

)
eq(t),

where ∂α
∂y (y, z) denotes the derivative of α(·, z) at y and

∇ψ(p) ∈ R2 denotes gradient vector of ψ at p. It is
known from Bullo (2002); Bullo and Lewis (2004) that the
particular choice of uω in (4) leads to an approximation
of 〈f : f〉 for sufficiently large ω. Roughly speaking, in the
limit ω →∞, we may replace (13) by

v̇ = −Λ 〈f : f〉(t, p, z)>eq(t),
where Λ := (c/2)2. On the other hand, also the differential
equation (12c) of the observer state z depends on ω. It
is know from Khalil (2002) that high observer gains lead
to an approximation of the signal (2) and its derivative.
Note that the derivative of ψ along (12a) is given by
v∇ψ(p)>eq(t). For this reason, we define z̄ : R× R3 → R2

for every t ∈ R and every x = (p>, v)> with p ∈ R2 and
v ∈ R to be the vector

z̄(t, x) :=

(
ψ(p)

v∇ψ(p)>eq(t)

)
(14)

of the signal (2) and its derivative. Roughly speaking, in
the limit ω → ∞, we may replace the observer state z by
the vector z̄(t, x). A direct computation shows that

〈f : f〉(t, p, z̄(t, x))

= 2(α1α
′
1)(0)α2

2(v∇ψ(p)>eq(t))
(
∇ψ(p)>eq(t)

)
eq(t).

This leads us to the time-varying system

˙̄p = v̄ eq(t), (15a)

˙̄v = −c
2

2
(α1α

′
1)(0)α2

2(v̄∇ψ(p̄)>eq(t))∇ψ(p̄)>eq(t) (15b)

on R2 ×R as a candidate for the averaged system of (12).
Indeed, the following approximation result holds.

Theorem 1. Assume that P̄0 ⊆ P̄ ⊆ R2 and V̄0 ⊆ V̄ ⊆ R
are compact sets such that, for every t0 ∈ R and every
maximal solution (p̄, v̄) of (15) with p̄(t0) ∈ P̄0, v̄(t0) ∈ V̄0,
we have p̄(t) ∈ P̄ , v̄(t) ∈ V̄ for every t ≥ t0. Then, for

every compact set Z̃0 ⊆ R2, every ε > 0, and every T > 0,
there exists ω0 > 0 such that, for every ω ≥ ω0, every
t0 ∈ R, every maximal solution (p, v, z) of (12), every
maximal solution (p̄, v̄) of (15) with p̄(t0) = p(t0) ∈ P̄0,

v̄(t0) = ṽ(t0) ∈ V̄0, z̃(t0) ∈ Z̃0, we have

‖p̄(t)− p(t)‖ ≤ ε, (16a)

|v̄(t)− ṽ(t)| ≤ ε, (16b)

‖z̃(t)− e(t−t0)Aω z̃(t0)‖ ≤ ε (16c)

for every t ≥ t0, where

Uω(t) := c sin(ωt+ ϕ), (17)

ṽ(t) := v(t)− Uω(t)α(ψ(p(t)), z(t)), (18)

z̃(t) := z(t)− z̄(t, x̃(t)), (19)

and x̃(t) := (p(t)>, ṽ(t))>.

The proof of Theorem 1 is similar to the proof of The-
orem 1 in Suttner (2019a) but more technical because
of the peaking phenomenon in the observer (see Remark
2 below). An outline of the main arguments is given in
Appendix A.

Remark 2. In Theorem 1, the symbol e(t−t0)Aω denotes
the matrix exponential of (t−t0)Aω. A direct computation
shows that the entries (etA

ω

)ij of etA
ω

are given by

(etA
ω

)11 = e−
h1
2 ω

κt
(

cos(∆ωκt)− h1

2
ωκt sinc(∆ωκt)

)
,

(etA
ω

)12 = e−
h1
2 ω

κt 1

ωκ
ωκt sinc(∆ωκt),

(etA
ω

)21 = e−
h1
2 ω

κt ωκ (ωκt) sinc(∆ωκt),

(etA
ω

)22 = e−
h1
2 ω

κt
(

cos(∆ωκt) +
h1

2
ωκt sinc(∆ωκt)

)
,

where κ := 1/4 and ∆ :=
√
h2 − (h1/2)2 is a complex

number with real part < h1/2. Thus, we have etA
ω → 0 as

t → ∞. Note, however, that (etA
ω

)21 leads to a transient
peak of height ∼ ωκ if the initial state of z1 deviates
significantly from ψ(p(t0)). This behavior is known as
the peaking phenomenon; cf. Khalil (2002). It is therefore
favorable (but not necessary) to initialize z1 through
the first measurement of the signal (2). The assumed
boundedness of α1, α2 and their derivatives in Section 2
shields the state of the unicycle from a possible peaking
phenomenon in the observer.

In the next section, we investigate stability properties of
the closed-loop system (12) and its averaged system (15).

4. STABILITY ANALYSIS

To prove global uniform asymptotic stability for the avera-
ged system (15), we make the same assumptions on the
signal function ψ : R2 → R as in Suttner (2019a):

A1 ψ is smooth,
A2 ψ has a unique critical point p∗ ∈ R2,
A3 ψ(p)→∞ as ‖p‖ → ∞.

The above assumptions are sufficient to derive the follo-
wing stability result for the averaged system (15).

Theorem 3. Suppose that ψ satisfies assumptions A1-A3.
Then, the point (p∗, 0) ∈ R3 is globally uniformly asymp-
totically stable for (15).

Proof. We combine the position p̄ ∈ R2 and the velocity
v̄ ∈ R to one vector x̄ = (p̄>, v̄)> ∈ R3. Note that (15) is
a periodic system. Our goal is to prove the stability result
by applying LaSalle’s invariance principle for periodic
systems (see, e.g., Theorem 5.26 in Sastry (1999)). For this
purpose, we introduce the total energy function E : R3 →
R as the sum

E(x̄) :=
1

2
v̄2 +

c2

2
(α1α

′
1)(0)α2

2(0)ψ(p̄) (20)

of kinetic and potential energy. Because of the assumptions
on α1, α2, and ψ, the function E is (up to an additive
constant) positive definite around x∗ := ((p∗)>, 0)> ∈ R3

and its only critical point is x∗. A direct computation
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shows that the derivative Ė : R×R3 → R of E along (15)
is given by

Ė(t, x̄) = −c
2

2
(α1α

′
1)(0)

(
α2

2(z̄2(t, x̄))− α2
2(0)

)
z̄2(t, x̄),

where z̄2(t, x̄) denotes the second component of (14).

Because of the assumptions on α1, α2 we conclude that Ė
only takes non-positive values. For the rest of the proof,
suppose that x̄ = (p̄>, v̄)> : R → R3 is a solution of (15)

such that Ė(t, x̄(t)) = 0 for every t ∈ R. To conclude
that x∗ is globally uniformly asymptotically stable for (15),
we have to show that x̄ is identically equal to x∗. Define
ȳ : R→ R by ȳ(t) := ψ(p̄(t)). Note that

Ė(t, x̄(t)) = −c
2

2
(α1α

′
1)(0)

(
α2

2( ˙̄y(t))− α2
2(0)

)
˙̄y(t)

for every t ∈ R. Because of the assumptions on α1, α2,
the condition Ė(t, x̄(t)) = 0 for every t ∈ R implies that
˙̄y is identically equal to 0. Therefore, ȳ is constant, which
means that p̄ runs in one of the compact level sets of ψ.
Moreover,

(v̄2)̇(t) = −c2 (α1α
′
1)(0)α2

2( ˙̄y(t)) ˙̄y(t) = 0

for every t ∈ R implies that v̄ is identically equal to some
v̄0 ∈ R. We make a case analysis. First, we suppose that
v̄0 = 0. Then p̄ is identically equal to some p̄0 ∈ R2. Using
(15b), it follows that ∇ψ(p̄0)>eq(t) = 0 for every t ∈ R.
This in turn implies ∇ψ(p̄0) = 0 and therefore p̄0 = p∗.
The proof is complete if we can rule out the case v̄0 6= 0.

Suppose for the sake of contradiction that v̄0 6= 0. Recall
that ˙̄p is defined by the differential equation (15a) and that
the alignment vector eq(t) is determined by the particular
choice of the angle θ(t) in (3). After a suitable shift of the
time parameter and a suitable rotation of the coordinate
system, we may assume that

˙̄p(t) = v̄0

(
cos(C sin(Ωt))
sin(C sin(Ωt))

)
(21)

for every t ∈ R. If we would have p̄(2π/Ω) 6= p̄(0), then the
periodicity of the right-hand side of (21) would imply that
p̄(2πk/Ω) = k

(
p̄(2π/Ω)− p̄(0)

)
for every integer k, which

in turn would contradict the fact that p̄ runs in one of the
compact level sets of ψ. Thus, we have p̄(2π/Ω) = p̄(0).
By integrating both sides of (21), we obtain that

p̄0 := p̄
( π

2Ω

)
= p̄

( 3π

2Ω

)
and also ∫ π/(2Ω)

0

cos(C sin(Ωt)) dt = 0. (22)

Equation (22) and the results in Watson (1944) on the
roots of Bessel functions imply that C is not an integer
multiple of π/2. It follows that ˙̄p

(
π

2Ω

)
and ˙̄p

(
3π
2Ω

)
are line-

arly independent vectors. Since∇ψ(p̄(t))> ˙̄p(t) = ˙̄y(t)/v̄0 =
0 for every t ∈ R, we conclude that ∇ψ(p̄0) = 0 and
therefore p̄0 = p∗. Since p̄ runs in a level set of ψ, this
implies that p̄ is identically equal to p∗, which contradicts
the assumption v̄0 6= 0. This completes the proof. 2.

Remark 4. The statement of Theorem 3 is, in general, not
true if we would replace the choice (3) of the angle θ as in
Suttner (2019a) by

θ(t) = Ωt+ Φ (23)

for every t ∈ R. To verify this by an example, suppose that
the circle S1 ⊆ R2 of radius one centered at the origin is a
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(b) Transformed velocity t 7→ ṽ(t) with ṽ as in (18).
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5

(c) Logarithmic plot of the “total energy” t 7→ E(x̃(t))
with E defined in (20).

Fig. 2. Results for the situation as described in Section 5.

level set of the cost function ψ. For instance, this happens
if ψ is the standard quadratic function p 7→ ‖p‖2. If we
initialize the averaged system (15) with p̄(0) =

(
sin Φ
− cos Φ

)
and v̄(0) = 1 and use (23) instead of (3), then p̄ runs along
S1 and v̄ remains identically equal to 1. In other words, p̄ is
“trapped” in a level set of ψ. One possible (but not unique)
way to overcome this problem is to choose an alignment
as in (3). The proof of Theorem 3 shows that, for θ as in
(3), the curve p̄ cannot run along a level set of ψ except
for the case in which p̄ is identically equal to the optimal
point p∗.

Next, we introduce suitable notions of stability for the
closed-loop system (12). As explained in Remark 2, we
cannot expect practical stability for the entire system be-
cause of the possible peaking phenomenon in the observer
shortly after initialization. Once the transient peak is over,
the observer state approximates the sensed signal and its
derivative. To circumvent this problem, the subsequent
notions of stability only take the position and the velocity
of the unicycle into account.

Definition 5. The solutions of (12) are said to be practi-
cally uniformly bounded if, for all compact sets P0 ⊆ R2,
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V0 ⊆ R, and Z0 ⊆ R2, there exist ω0 > 0 and compact
supersets P of P0 and V of V0 such that, for every ω ≥ ω0,
every t0 ∈ R, and every maximal solution (p, v, z) of (12)
with p(t0) ∈ P0, v(t0) ∈ V0, and z(t0) ∈ Z0, we have
p(t) ∈ P and v(t) ∈ V for every t ≥ t0.

Definition 6. For given p∗ ∈ R2 and v̂ > 0, the compact
subset {p∗} × [−v̂, v̂] of R3 is said to be practically uni-
formly stable for (12) if, for all ρ, δ > 0 and every compact
set Z0 ⊆ R2, there exist r, d > 0 and ω0 > 0 such that, for
every ω ≥ ω0, every t0 ∈ R, and every maximal solution
(p, v, z) of (12) with ‖p(t0)− p∗‖ ≤ r, |v(t0)| ≤ v̂ + d, and
z(t0) ∈ Z0, we have ‖p(t)− p∗‖ ≤ ρ and |v(t)| ≤ v̂ + δ for
every t ≥ t0.

Definition 7. For given p∗ ∈ R2 and v̂ > 0, the compact
subset {p∗} × [−v̂, v̂] of R3 is said to be semi-globally
practically uniformly attractive for (12) if, for all r, d > 0,
every compact set Z0 ⊆ R2, and all ρ, δ > 0, there exist
T > 0 and ω0 > 0 such that, for every ω ≥ ω0, every
t0 ∈ R, and every maximal solution (p, v, z) of (12) with
‖p(t0)− p∗‖ ≤ r, |v(t0)| ≤ v̂ + d, and z(t0) ∈ Z0, we have
‖p(t)− p∗‖ ≤ ρ and |v(t)| ≤ v̂ + δ for every t ≥ t0 + T .

Theorem 8. Define v̂ := c |α1(0)| |α2(0)| > 0. Suppose
that ψ satisfies assumptions A1-A3. Then, the solutions of
(12) are practically uniformly bounded and the compact
subset {p∗} × [−v̂, v̂] of R3 is semi-globally practically
uniformly attractive for (12).

Proof. The statement follows from the stability result for
the averaged system (Theorem 3) and the approximation
result for the trajectories of the closed-loop system (The-
orem 1). The arguments are the same as in the proof of
Theorem 7 in Suttner (2019a). A similar proof can be also
found in Dürr et al. (2013). 2

Remark 9. Note that Theorem 8 does not guarantee
practical uniform stability for the closed-loop system. As
explained in Remark 8 in Suttner (2019a), the position
of the unicycle displays a transient behavior that violates
the definition of practical stability if we have Uω(t0) 6= 0
for the initial time t0 ∈ R, where Uω : R → R is defined
by (17). However, we do have practical stability for every
initial time t0 ∈ R with Uω(t0) = 0, because then the
transformed initial velocity ṽ(t0) in (18) coincides with
the actual initial velocity of the closed-loop system.

5. SIMULATION RESULTS

Finally, we provide numerical data for the following situ-
ation. The cost function in (2) is given by ψ(p) := ‖p‖2.
The parameters in (3) are given by θ0 := Φ := 0, Ω := 1,
and C is chosen as the smallest positive real number that
satisfies (22). The parameters in (4) are given by ϕ := 0,
c := 1, and ω := 20. The functions α1 and α2 are given
by (5) and (6), respectively. The parameters in (8) are
given by h1 := 2 and h2 := 6. Since ϕ = 0, we know
from Remark 9 that the closed-loop system (12) is semi-
globally practically asymptotically stable if we start the
implementation of the control law at an initial time t0 ∈ R
with sin(ωt0) = 0. Figure 2 shows the results for the initial
condition p(0) = (2, 1)>, v(0) = 0, z̄(0) = (5, 0)>.
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Appendix A. PROOF OF THEOREM 1

Throughout the proof, we consider the closed-loop system
(12) in the coordinates (p, ṽ, z̃) that are given by (18)
and (19). When we use the notation x̃ = (p>, ṽ)>, then
we mean that x̃ is a vector in R3 with components p ∈ R2

and ṽ ∈ R. We define ã : R× R3 × R2 → R by

ã(t, x̃, z̃) := −c
2

2
(α1α1)′(z̃1)α2

2(z̄2(t, x̃)+z̃2)∇ψ(p)>eq(t),

where z̄2(t, x̃) denotes the second component of (14). Next,
we define F : R× R3 × R2 → R3 by

F (t, x̃, z̃) :=

(
ṽ eq(t)
ã(t, x̃, z̃)

)
.

Lemma 10. For each compact subset X̃ of R3, there exist
b > 0, Lx > 0, Lz > 0 such that

‖F (t, x̃, z̃)‖ ≤ b,

‖F (t, x̄, 0)− F (t, x̃, 0)‖ ≤ Lx ‖x̄− x̃‖,
‖F (t, x̃, z̃)− F (t, x̃, 0)‖ ≤ Lz ‖z̃‖

for every t ∈ R, all x̃, x̄ ∈ X̃, and every z̃ ∈ R2.

Proof. The statement follows immediately from the
smoothness of F , the periodicity of F with respect to time,
and the boundedness of α1, α2 and their derivatives. 2

We define α̃ : R× R2 → R by

α̃(z̄2, z̃) := −α1(−z̃1)α2(z̄2 + z̃2).

For each ω > 0, we define Wω : R→ R by

Wω(t) := Uω(t)2 − c2

2
= − c

2
cos(2ωt+ 2ϕ)

and βω : R× R3 × R2 → R by

βω(t, x̃, z̃) := ã(t, x̃, z̃)∇ψ(p)>eq(t) + ṽ2 eq(t)
>∇2ψ(p)eq(t)

+ ṽ∇ψ(p)>ėq(t) +Wω(t) ã(t, x̃, z̃)∇ψ(p)>ėq(t)

+ Uω(t) α̃(z̄2(t, x̃), z̃) ṽ eq(t)
>∇2ψ(p)eq(t),

where ∇2ψ(p) ∈ R2×2 denotes the Hessian matrix of ψ
at p and ėq(t) denotes the derivative of eq at t. Next, we
define Γ: R× R3 × R2 → R2 by

Γ(t, x̃, z̃) := ∇ψ(p)>eq(t)

(
α̃(z̄2(t, x̃), z̃)

∂α̃

∂z̃
(z̄2(t, x̃), z̃)Aω z̃

)
,

where ∂α̃
∂z̃ (z̄2, z̃) denotes the derivative of ∂α̃

∂z̃ (z̄2, ·) at z̃,

and Aω ∈ R2×2 is defined in (11). For each ω > 0, define
Rω : R× R3 × R2 → R3 by

Rω(t, x̃, z̃) := Uω(t)

(
α̃(z̄2(t, x̃), z̃) eq(t)
∂α̃

∂z̃
(z̄2(t, x̃), z̃)Aω z̃

)

+Wω(t)

(
0

ã(t, x̃, z̃)

)
.

A direct computation shows that, in the coordinates (18)
and (19), system (12) reads

˙̃x = F (t, x̃, z̃) +Rω(t, x̃, z̃), (A.1a)

˙̃z = Aω z̃ −
(

0
βω(t, x̃, z̃)

)
− Uω(t) Γ(t, x̃, z̃). (A.1b)

Lemma 11. Let X̃ ⊆ R3 and Z̃0 ⊆ R2 be compact sets,
and let εz > 0 and T > 0. Then, there exists ω0 > 0
such that, for every ω ≥ ω0, every t0 ∈ R, every maximal
solution (x̃, z̃) of (A.1) with z̃(t0) ∈ Z̃0, the following

implication holds: if x̃(t) ∈ X̃ for every t ∈ [t0, t0 + T ],
then, for every t ∈ [t0, t0 + T ], we have

‖z̃(t)− e(t−t0)Aω z̃(t0)‖ ≤ εz.

Proof. By the variation of constant formula, we have

z̃(t1)− e(t−t0)Aω z̃(t0) (A.2a)

= −
∫ t1

t0

βω(t, x̃(t), z̃(t)) e(t1−t)Aω
(

0
1

)
dt (A.2b)

−
∫ t1

t0

Uω(t) e(t1−t)Aω Γ(t, x̃(t), z̃(t)) dt (A.2c)

for every t1 in the domain of z̃. A similar argument as
in the proof of Lemma 10 shows that β is bounded by a
constant on R× X̃ × R2. Moreover, using the formulas in
Remark 2 for the matrix exponential of Aω, one can verify
that there exists µ > 0 such that∫ t1

t0

∥∥∥e(t1−t)Aω
(

0
1

)∥∥∥dt ≤ µ

ω1/4

for every ω ≥ 1 and every t1 ≥ t0. Thus, the integral in
(A.2b) tends uniformly to zero for ω →∞ as long as x̃ runs

in X̃. For the integral in (A.2c), we apply integration by
parts. Note that t 7→ − c

ω cos(ωt + ϕ) is an antiderivative

of Uω. A lengthy computation reveals that the factor 1
ω

from the antiderivative of Uω compensates the powers of ω
from the observer gains as well as the impact of a transient
peak of the observer state with increasing ω. This way, one
can show that also the integral in (A.2c) tends uniformly

to zero for ω →∞ as long as x̃ runs in X̃. 2

Lemma 12. Let X̃ ⊆ R3 and Z̃0 ⊆ R2 be compact sets,
and let εx > 0 and T > 0. Then, there exists ω0 > 0 such
that, for every ω ≥ ω0, every t0 ∈ R, and every maximal
solution (x̃, z̃) of (A.1) with z̃(t0) ∈ Z̃0, the following

implication holds: if x̃(t) ∈ X̃ for every t ∈ [t0, t0 + T ],
then, for every t ∈ [t0, t0 + T ], we have∥∥∥∫ t1

t0

Rω(t, x̃(t), z̃(t)) dt
∥∥∥ ≤ εx.

Proof. The statement can be deduced from a similar
application of integration by parts as in the proof of
Lemma 11 for the integral in (A.2c). Note that suitable
antiderivatives of both Uω and Wω contribute a factor 1

ω .
This factor decays sufficiently fast in order to compensate
the powers of ω from the observer gains as well as the
impact of a transient peak of the observer state. For
this reason the integral over Rω tends uniformly to 0 for
ω →∞ as long as x̃ runs in X̃. 2

Now we are ready to prove Theorem 1. Note that (15) can
be written as

˙̄x = F (t, x̄, 0). (A.3)

Assume that X̄0 ⊆ X̄ ⊆ R3 are compact sets such that,
for every t0 ∈ R and every maximal solution x̄ of (15)
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with x̄(t0) ∈ X̄0, we have x̄(t) ∈ X̄ for every t ≥ t0. Let

Z̃0 ⊆ R2 be a compact set and fix arbitrary ε > 0 and
T > 0. Let X̃ be the closed ε-neighborhood of X̄ in R3.
For the compact set X̃, there exist constants b, Lx, Lz > 0
as in Lemma 10. After possibly increasing Lx or T , we
may assume that e−LxT < 1. Define εx := ε

3e−LxT and

εz := ε
6LzT

e−LxT . Then, there exists some sufficiently
large ω0 > 0 such that, for every ω ≥ ω0, the estimates
in Lemmas 11 and 12 are satisfied. By Remark 2, after
possibly increasing ω0, we have ‖e(t−t0)Aω z̃0‖ ≤ εz for
every ω ≥ ω0, every (t − t0) ≥ τω := ω−1/8, and every

z̃0 ∈ Z̃0. Again, after possibly increasing ω0, we can ensure
that τω ≤ min{T, ε6be

−LxT } for every ω ≥ ω0.

Fix arbitrary ω ≥ ω0, t0 ∈ R, x̃0 ∈ X̄0, and z̃0 ∈ Z̃0. Let
(x̃, z̃) : I → R3×R2 be the maximal solution of (A.1) with
x̃(t0) = x̃0 and z̃(t0) = z̃0. Let x̄ be the maximal solution

of (A.3) with x̄(t0) = x̃0 and z̃(t0) ∈ Z̃0. Then, we have

x̃(t1) = x̃0 +

∫ t1

t0

(
F (t, x̃(t), z̃(t)) +Rω(t, x̃(t), z̃(t))

)
dt,

x̄(t1) = x̃0 +

∫ t1

t0

F (t, x̄(t), 0) dt,

and therefore

x̄(t1)− x̃(t1) = −
∫ t1

t0

Rω(t, x̃(t), z̃(t)) dt (A.4a)

+

∫ t1

t0

(
F (t, x̄(t), 0)− F (t, x̃(t), z̃(t))

)
dt (A.4b)

for every t ∈ I. Now, for every t1 ∈ I ∩ [t0, t0 + τω],

the following implication holds: if x̃(t) ∈ X̃ for every
t ∈ [t0, t1], then we obtain from Lemma 11 that (16c)
holds for every t ∈ [t0, t1], and, by applying the estimates
in Lemmas 10 and 12 to (A.4) that

‖x̄(t1)− x̃(t1)‖ ≤ εx + 2 τω b < 2ε/3

for every t ∈ [t0, t1]. It follows that x̃ exists on [t0, t0 + τω]
and that ‖x̄(t)−x̃(t)‖ < ε for every t ∈ [t0, t0+τω]. It is left
to prove that the same holds on the interval [t0+τω, t0+T ].
For this purpose, we split up the integral in (A.4a) into
integrals from t0 to t0 + τω and from t0 + τω to t0 + T .
We already know from the preceding considerations that
contribution of the integral from t0 to t0 + τω is ≤ 2 τω b.
For the integral from t0 + τω to t0 + T , we obtain from
Lemma 10 that

‖F (t, x̄(t), 0)−F (t, x̃(t), z̃(t))‖ ≤ Lz‖z̃(t)‖+Lx‖x̄(t)−x̃(t)‖
as long as x̃(t) ∈ X̃. Thus, for every t1 ∈ I∩[t0+τω, t0+T ],

the following implication holds: if x̃(t) ∈ X̃ for every
t ∈ [t0, t1], then we obtain from Lemma 11 that (16c)
holds for every t ∈ [t0, t1], and from (A.4) that

‖x̄(t1)− x̃(t1)‖ ≤ εx + 2 τω b+ 2T Lz εz

+ Lx

∫ t1

t0

‖x̄(t)− x̃(t)‖ dt

for every t ∈ [t0, t1]. Since εx+2 τω b+2T Lz εz < ε e−LxT ,
we conclude from the Gronwall inequality that x̃ exists on
[t0+τω, t0+T ] and that ‖x̄(t)−x̃(t)‖ < ε for every t ∈ [t0+
τω, t0 + T ]. Consequently, (16c) and ‖x̄(t)− x̃(t)‖ < ε are
satisfied for every t ∈ [t0, t0 + T ].
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