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Abstract: Reliable guidance of fixed-wing Unmanned Aerial Vehicles (UAVs) is challenging,
as their high maneuverability exposes them to several dynamical changes and parametric
uncertainties. Reliability of state-of-the-art guidance methods is often at stake, as these methods
heavily rely on precise UAV course dynamics, assumed in a decoupled first-order form with
known time constant. To improve reliability of guidance for fixed-wing UAVs, this work proposes
a novel vector field law that can handle uncertain course time constant and state-dependent
uncertainty in the course dynamics arising from coupling. Stability is studied in the Lyapunov
framework, while reliability of the proposed method is tested on a software-in-the loop UAV
simulator. The simulations show that, in the presence of such uncertainty, the proposed method
outperforms the standard vector field approaches.
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1. INTRODUCTION

Fixed-wing Unmanned Aerial Vehicles (UAVs) are emerg-
ing rapidly, as their simple structure ensures efficient
aerodynamics that provide unprecedented autonomy, even
when compared to rotary-wing UAVs (Wang et al. (2017)).
However, fixed-wing UAVs are quite challenging to fly (i.e.
to control): this is because their high maneuverability ex-
poses them to several changes in the dynamics (depending
on altitude, speed, weight, angle of attack, etc.) and several
parametric uncertainties. In control of fixed-wing UAVs,
one should distinguish at least two levels: the low-level or
attitude control, and the high-level or guidance/path fol-
lower (Beard and McLain (2012)). At the low-level, most
strategies rely on cascade proportional-integral-derivative
(PID) controllers, sometimes enhanced with techniques
such as gain scheduling (Poksawat et al. (2018)). Among
the many strategies proposed for guidance (geometric (Inv-
ernizzi and Lovera (2018); Cho and Kim (2016); Invernizzi
et al. (2019)), PID (Kim et al. (2014)), target circulation
(Olavo et al. (2018)), acceleration-based (Galffy et al.
(2019)), etc.), the vector field approach (Li and Horowitz
(2001); Nelson et al. (2007) has become popular due to its
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intuitive combination of geometry and control (the method
is based on the generation of a field of desired course inputs
to be used by the attitude control): extensions of this idea
have appeared in the sense of time-varying vector fields
(Jiang et al. (2017)), tangent-plus-Lyapunov vector field
for obstacle avoidance (Chen et al. (2013)), and vector
field for formation control (Dimarogonas (2012); Oh et al.
(2015)). Unfortunately, reliability of guidance methods is
often put at stake by the need for precise knowledge of
the wind and of the UAV course dynamics: first-order
UAV course dynamics with known time constant are often
assumed, and coupling effects among longitudinal and
lateral motions are neglected (Beard and McLain (2012)).
Since the literature has shown how the final performance
of a guidance law severely degrades with uncertain UAV
dynamics (Guo et al. (2017); Fari et al. (2019)), UAV adap-
tive control methods have been studied to attain reliability
by adapting the control gains to uncertainties: the issue of
unknown wind has been studied in (Zhou et al. (2017));
support vector regression for adaptive attitude control is
studied in (Shin et al. (2011)); an adaptive control for
automatic carrier landing (a special attitude problem) is
proposed in (Zhen et al. (2019)).

Despite these studies, to the best of the authors’ knowl-
edge, no adaptive algorithm has been proposed in litera-
ture for the relevant problem of achieving path following
in spite of uncertain course time constant, state-dependent
uncertainty (i.e. couplings) affecting the course dynamics,
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and uncertain wind. Stability is studied in the Lyapunov
stability framework, and the effectiveness of the proposed
method is tested on a realistic software-in-the loop UAV
simulator that can simulate the UAV dynamics with the
autopilot low-level layer. The simulations show that, in
the presence of uncertainty, the proposed method is more
reliable and outperforms standard vector field approaches.
Note that in (Fari et al. (2019)) the same authors proposed
an adaptive VF that can adapt to uncertain wind, but not
to course dynamics with uncertain course time constant
nor to state-dependent uncertainty.

The rest of the paper is organized as follows: Sect. 2
describes which UAV guidance parameters are uncertain
and why. Sects. 3 and 4 cover the standard and the
proposed VF approaches. Simulations are in Sect. 5, with
conclusions in Sect. 6.

2. UAV UNCERTAINTY SETTING

A fixed-wing UAV can be modelled using 6-DOF Euler-
Lagrange equations of motions. However, for guidance
and navigation purposes, the dynamics of the UAV are
significantly simplified (cf. the procedures in Nelson et al.
(2007); Jiang et al. (2017); Chen et al. (2013); Dimarogo-
nas (2012); Oh et al. (2015)) under standard assumptions
resulting in first-order UAV course dynamics

χ̇ = α(χc − χ) (1)

where χ is the course of the UAV, an inertial-referenced
angle representing the angle between the north and the
ground velocity Vg; χc is the command course from the
controller, and α is a positive constant that defines the
response speed of the course-hold loop. Two comments
with respect to (1) are in order:

1) The dynamics (1) rely on the assumption that longi-
tudinal and lateral dynamics are decoupled : a more
realistic course angle model is

χ̇ = α(χc − χ) + ∆(χ) (2)

where ∆(χ) is a state-dependent coupling distur-
bance, i.e. with possibly no a priori constant bound.

2) The steps in (Beard and McLain (2012)) show how
α in (1) is affected in a complex way by aerodynamic
coefficients which cannot be perfectly known, and can
even change depending on the operating conditions
(altitude, velocity, etc.). Therefore, the parameter α
should be considered as uncertain.

The wind triangle of Fig. 1 shows how the wind field
affecting the UAV airspeed Va consists not only of a
constant (possibly known) wind component with magni-
tude W and angle ψW , but also of unknown and time-
varying wind perturbations with amplitude A(t) and angle
ψA(t). That is, the wind introduces another source of
uncertainty. Traditionally, the uncertainty coming from
the time-varying wind is neglected, which results in the
following navigational dynamics of the UAV:

ẋ = Va cosψ +W cosψW = Vg cosχ

ẏ = Va sinψ +W sinψW = Vg sinχ
(3)

where ψ is the heading angle between airspeed and hori-
zontal axis in earth frame, x and y are the coordinate of
the earth frame. Another comment follows:

3) The uncertainty in (3) is reflected in the fact that
the actual ground speed is not known since the time-
varying wind influences Vg, as shown in Fig. 1.

Fig. 1. The wind triangle for a fixed-wing UAV.

3. STANDARD VECTOR-FIELD PATH FOLLOWING

The problem is the one of guiding the UAV along some
paths. In literature, two primitive paths are considered:
the straight line and the orbit path. The vector field (VF)
method is based on specifying a desired course at a certain
coordinate.

3.1 Straight-Line Path Following

As in (Nelson et al. (2007)), let us consider for simplicity
and without loss of generality a straight line parallel to
the x-axis. The VF which describes the reference course
to drive the UAV on the line is

χd(ey) = −χ∞
2

π
tan−1(key) (4)

where ey is the cross-track error (i.e. distance in the y-
direction), χ∞ is a parameter in (0, π2 ] which is the course
reference when the error is large, and k a tuning parameter
governing the VF smoothness. If the straight line is not
parallel to y, it suffices to use the rotation matrix from the
inertial frame to the path frame. In (Nelson et al. (2007))
it is shown that the control law which is able to let χ→ χd
and ey → 0 as t→∞ is

χc = χ− χ∞
2

π

βsVg
α

sin(χ− χq)−
κ

α
sat

(
χ̃

ε

)
(5)

where χ̃ = χ−χd, βs = k/(1+(key)2), κ and ε are param-
eters governing control aggressiveness and counteracting a
possible chattering in the control action, and

sat(x) =

{
x if |x| < 1,

sgn(x) otherwise.
(6)

3.2 Orbit Path Following

The strategy for orbit path following is similar to the
straight line following, i.e. a desired course VF is built
up around the desired orbit:

χd(d̃) = γ + λ
(π

2
+ tan−1(kd̃)

)
(7)

where is d̃ = d − R, d is the distance of the UAV from
the orbit center, R the orbit radius and γ is the angle
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between the north and the UAV position with respect
to the orbit center. For easiness of analysis, the UAV
position is expressed in the circular coordinates where the
origin locates at the orbit center. The parameter λ is 1 for
clockwise orbit path and −1 for counter-clockwise orbit
path. In (Nelson et al. (2007)) it is shown that the control

law which is able to let χ→ χd and d̃→ 0 as t→∞ is

χc = χ+
Vg
αd

sin(χ−γ)+β
λVg
α

cos(χ−γ)− κ
α

sat

(
χ̃

ε

)
(8)

where β = k/(1 + (kd̃)2), and the parameters k, κ, ε are
defined similarly to the straight-line case. The proof of the
Lyapunov stability for (5) and (8) is given in (Nelson et al.
(2007)) and will not be further discussed. Some remarks
on (5) and (8) follow.

Remark 1. The guidance laws (5) and (8) require precise
knowledge of the course dynamics and of the wind, i.e.
they require precise knowledge of α and Vg in (1) and
(3). Furthermore, the standard VF relies on the absence
of perturbation in the course dynamics, i.e. (1). For such
ideal dynamics asymptotic tracking is concluded, or even
finite-time tracking when the saturation function (6) is
replaced by the sign function. However, such results cannot
be obtained when (1) are replaced by (2).

In view of the above considerations, we will introduce a
state-dependent perturbation in the course dynamics and
uncertainty in α and Vg.

3.3 Uncertainty setting

The following state dependency of ∆ is assumed:

|∆(χ)| ≤ κ0 + κ1 |χ̃| (9)

for some unknown positive constants κ0, κ1. Notice that
(9) is a quite general condition, as it includes the fact that
∆(χ) may not be bounded a priori.

Instead of assuming exact knowledge of α, let us consider
a nominal course time constant, named α̂, and satisfying∣∣∣α

α̂
− 1
∣∣∣ = E < 1 (10)

for some design parameter E. It can be noticed that the
uncertainty set (10) requires α̂ to be not far from the actual
α, i.e. α < (1 + E)α̂.

4. ADAPTIVE VECTOR-FIELD PATH FOLLOWING

In the presence of wind and course uncertainty, we intro-
duce estimators for the wind vector Vg and for the course
parameter α: we refer to the approach as adaptive VF path
following.

4.1 Straight-Line Path Following

The following new adaptive guidance law is proposed

χc = −Λ

α̂
χ̃+ χ︸ ︷︷ ︸

LINEAR ACTION

− 1

α̂
χ∞

2

π

k

1 + (key)2
V̂g sin(χ)︸ ︷︷ ︸

NOMINAL ACTION

− ˆ̄αχ∞
2

π

k

1 + (key)2
V̂g sin(χ)︸ ︷︷ ︸

COMPENSATION

− κ̂0 + κ̂1 |χ̃|
α̂(1− E)

sat(
χ̃

ε
)︸ ︷︷ ︸

ROBUST ACTION

(11)

where κ̂0 and κ̂1 represent the estimated of κ0 and κ1
in (9), and Λ is a user-defined parameter that should
satisfy Λ > κ0

ε(1−E) . A short explanation for the different

components is given in (11). The control law (11) is
augmented with the following adaptive laws:

˙̂
Vg = ΓV ρχ̃χ

∞ 2

π

k

1 + (key)2
sin(χ)

˙̄̂α = Γαρχ̃χ
∞ 2

π

k

1 + (key)2
V̂g sin(χ)

˙̂κ0 = Γ0ρ |χ̃| , ˙̂κ1 = Γ1ρ |χ̃|2

(12)

with ΓV , Γα, Γ0, Γ1 being user-defined gains. A stability
proof for the proposed approach is given in the appendix.

4.2 Orbit Path Following

For the orbit, the standard guidance law is modified
according to a similar philosophy as the straight line

χc = −Λ

α̂
χ̃+ χ︸ ︷︷ ︸

LINEAR ACTION

− κ̂0 + κ̂1 |χ̃|
α̂(1− E)

sat

(
χ̃

ε

)
︸ ︷︷ ︸

ROBUST ACTION

− ˆ̄αV̂g

(
sin(χ− γ)

d
− k

1 + (kd̃)2
cos(χ− γ)

)
︸ ︷︷ ︸

COMPENSATION

− 1

α̂
V̂g

(
sin(χ− γ)

d
− k

1 + (kd̃)2
cos(χ− γ)

)
︸ ︷︷ ︸

NOMINAL ACTION

(13)

together with the adaptive laws

˙̂
Vg = ΓV ρχ̃

(
sin(χ− γ)

d
− k

1 + (kd̃)2
cos(χ− γ)

)
˙̄̂α = Γαρ2χ̃

(
sin(χ− γ)

d
− k

1 + (kd̃)2
cos(χ− γ)

)
V̂g

˙̂κ0 = Γ0ρ |χ̃| , ˙̂κ1 = Γ1ρ |χ̃|2
(14)

with similar constants as the straight line case. A stability
proof follows similar lines as the straight-line case.

Remark 2. As compared to standard VF (Nelson et al.
(2007); Jiang et al. (2017); Chen et al. (2013); Dimarog-
onas (2012); Oh et al. (2015)), estimators for the ground
velocity Vg and for the course time constant α are incor-
porated in the control law, which are the first two estima-
tors in (12) and (14): in addition, two other gains are
estimated via the last two in (12) and (14) which form
an estimate of the state-dependent uncertainty (note that
κ̂0 + κ̂1 |χ̃| in (11) and (13) replaces the a priori bounded
uncertainty κ in the standard VF (5) and (8)). In fact,
a priori bounded uncertainty is restrictive (Obeid et al.
(2018)) and should be avoided for practical systems (Roy
et al. (2019)).

Remark 3. It is evident from the wind triangle of Fig. 1
that Vg is course-dependent because of the vector sum-
mation between Va and W . To take into account course
dependency of Vg (neglected by the standard VF method),
the ground velocity estimator can be modified as

˙̂
Vg = ΓV ρχ̃

(
sin(χ− γ)

d
− k

1 + (kd̃)2
cos(χ− γ)

)
+ Fo

(15)
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where Fo is a feedforward term calculated as

Fo =
∂V̂g
∂χ

[
V̂g
d

sin(χ− γ) + λβoV̂g cos(χ− γ)− κ sat

(
χ̃

ε

)]
and ∂V̂g/∂χ calculated from the wind triangle as in (Zhou
et al. (2017)). A similar idea applies to the straight line.

Remark 4. It is discussed in (Nelson et al. (2007)) that
the standard VF is a sliding mode controller. By looking
at the last two adaptation laws in (12) and (14) it can be
noticed that κ̂0 and κ̂1 monotonically increase according to
the error, a celebrated adaptive strategy in the sliding mode
community where a constant κ is replaced by a monoton-
ically increasing one (Plestan et al. (2010)). Therefore,
the proposed adaptive VF sits in the adaptive sliding mode
framework: to avoid monotonic increase, suitable modifi-
cations proposed in literature (leakage or boundary layer
adaptation (Roy and Baldi (2019))) can be used here as
well, and are not shown due to space limitations.

5. SIMULATION RESULTS

In this section, the performance of the proposed adaptive
VF is assessed, as compared to the standard VF and to an
ideal VF method, with the following wind knowledge:

• Standard VF (Nelson et al. (2007)): only the constant
wind component is assumed to be known;
• Ideal VF (Fari et al. (2019)): both constant and time-

varying wind components are assumed to be known;
• Adaptive VF (proposed): all wind components are

estimated.

5.1 Software-in-the-loop UAV platform

With the purpose of testing the algorithms in a realis-
tic UAV simulation platform, a software-in-the-loop UAV
platform that can replicate the low-level control structure
of the UAV (i.e. autopilot layer) was developed at TU
Delft. More details on the software-in-the-loop UAV plat-
form can be found in (Yang et al. (2019)).

In the numerical studies done in this work, we take the
following environmental conditions: the constant wind
amplitude is W = 6 with wind angle ψW = 230◦; a time-
varying wind is considered whose magnitude changes over
time in a cosinusoidal fashion with frequency 0.1 rad/sec
and whose angle changes in a sinusoidal fashion with
frequency 0.1 rad/sec. In addition, Dryden turbulence was
considered. All these environmental conditions have been
combined together to obtain four different wind scenarios,
summarized in Table 1.

Table 1. Flight environmental conditions

Scenario Constant wind Turbulence Time-var. wind

#1 No No No
#2 Yes No No
#3 Yes Yes No
#4 Yes Yes Yes

The standard and the ideal VF assume α = 0.42 in
(5) and (8). However, the exact knowledge of α is not
available, because the software-in-the-loop UAV dynamics
are much more complex than (1). As compared to the

standard (and ideal) VF, the proposed adaptive VF uses
a nominal α̂ = 0.42, and is the only approach that tries to
compensate for such lack of knowledge.

5.2 Comparisons

The performance of the standard, adaptive and ideal
VF are evaluated using the RMS steady-state error. The
parameters in straight line and orbit path controller,
summarized in Table 2, have been tuned so as to find
a good compromise between convergence speed and no
oscillations. As in the original VF paper (Nelson et al.
(2007)), the scaling parameter ρ is chosen as (ey(0)/π)2

and (d̃(0)/π)2, for straight line and orbit respectively.
For the adaptive VF to start in similar conditions as the
standard VF we initialize κ̂0(0) = κ, κ̂1(0) = 10−5 and
ˆ̄α(0) = 0 (initial estimates of uncertainty in ∆ and α).

Tables 3 and 4 highlight how the proposed adaptive VF
outperforms, in all scenarios, even the ideal VF: this is due
to the fact that the knowledge of α = 0.42 is not accurate.
Remarkably, the adaptive VF is the only one in Scenario
#1 that is able to perfectly track the orbit, whereas the
other approaches cannot, due to the unmodelled dynamics.
This can be clearly seen in Fig. 2. The reason for such
improved performance is that the proposed adaptive VF
is able to ‘automatically tune’ the control parameters V̂g
and ˆ̄α in such a way to reduce the error, as it can be seen
in Fig. 3.

Fig. 2. Orbit tracking error under Scenario 1 (the ideal VF
coincides with the standard VF)

In Scenario #2, the proposed adaptive VF reduces the os-
cillations of the error (present due to the course dependent
effect of the wind), cf. Fig. 4. A similar reasoning applies
to Scenarios #3 and #4, which are not shown for lack of
space. As compared to the standard VF, the improvements
are above 11% for the straight line in all scenarios, and

Table 2. The parameter values of the adaptive
control law

ρ ΓV Γ0,Γ1 Γα
Line 253.56 0.5 10−5 0.5

Orbit 1584.75 0.5 10−5 0.5

χ∞ k ε

Line π/2 0.1 m−1 1 rad

Orbit π/2 0.1 m−1 1 rad
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Table 3. Line path comparisons. Error reduc-
tion of adaptive VF vs. standard VF is noted.

Scenario Standard VF Ideal VF Adaptive VF

#1 0 0 0
#2 0.6535 0.6528 0.5835 (-11%)
#3 0.6726 0.6726 0.5998 (-11%)
#4 1.2931 0.4750 0.4261 (-67%)

Table 4. Orbit path comparisons. Error reduc-
tion of adaptive VF vs. standard VF is noted.

Scenario Standard VF Ideal VF Adaptive VF

#1 0.1456 0.1456 0 (-100%)
#2 0.7755 0.7755 0.4169 (-46%)
#3 0.8205 0.7976 0.4269 (-48%)
#4 0.5679 0.5471 0.2906 (-49%)

Fig. 3. Orbit estimation under Scenario 1

Fig. 4. Orbit tracking error under Scenario 2 (the ideal VF
coincides with the standard VF)

above 46% for the orbit in all scenarios. With respect to the
ideal VF, the improvements are above 7% for the straight
line, and above 46% for the orbit.

6. CONCLUSIONS

This work has proposed a novel guidance law that does
not require precise knowledge of the course time con-
stant, while the course dynamics can be affected by state-
dependent uncertainty representing couplings. The effec-
tiveness of the proposed method in handling such uncer-
tainty was tested on a software-in-the-loop UAV simulator.
Persistency of excitation is important in uncertainty esti-
mation: as recent works have appeared on adaptive control

with reduced persistency of excitation (Cho et al. (2018);
Roy et al. (2018)), an interesting future work is to study
if/how such methods apply to UAVs.
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(2010). New methodologies for adaptive sliding mode
control. International Journal of Control, 83(9), 1907–
1919.

Poksawat, P., Wang, L., and Mohamed, A. (2018). Gain
scheduled attitude control of fixed-wing uav with auto-
matic controller tuning. IEEE Transactions on Control
Systems Technology, 26(4), 1192–1203.

Roy, S., Basu Roy, S., Lee, J., and Baldi, S.
(2019). Overcoming the underestimation and overes-
timation problems in adaptive sliding mode control.
IEEE/ASME Transactions on Mechatronics, 1–1. doi:
10.1109/TMECH.2019.2930711.

Roy, S.B., Bhasin, S., and Kar, I.N. (2018). Combined
mrac for unknown mimo lti systems with parameter
convergence. IEEE Transactions on Automatic Control,
63(1), 283–290.

Roy, S. and Baldi, S. (2019). On reduced-complexity
robust adaptive control of switched euler–lagrange sys-
tems. Nonlinear Analysis: Hybrid Systems, 34, 226–237.

Shin, J., Kim, H.J., and Kim, Y. (2011). Adaptive support
vector regression for uav flight control. Neural Networks,
24(1), 109 – 120.

Wang, Y., Garcia, E., Casbeer, D., and Zhang, F. (2017).
Cooperative Control of Multi-Agent Systems: Theory
and Applications.

Yang, J., Wang, X., Baldi, S., Singh, S., and Fari, S. (2019).
A software-in-the-loop implementation of adaptive for-
mation control for fixed-wing uavs. IEEE/CAA Journal
of Automatica Sinica, 6(5), 1230–1239.

Zhen, Z., Tao, G., Yu, C., and Xue, Y. (2019). A multi-
variable adaptive control scheme for automatic carrier
landing of uav. Aerospace Science and Technology, 92,
714 – 721.

Zhou, B., Satyavada, H., and Baldi, S. (2017). Adaptive
path following for unmanned aerial vehicles in time-
varying unknown wind environments. In 2017 American
Control Conference (ACC), 1127–1132.

Appendix A. STRAIGHT-LINE CASE: STABILITY

Consider the following Lyapunov function

W =
1

2
y2 +

1

2
ρχ̃2 +

1

2ΓV
Ṽg +

1

2Γ0
κ̃20 +

1

2Γ1
κ̃21 +

1

2Γα
˜̄α2

(A.1)

where Ṽg = V̂g−Vg, κ̃0 = κ̂0−κ0, κ̃1 = κ̂1−κ1, ˜̄α = ˆ̄α−ᾱ.
The derivative for the Lyapunov function can be calculated

Ẇ = yẏ + ρχ̃ ˙̃χ+
1

ΓV
Ṽg

˙̃Vg +
1

Γ0
κ̃0 ˙̃κ0 +

1

Γ1
κ̃1 ˙̃κ1 +

1

Γα
˜̄α ˙̄̃α

= yVg sin(χd − χ̃) + ρχ̃ (α(χc − χ) + ∆

+χ∞
2

π

κ

1 + (κy)2
Vg sin(χ)

)
+

1

ΓV
Ṽg

˙̂
Vg +

1

Γ0
κ̃0 ˙̂κ0 +

1

Γ1
κ̃1 ˙̂κ1 +

1

Γα
˜̄α ˙̄̂α

(A.2)

= yVg sin(χd − χ̃)− ρχ̃
2

ε
κ0︸ ︷︷ ︸

IDEAL

+ρ
χ̃2

ε
κ0

+ ρχ̃

[
α(−Λ

α̂
χ̃+ χ− 1

α̂
χ∞

2

π

κ

1 + (κy)2
Vg sin(χ)

− 1

α̂
χ∞

2

π

κ

1 + (κy)2
Ṽg sin(χ)

− ˆ̄αχ∞
2

π

κ

1 + (κy)2
V̂g sin(χ)− χ)

+∆ +
α

α̂
χ∞

2

π

κ

1 + (κy)2
Vg sin(χ)

+(1− α

α̂
)χ∞

2

π

κ

1 + (κy)2
V̂g sin(χ)

−α
α̂

κ̂0 + κ̂1 |ξ|
1− E
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χ̃

ε
)− (1− α

α̂
)χ∞

2

π

κṼg
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]
+

1
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Ṽg
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1

Γ0
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1

Γ1
κ̃1 ˙̂κ1 +

1

Γα
˜̄α ˙̄̂α

=IDEAL+ ρχ̃2(
κ0
ε
− α

α̂
Λ)

+

[
−ρχ̃χ∞ 2

π

κ

1 + (κy)2
sin(χ) +

1

ΓV

˙̂
gV

]
Ṽg

+

[
−ρχ̃αχ∞ 2

π

κ

1 + (κy)2
V̂g sin(χ) +

1

Γα
˙̄̂α

]
˜̄α+

ρχ̃

[
∆− α

α̂

κ̂0 + κ̂1 |ξ|
1− E
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χ̃

ε
)

]
+

1

Γ0
κ̃0 ˙̂κ0 +

1

Γ1
κ̃1 ˙̂κ1

(A.3)

where ᾱ = 1
α (1 − α

α̂ ) = 1
α −

1
α̂ and the term IDEAL has

been used to represent the same term appearing in (Nelson
et al. (2007)) due to the ideal course dynamics. To keep the
analysis simple, we consider we are outside the saturation
boundary of the saturation function (6), which amounts to

replacing sat( χ̃ε ) = sgn( χ̃ε ). At this point we use the fact

χ̃
α

α̂

κ̂0 + κ̂1 |ξ|
1− E

sgn(
χ̃

ε
) ≤ −(1− E)

κ̂0 + κ̂1 |ξ|
1− E

|χ̃|

≤ −κ̂0 |χ̃| − κ̂1 |χ̃| |ξ|
and finally obtain

Ẇ ≤ IDEAL+ ρχ̃2(
κ0
ε
− α

α̂
Λ)

+

[
−ρχ̃χ∞ 2

π

κ

1 + (κy)2
sin(χ) +

1

ΓV

˙̂
Vg

]
Ṽg

+

[
−ρχ̃αχ∞ 2

π

κ

1 + (κy)2
V̂g sin(χ) +

1

Γα
˙̄̂α

]
˜̄α

+

[
−ρ |χ̃|+ 1

Γ0

˙̂κ0

]
κ̃0 +

[
−ρ |χ̃| |ξ|+ 1

Γ1

˙̂κ1

]
κ̃1

(A.4)

where the terms inside the square parentheses disappear
thanks to the adaptive laws. The gain κ0

ε −
α
α̂Λ can be

selected using:

⇒ κ0
ε
− (1− E)Λ < 0, ifΛ >

κ0
ε(1− E)

(A.5)

This leads to Ẇ ≤ 0 from which the same stability result
in (Nelson et al. (2007)) can be obtained.
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