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Abstract: Following the intuition that not all latent variables in probabilistic principal compo-
nent analysis method shifts simultaneously, this paper proposes a spike-and-slab regularization
technique for nonlinear fault detection and isolation. Different from the existing probabilistic
latent variable models, a spike-and-slab prior is introduced to downweight the irrelevant informa-
tion of latent variables for the discriminative model. The resulting latent subspace supported by
regularization parameters is not only sensitive to the informative variables, but it also eliminates
the influence of the non-informative ones. The feasibility and efficiency of the proposed approach
will be tested on an industrial methanol distillation dataset. Moreover, the performance will be
compared with conventional probabilistic latent variables methods.
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1. INTRODUCTION

Timely detection of faults and subsequent isolation of
fault mode are becoming an indispensable component in
fulfilling safety requirements, process stability and product
quality demands. Technological development of machin-
ing equipments makes industrial records from numerous
measured process variables available, calling for the de-
velopment of multivariate techniques (Peres and Fogliatto
(2018); Woodall and Montgomery (2014); Wang and Jiang
(2009)). Multivariate statistical process control (MSPC)
methods are commonly used to determine whether at least
one property has deviated from the acceptable operating
conditions and locate root causes of the detected shift.

Various multivariate techniques based on latent variable
(LV) methods have been used in process monitoring, in-
cluding principal component analysis (PCA), partial least
squares (PLS), independent component analysis (ICA)
and canonical correlation analysis (CCA) among others
(Li et al. (2010); Lee et al. (2011); Chen et al. (2016);
Qin (2012)). In general, a latent space in the LV model is
explored to reveal the underlying low-dimensional struc-
ture of original measured variables and its complemen-
tary residual space aims at locating noises and outliers.
Once the model has been determined, the MSPC control
charts corresponding to the two aforementioned spaces
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are required. Such charts are referred to as T 2 and SPE
control charts, respectively. After an out-of-control alarm
is triggered, the contribution charts are used to determine
which variables are deviating from their acceptable range.
However, it is very common that process variables are
contaminated by uncertainties, such as missing values and
random noises, which could be non-Gaussian and char-
acterized by outliers. As a result, traditional LV-based
MSPC techniques are not effective and accurate anymore
for such cases. In order to minimize the influence of such
uncertainties, the probabilistic counterparts of LV models
is usually necessary.

Recently, the probabilistic derivation of LV models has
verified to be powerful tools for effectively addressing the
uncertain effects, such as probabilistic PCA (Tipping and
Bishop (1999))-, probabilistic ICA (Zhu et al. (2017))-,
probabilistic CCA (Liu et al. (2018))-based methods. The
probabilistic counterparts of LV models in their original
form have no implementation of variable selection due
to the extensive work involved in the construction of the
latent space. In order to gain insight into high-dimensional
processes, the information collected from the most of
the relevant LVs are of utmost importance. However, the
downside of the probabilistic LV model is the risk of
including irrelevant variables in the models since multiple
streams of variables is treated equally (Peres and Fogliatto
(2018); Wang and Jiang (2009); Mehmood et al. (2012)).
In such scenarios, the integration of variable selection
methods to the probabilistic LV models are of significant
interest.
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Research on variable selection in the probabilistic LV-
based process monitoring can be divided into two cat-
egories (Ghosh et al. (2014)): filter-based and wrapper-
based methods. Feature ranking in filter-based methods
are generally independent of subsequent model or deci-
sion support, utilizing the intrinsic properties of the data.
Since they have no implementation of the additional model
learning and evaluation, filter-based approaches are more
computationally efficient for the development of process
monitoring (Srinivasan and Qian (2007); Ge et al. (2011)).
Wrapper-based methods allow simultaneous feature selec-
tion and model construction to produce an appropriate
subset of the latent variables for process monitoring. The
most frequently used methods are k-fold cross validation
and Bayesian regularization (Ge and Song (2010); Zeng
et al. (2015); Kodamana et al. (2019)). Although moni-
toring performance has been improved using the former
technique, the unbounded nature of the log-likelihood
function makes maximum-likelihood estimator prone to
favoring models of ever increasing complexity. Inspired
by the potential of model combination, Lee et al. (2010)
exploited a spike-and-slab prior to implement the inclusion
and the exclusion of variables in the Bayesian method. The
process of Bayesian regularization-based variable selection
is inducing an indicator coefficients under the sparsity as-
sumption. A sparse representation is desirable in situations
where: (1) prior information is expected to be relevant or
irrelevant for decision support, (2) only a subset of latent
variables explains the data.

In this paper, a novel process monitoring technique based
on a sparse Bayesian model is proposed. The model uses
spike-and-slab distribution as a prior over the latent vari-
ables and resolve the problem of the LVs selection in
probability PCA, which we called SS-PPCA. In a spike-
and-slab distribution, a binary indicator function selects
either a point-mass at exactly zero (the ’spike’) or a mix-
ture of a broad Gaussian distribution (the ’slab’). The
posterior distribution of these indicator parameters are
utilized to select the more sensitive variables to faults. An
expectation-maximization (EM) algorithm is presented for
the maximum likelihood estimation (MLE) of the model
parameters. In the proposed spike-and-slab regularization
diagram, faults are usually detected by the resulting latent
space, which is supported by the indicator variable. With
the optimal subset of LVs, the corresponding statistics
are sensitive to the most informative variables and more
accurate to numerous local process behaviors. Moreover,
a modified contribution plot is capable of an effective
diagnostic tool due to the sparsity property of SS-PPCA.

The remainder of the paper is organized as follows. In
Section 2, a brief review of probabilistic PCA-based pro-
cess monitoring method is presented. Section 3 details
the proposed SS-PPCA approach, in which model selec-
tion and novel monitoring statistics associated with SS-
PPCA are proposed. In addition, model parameters are
directly inferred by EM method. In Section 4, an industrial
methanol distillation process is performed to illustrate the
rationality and superiority of the proposed approach in
contrast with traditional PPCA scheme. Finally, conclud-
ing remarks are drawn in Section 5.

2. PRELIMINARIES

2.1 Probabilistic principal component analysis

The PPCA is a generative probabilistic model for the
measurement X = {xn|xn ∈ RD, n = 1, . . . , N} where
N is the number of observation and D is the dimension of
the measured variables. The formulation of PPCA model
is given by (Tipping and Bishop (1999))

xn = Ptn + en (1)
where P ∈ RD×M is the corresponding loading matrix;
tn ∈ RM is the latent variable which is assumed to
follow a Gaussian distribution; M is the number of latent
factors; en ∈ RD is the noise of the process which is also
defined as a D-dimensional Gaussian distribution, that is,
en ∼ N (0, τDI).

A common choice for a prior distribution over the latent
variable tn is to use a unit covariance, zero mean Gaussian
distribution,

tn ∼ N (0, I) (2)
where I is the identity matrix. In order to derive the
likelihood function, the distribution p(X) can be obtained
by the marginalization over a continuous latent space tn,

p(X|P, τDI) =

∫
p(X|tn,P, τDI)p(tn)dtn (3)

Given a dataset X = {xn}, the corresponding log-
likelihood function of complete data can be then formu-
lated as

L = ln

N∏
n=1

p(xn|P, τDI). (4)

The model parameters Θ = {P, τDI} can be determined
by maximizing the log-likelihood function. The well-known
expectation - maximization (EM) algorithm can be em-
ployed to accomplish such task.

2.2 Monitoring method

Let xnew be the vector of a new process sample, T2 statistic
associated with xnew is defined as

T 2
new = tTnew (var(tnew))

−1
tnew, (5)

where tnew is the posterior mean depends on xnew, which
may be defined as,

tnew = PT
(
PPT + τDI

)−1
xnew. (6)

Similarly, SPE statistic associated with xnew is defined as
SPEnew = eTnew (τDI)

−1
enew (7)

where enew = xnew −Ptnew is the reconstruction error of
the new data. In this paper, the upper control limits for
T2 and SPE statistics are determined by performing kernel
density estimation (KDE) on the corresponding statistics
associated with training samples.

It should be noted that the number of latent variables M
is an unknown prior and seems natural to seek a Bayesian
approach to model selection. A simple way is to keep the
features that have the largest log-likelihood on a validation
data set. However, it is difficult to determine the value of
dimensionality particularly if samples are not abundant.
A more refined approach is to project the data onto a
sparse principal subspace while retaining as much variance
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Fig. 1. Probability density of spike-and-slab priors. Spike-
and-slab priors are a mixture of a broad Gaussian
distribution (the slab) and a point mass (the spike).

as possible. The sparse representation is desirable in the
situation where only a subset of underlying variables are
actually relevant to explain the data. It means that the
latent variables whose additional indicators include exact
zeroes do not contribute to the decisions made by the
model.

3. ONLINE MONITORING AND FAULT DIAGNOSIS

3.1 Sparse subspace selection with spike-and-slab prior

To obtain a principal subspace with strong sparsity, a
spike-and-slab prior has to be placed on the latent vari-
ables. The basic spike-and-slab prior is a mixture of a
broad Gaussian distribution known as the ’slab’ and a
point mass at zero referred to as the ’spike’. Formally, the
spike and slab prior has the form,

p(tn|w) = N (tn|0, τMI)
wN (tn|0, τwI)

1−w (8)
where w ∈ {0, 1}M is a binary indicator variable,
N (tn|0, τMI) is the slab component, N (tn|0, τwI) is the
spike component, and τM � τw is the coefficients associ-
ated with the relevant variables. To complete the specifica-
tion of the prior for tn, the indicator variable w is assumed
to be a Bernoulli distribution, which is expressed as,

p(w|z) = zw (1− z)1−w (9)
When w = 0, p(tn|w) in Eq. (8) becomes a Dirac delta
function centered at 0, indicating the spike component
being chosen instead of the slab.

An illustration of a spike-and-slab prior is depicted in Fig.
1. A mixture of two densities with different scales allow
to discriminate between the slab components, which are
left almost unchanged, and the spike components, whose
posterior is peaked around zero. Moreover, the posterior
expected value of the binary latent variable w yields
an estimate of the probabilities which can be useful for
identifying relevant features.

3.2 Parameter estimation using the EM algorithm

For the spike-and-slab prior PPCA model (SS-PPCA) to
be developed, the unknown information Θ = {P, z, τD, τM ,
τw} should be estimated. Given a set of observation data
X, the EM algorithm finds the optimal estimation of the
model parameters iteratively maximizing the expectation
of log-likelihood (a.k.a. Q-function) through expectation
step and maximization step.

E-step. The log-likelihood of the complete data can be
written as

Q(Θ|Θold) =

N∑
n=1

[
E{ln p (xn|w, tn,Θ)}

+ E{ln p (tn|w,Θ)}+ E{ln p (w|Θ)}
]
,

(10)

where the symbol E presents the expectation under old
parameters, that is Ew,tn|xn,Θold

.

The expectation expressions on the binary latent variable
w given the current parameters Θold is obtained by the
marginalization over continuous and discrete latent space,

E{w} =
∑
w

∫
tn

p(w, tn|xn,Θold)wdtn

=
zN (tn|0, τMI)

zN (tn|0, τMI) + (1− z)N (tn|0, τMI)

(11)

The conditional expectation, E{ 1
wτM+(1−w)τw

}, is ex-
pressed by a weighted average of the precisions in Eq. (8),

E
{

1

wτM + (1−w)τw

}
=

E{w}
τM

+
1− E{w}

w
(12)

The posterior over the latent variable tn given the param-
eters Θold observed in the previous M-step can be derived
using Bayes’ theorem,
p(tn|xn,w,Θold) ∝ p(xn|tn,w,Θold)p(tn|w,Θold) (13)

Since xn and tn are joint Gaussian distributed, the score
probability p(tn|w,Θold) also follows Gaussian distribu-
tion with its mean m and variance V given as follows,

m = VPT (τ−1
D I)xn (14)

V =
(
τ−1
M I + PT (τ−1

D I)P
)−1

(15)
The derivation of expectation expressions required for the
M-step are straight-forward through the integrations over
the continuous part, which is given as follows,

E{tn} =
∑
w

∫
tn

p(w, tn|xn,Θold)tndtn = m (16)

E{tntTn} =
∑
w

∫
tn

p(w, tn|xn,Θold)tnt
T
ndtn = V + mmT

(17)

M-step. The M-step parameter updates, {P, z, τM , τw, τD}
are obtained by computing the derivatives of the Q func-
tion with respect to the corresponding parameter, and
taking it to zero. The following results hold,

P =

∑N
n=1 xnE{tn}T∑N
n=1 E{tntTn}

(18)

z =
1

N

N∑
n=1

E{w} (19)

τM =

N∑
n=1

[
E{tntTn}E

{
1

wτM + (1−w)τw

}

×

(
N∑
n=1

E{w}

)−1 ] (20)
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Fig. 2. P&ID diagram of methanol refining unit with a 3 column configuration. The red line and blue line represents
temperature and pressure control scheme, respectively. The line with dot is feed control scheme.

τw =

N∑
n=1

[
E{tntTn}

(
1− E

{
1

wτM + (1−w)τw

})

×

(
N∑
n=1

[1− E{w}]

)−1 ] (21)

τD =
1

N

N∑
n=1

[
xnx

T
n −PE{tn}E{tTn}PT

]
. (22)

The detailed derivations of Eqs. (18) - (22) are given in
Appendix A. The expectation terms in Eqs. (18) - (22)
are calculated using Eqs. (11), (12), (16) and (17).

3.3 Monitoring control charts based on SS-PPCA

To monitor the process based on the SS-PPCA devel-
oped from normal operations, various monitoring statistics
are proposed, including monitoring chart based on (1)
the latent variables, (2) the reconstruction residuals, and
(3) measurement variables. The first two statistics are
performed for fault detection. Once the fault has been
detected, the latter statistic is to determine the location
of the fault.

Monitoring chart of latent variables. The T2 statistic
is used to measure the variation inside the sparse latent
subspace. Since the posterior over the latent variable is
distributed as a N (m,V), the Euclidian norm of new
latent variables tnew follows a chi-square distribution. The
T2 statistic associated with new samples xnew can be
computed as,

T2 = E{tnew|xnew}E{tnew|xnew}T ≤ χ−2
1−α,M (23)

where E{tnew|xnew} is identical to the posterior mean m
in Eq. (14), χ−2

1−α,M is (1 − α) - fractile of the inverse of
the chi-square distribution with degrees of freedomM and
α is the confidence limit.

Monitoring chart of reconstruction residuals. The
squared prediction error (SPE) statistic is used to measure
the variation in the residual space. The SPE statistic

using the estimate of reconstruction residuals enew can be
computed as

SPE =eTnew (τDI) enew

= (xnew −Ptnew)
T

(τDI) (xnew −Ptnew) ≤ χ−2
1−α,D,

(24)

where

enew = xnew −Ptnew =
(
I−VPT τ−1

D I
)
xnew. (25)

Monitoring chart of measurement variables. The
contribution analysis of process variables or latent vari-
ables are widely used as fault isolation method in indus-
trial systems. The contribution chart exploits correlations
between variables to identify which variables contribute
the most to the process fault. The contribution of the
variable, subsequently, can be quantified by the posterior
covariance. The data likelihood p(xn|Θold) can be derived
by marginalizing the joint p(xn,w, tn|Θold) over the latent
variables tn and cumulating the result over the binary
latent variables w. The posterior distribution for the in-
dicator variable w given the current parameters Θold is
inferred as,

p(w|xn,Θold) =
p(xn,w|Θold)

p(xn|Θold)

∝ N
(
xn|0,P

(
τ−1
M I

)
PT + τDI

) (26)

The measurement on the correlations between variables,
referred as M2 statistic, can be expressed as,

M2 =
∥∥∥(P(τ−1

M I)PT + τDI
)−0.5

xnew

∥∥∥2

=xTnew

(
P(τ−1

M I)PT + τDI
)−1

xnew ≤ χ−2
1−α,D

(27)

Note that the confidence bounds based on the chi-square
distribution in Eqs. (23), (24) and (27) are approximate
since the mean and covariance are once estimated. In this
work, the kernel density estimation (KDE) method can be
utilized to determine the confidence bound.
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Fig. 3. Hinton diagrams of the loading matrix identified by
(a) PPCA and (b) the proposed approach. Positive
and negative values are represented by white and
black squares, respectively, and the magnitude of
value are represented by the size of square.

4. APPLICATION: INDUSTRIAL METHANOL
DISTILLATION

The application of this work is to detect process up-
sets in order to protect parts of an industrial methanol
plant owned by China National Petroleum Corporation
(CNPC). As one of the major feedstock for the olefins
production, the methanol section consists of a standard
arrangement of three distillation columns. A process di-
agram of the industrial methanol distillation is shown in
Fig. 2.

To monitor and analyze the operation of the distillation
section of a methanol plant, 24 variables based on engi-
neering requirements have been continuously followed for
more than 2 years. A total of 735 process samples used
for the training datasets are collected from January 2017
to February 2018, while another 760 samples collected
from February 2018 to May 2019 are required as the
testing datasets to demonstrate the effectiveness of the
proposed method. The variable time series trends after
missing measurements imputations, outliers removing and
z-score normalization. From February 2018 to May 2019,
there were three different operating conditions causing by
the process changing, which was consulted by the experts
and engineers. They were located at 150th-165th, 305th-
307th and 756th-760th samples in the test datasets.

The SS-PPCA and PPCA monitoring models were con-
structed based on the training datasets. The loading ma-
trices initialized by these models are shown in Fig. 3. It
has been seen that a total of 8 sparse components are pre-
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Fig. 4. Scree plot and cumulative variance explained plot
for methanol refining plant, obtained through (a)
PPCA and (b) the proposed approach.

served, while the other 16 are eliminated, as shown in Fig.
3(b). SS-PPCA could automatically capture the number
of the local components and the sparsity of the loading
matrix. It means that the weight associated with the
useless components would be approximately zero, while
that corresponding to the useful components should be
one. For fair comparison, the numbers of latent variables
accounted for more than 90 % variance were selected as 13
and 4 for the original PPCA and SS-PPCA, respectively.
This can be illustrated as Fig. 4(a) and Fig. 4(b).

As shown in Fig. 5, an abnormal condition between the
150th and the 165th instances is indicated by the T2

charts of PPCA and SS-PPCA. PPCA based on a single
Gaussian distribution, however, failed to detect the local
mode between the 305th and the 307th instances, as shown
in Fig. 5(a). Inspecting the T2 and SPE plots in Fig.
5(b) one sees that not only the T2, but also the SPE
statistics of SS-PPCA are moving simultaneously beyond
confidence regions shortly after the samples 150th, 305th
and 756th as a result of the different operating conditions
being introduced. It can be judged that SS-PPCA shows
the lowest missing detection rates for most conditions. This
is due to the fact that the selection of the latent variables
for each subgroup by SS-PPCA are discriminative and
could be projected onto the latent space that contains the
important information for abnormal data. Note that the
tiny value of the T2 charts are found in Fig. 5(b) since
the variation inside the sparse latent subspace is relative
small.

Fig. 6 depicts the M2 contribution plots of PPCA and SS-
PPCA at the 158th instance in the methanol refining plant
(faults are effectively detected by T2 chart). Contribution
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Fig. 5. Monitoring charts of (a) PPCA (the reduced dimension M = 13), (b) the proposed method (M = 4) for the
methanol refining plant. Dashed horizontal lines are 99 % confidence limits computed by KDE.

plots provide important information for the diagnosis of
the source of faults. It can be seen that the variable with
precision degradation may contribute the more to the
occurrence of abnormal condition. This can be attributed
to the fact that ’smearing’ effect on the contributing and
non-contributing variable in the presence of control is
different. Note that the variable 18 in Fig. 6(b) is the
middle temperature of the atmospheric column, which has
the long adjustment lags for the process load.
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Fig. 6. The averaged contribution plots of (a) PPCA and
(b) the proposed method after the detection of faults.
Dashed horizontal lines are 99 % confidence limits
computed by KDE.

5. CONCLUSION

In this paper, a probabilistic regularization method SSP-
PCA has been proposed for fault detection and isolation.
SS-PPCA has the following notable features: (1) it explic-
itly considers that the selection of LVs has a great impact
on the discriminative model. (2) SS-PPCA produces a
sparse mapping from the input space that may be mixed
with irrelevant variables. (3) The monitoring chart of mea-
surement variables is an effective diagnostic tool since the
sparsity pattern is common to all LVs. Simulation results
show the superiority of SS-PPCA-based process monitor-
ing to popular probabilistic LV model. Furthermore, the
case study on industrial methanol distillation illustrates
the proposed approach keeps desirable monitoring perfor-
mance for industrial scenarios.

Appendix A. DERIVATION OF THE M-STEP

Updating the loading matrix P: Parameter P is
updated by setting the derivatives of the Q function with
respect to P and taking it to zero,
N∑
n=1

{
− 1

2

∂

∂P

[(
xn−PE{tn}

)T
τ−1
D

(
xn−PE{tn}

)]}
= 0,

(A.1)
the Eq. (18) holds.

Updating the weight z: Derivation of Eq. (19) is given
as follows,

∂Q(Θ|Θold)

∂z
=

N∑
n=1

[
E
{w
z
− 1−w

1− z

}]
= 0

=⇒z =
1

N

N∑
n=1

E{w}.

(A.2)

Updating the precise in the latent variable and the
noise: Derivation of Eq. (19) is as follows,
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∂Q(Θ|Θold)

∂P
= 0

=⇒
N∑
n=1

[
− 1

2τM
E{w}+

1

2
E{tntTn}

× E
{ 1

wτM + (1−w)τw

}]
= 0

=⇒ τM =

N∑
n=1

[
E{tntTn}E

{
1

wτM + (1−w)τw

}

×

(
N∑
n=1

E{w}

)−1 ]
.

(A.3)
Following a similar derivation, we can get the derivation
of Eqs. (21) - (22).
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