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Abstract: This paper is a training paper for aerospace engineering education ∗. Its aim is to
give the necessary backgrounds for the application of the mixed-sensitivity approach of the
robust H∞ control theory, to space missions. As a support example, the auto-landing phase of
a re-entry mission is considered. The considered re-entry vehicle is the HL-20. The paper covers
all the aspects of the engineer exercise, i.e. from establishing the non-linear model of the vehicle,
considering especially the aerodynamic coefficients, until the implementation of the robust H∞
controller in the simulator, with a graphical interfacing with the FlightGear flight simulator.
∗ Download the complete package (simulator + controller design) at http://www.ims-bordeaux.fr/images/

IFAC_WC2020_HL20.zip and read the file ”ToDo.txt”.
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NOTATIONS and NOMENCLATURE:
For a linear state space model (A,B,C,D), P (s) (or sim-
ply P ) is its associated Laplace transform. The notation

P (s) :

[
A B
C D

]
is used in the paper. P (s) is assumed

to be in RH∞, real rational function with ||P ||∞ =
supω σ(P (jω)) < ∞, where σ(M) denotes the maximum
singular value of the matrix M ∈ Cn×m. ||P ||∞ is also
called the H∞-norm (or maximum gain) of P .

The following nomenclature is used:

α, β = angle-of-attack and sideslip
φ, θ, ψ = roll, pitch and yaw angles
p, q, r = roll, pitch and yaw rates
x, y, h = ground position of the vehicle
ub, vb, wb = 3-axis velocity components
VTAS , q = true air speed, dynamic pressure
Xcg = center of gravity coordinate
Ixx, Iyy, Izz= moments of inertia about x,y,z-axis
Cx0(α, β) = axial force coefficient
Cy0(β) = side force coefficient
Cz0(α, β) = normal force coefficient
Cl0(β) = rolling moment coefficient
Cm0(α, β) = pitching moment coefficient
Cn0(α, β) = yawing moment coefficient
δbfll, δbflr = lower left and right body-flap deflection
δbful, δbfur = upper left and right body-flap deflection
δwfl, δwfr = left and right winged-flap deflection
δr = rudder deflection
m = vehicle mass

1. THE H∞ MIXED-SENSITIVITY APPROACH

The mixed sensitivity approach of the H∞ problem con-
sists in designing a controller to stabilize the closed loop
system and achieve a good compromise between robustness

and performances, considering constraints on the control
signal (Zhou, Doyle, and Glover, 1996). This is ensured by
a suitable choice of frequency weighting functions placed
in specific locations on the control scheme.
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Fig. 1. Block diagram of the mixed sensitivity approach

To proceed, let us consider the multi-variable closed-
loop system illustrated by the block diagram on Fig. 1
and let us denote (as classically) S = (I + GK)−1 and
R = KS the so-called sensitivity function (representing
the transfer from r to ε) and the command sensitivity
function (representing the transfer from r to u). To take
into account the closed loop performance objectives, the
following constraint is imposed on S:

σ (S(jω)) ≤ |W−1
1 (jω)| ∀ω (1)

W1 (assumed to be invertible) is the desired constraint
to be determined so that the controller K meets some a
priori fixed performance in terms of e.g. time response,
static error, module margin, robust stability.
To obtain a controller that satisfies such objectives without
violating a priori known constraints on the control signal
u, one requires that

σ (R(jω)) ≤ |W−1
2 (jω)| ∀ω (2)

where W2 (assumed to be invertible) is the desired con-
straint to be determined in accordance with the specifica-
tion on u(t). Typical constraints are minimising the energy
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||u||2, preserving measurement noise amplification on the
control signal u(t) or control saturation.
Due to the property of the maximum singular values that
states for two matrices Mi ∈ C, i = 1, 2

σ

([
M1

M2

])
≤
√

2 max {σ(M1), σ(M2)} (3)

it is immediate to see that a sufficient condition for (1)
and (2) to hold is

‖Tzr‖∞ ≤ 1 Tzr =

[
W1S
W2R

]
(4)

This H∞ problem, called the mixed sensitivity problem
(Kwakernaak, 1993), is a sub-optimal problem as opposed
to the joint objectives (1) and (2), but due to (3), the sub-

optimal solution is close to
√

2 to the optimal solution.

Equation (4) demonstrates that the initial block diagram
of Fig. 1 can be reformulated according to the diagram
given in Fig. 2, which is referred as the H∞ standard
problem. On Fig. 2, P is the augmented system that
contains G and the weights Wi, i = 1, 2.

K

r z

P

Fig. 2. The H∞ standard problem

The H∞ control problem can then be stated as follows.
Given a real rational transfer matrix P (s), and a space K
of real rational transfer matricesK(s), called the controller
space, characterize and compute an optimal solution K∗ ∈
K to the following optimization problem

minimize γ

subject to K stabilizes P internally (5)

K ∈ K, ‖Tzr‖∞ ≤ γ
Then it is obvious to see that, if the optimal value γ∗ is
strictly less than 1, then we have found a controller K
that fulfils (1) and (2). However, due to (3), a value of

γ∗ : γ∗ ≤
√

2 does not necessarily lead to a non viable
controller K, since (1) and (2) can be satisfied. That is

why, practically, if 1 ≤ γ∗ ≤
√

2, constraints (1) and (2)
are a posteriori checked.

As we shall see from (5), the choice of the controller space
K in (5) is the key for a proper understanding of the
problem. Let us define the following notations

P (s) :

 A B1 B2

C1 D11 D12

C2 D21 D22

 K(s) :

[
AK BK
CK DK

]
(6)

with A ∈ Rn×n, B2 ∈ Rn×nu , C2 ∈ Rny×n and Ak ∈ Rk×k.
The so-called ”full-order controller” solution behaves to
the solutions within of the space K defined by

K = {K : K has the form (6) with k = n} (7)

Note that in K, all entries in AK , BK , CK , DK are free
variables and thus we have N = n2 + n(ny + nu) + nynu
degrees of freedom. In particular, K is the largest controller
space which is convex. Finding a solution within K can
then be done by using an optimisation algorithm.

In (Glover and Doyle, 1988), it is shown that solving this
optimisation problem requires the solution of two algebraic
Riccati equations (AREs). This solution has been imple-
mented in a matlab function called ”hinfsyn”. In (Gahinet
and Apkarian, 1994), the authors establish a solution by
reducing (5) to a semi definite programming problem, i.e.
an optimization problem under linear matrix inequality
(LMI) constraint. This solution has been implemented in
a matlab function called ”hinflmi”. In this training paper,
we use the LMI-based solution and we invite the interested
reader to refer to (Gahinet and Apkarian, 1994).

Remark 1. The general formulation of the H∞ mixed-
sensitivity approach considers a constraint on the com-
plementary function T = I − S (representing the transfer
from r to y) such that σ (T (jω)) ≤ |W−1

3 (jω)| ∀ω. We
argue in this training paper that if S and R are correctly
constrained, then consideringW3 is useless, simply because
S + T = I implies |W−1

1 (jω)| + |W−1
3 (jω)| > 1 ∀ω, which

highlights that W1 and W3 are coupled.

2. APPLICATION TO THE HL-20 VEHICLE

2.1 Problem statement

The required software package, is the software Mat-
lab/Simulink with the AEROSPACE’s toolbox. Once Mat-
lab is launched, the HL-20 simulator is accessible by typing
"aeroblk HL20", see Fig. 3.a. To prepare the implemen-
tation of the H∞-controller, it is required to change the
inner loop on the angular rates of the called ”classical
controller”, by a MIMO controller as depicted in Fig. 3.b.
For easy implementation, a ”LTI System” object can be
used, with the variable ”K”, that will be defined through
the Matlab instruction (we use the same notations than
those of section 1 for easy reference):

K = ss(AK,BK,CK,DK)

The resulting control law is then a standard guidance,
navigation and control (GNC) system, dedicated to the
auto-landing phase, whose angular rates will be controlled
by the H∞ controller K. The guidance algorithm ensures
the tracking of the auto-landing reference trajectory which
is computed by the path planner. The guidance commands
φref , αref , βref (referred as ”Demands” on Fig. 3.b) are
the inputs to the attitude control loop which computes
the control torques providing conventional rudder (dr),
aileron (da) and elevator (de) authorities. These signals
are next converted into the actuator control input vector
δ = [δwfl, δwfr, δulbf , δurbf , δllbf , δlrbf , δr]

T by means of
a dedicated pressure-dependant allocation control algo-
rithm, i.e. δ = M(qm)u. The index ”m” is used to outline
that we speak about a measured signal, as opposed to its
associated state where ”m” is not used. δ is then applied
to the actuators which are modelled as 2nd order transfer
functions, with magnitude and slope saturations.

Information on body angular rates are supplied by an IMU
and a Airdata system provides information on the angle-
of-attack (AoA), angle-of-sideslip (AoS), True Air Speed
velocity and q. The ground position of the vehicle is given
by a GPS and a Radar Altimeter system, see Fig. 3.a

Following 3.b, the control vector u = (da de dr)
T

is given,
in the Laplace domain, by:
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Fig. 3. (a). The HL-20 simulator (left) - (b). The inner loop on the angular rates of the classical controller (right)

u = K

(
K ′k(αm)

(
φref − φm
αref − αm
βref − βm

)
−

(
pm
qm
rm

))
(8)

On Fig. 3.b, αm is referred as ”Alpha-sc”, pm, qm, rm
are the vector denoted ”Rates” and K ′(s) consists of the
MIMO filter composed by the low frequency and roll-off
transfers.

Following the method explained in section 1, the design
of the H∞ controller K is based on the following steps:

1) Establish the model G seen by K. In our case, we look
for the model that links the control signals da, de, dr
to the angular rates p, q, r.

2) Determine the objective functions W1 and W2 based
on some a priori fixed control performance.

3) Synthesise the controller K.

2.2 Step 1: towards the model G

Modelling the HL-20: The flight dynamics of the HL-20
winged body vehicle is derived from the classical 6 degree-
of-freedom equations of motions of a symmetrical rigid
aircraft. Under the assumptions of a flat and non rotating
earth, which is implicit for the auto-landing trajectory
duration, the rotational dynamics of the HL20 can be
derived from the Euler’s laws for symmetrical aircraft that
is: [

ṗ
q̇
ṙ

]
= I−1

(
M (b)
aero −

[
p
q
r

]
∧

(
I.

[
p
q
r

]))
(9)

where the notation •(b) is used to refer to the so-called
”body frame”. I is the inertia matrix, which is diagonal

in our case, i.e. I = diag(Ixx, Iyy, Izz).
−→
M

(b)
aero = L−→x b +

M−→y b +N−→z b refers to the external torques vector acting
on the vehicle. It consists of the aerodynamic torques due
to the aero-surfaces deflections and to the aerodynamic
induced torques.

The vehicle translational motion in the body coordinate
frame can be written according to[

u̇
v̇
ẇ

]
=

1

m

(
F (b)
aero + F (b)

g

)
−

[
p
q
r

]
∧

[
u
v
w

]
(10)

m is the total mass of the vehicle,
−→
F

(b)
aero = Xaero

−→x b +
Yaero

−→y b+Zaero−→z b refers to the aerodynamic forces acting

on the vehicle and
−→
F

(b)
g = Fxg

−→x b+Fyg
−→y b+Fzg

−→z b refers
to the gravity vector, all given in the body frame.

The kinematic equations that link the so-called Euler
angles φ, θ, ψ to angular velocities p, q, r are given by φ̇θ̇

ψ̇

 =

(
1 sφtθ cφtθ
0 cφ −sφ
0 −sφ/cθ −cφ/cθ

)[
p
q
r

]
(11)

where c•, s•, t• refer to the functions cos(•), sin(•), tan(•)
respectively. The positions of the vehicle x, y, z (with h =
−z) in the Earth centred frame are given by[

ẋ
ẏ
ż

]
= Reb

[
u
v
w

]
(12)

where Reb denotes the coordinate change matrix between
body frame and the Earth centred frame, i.e.

Reb =

(
cθcψ sφcθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sθcψ
−sθ sφcθ cφcθ

)
(13)

Using the Bernoulli principle, the above introduced
torques and forces are given by (in the body frame)

L = qSbCl(α, β, V, r, p, δ
∗)

M = qScCm(α, β, q, V, δ∗) + Cz(α, β, δ
∗)(Xcp −Xcg)

N = qSbCn(α, β, p, q, V, δ∗)− Cy(α, β, δ∗)(Xcp −Xcg)
Fx = Xaero + Fgx = qSCx(α, β, δ∗)−mgsθ
Fy = Yaero + Fgy = qSCy(α, β, δ∗) +mgsθcθ
Fz = Zaero + Fgz = qSCz(α, β, δ

∗) +mgcθcφ

(14)

Cl, Cm, Cn, Cx, Cy and Cz correspond to the dimension-
less aerodynamic coefficients, that are also stored through
look-up tables. δ∗ = [δa, δe, δr, δf+ , δf− , δ∆f

]T is the aero-
dynamic command vector that is deduced from the control
surfaces command vector δ so that:

δ∗ =


0.5 −0.5 0 0 0 0 0
0.5 0.5 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0.5 0.5 0
0 0 0.5 0.5 0 0 0
0 0 0.5 −0.5 0.5 −0.5 0

 δ (15)

Numerical values of S, c̄, b, Xcp Xcg, m are in the HL-

20 simulator. q = 1
2ρSV

2 where ρ = ρ0 exp−z/H with

H = 7100m is the air density. ρ0 = 1, 293Kg/m3 is the sea
level standard air density. g denotes the gravity constant.

Let us denote uw, vw, ww the component of the wind and
atmospheric turbulences along the three axes −→x b,−→y b,−→z b,
it follows that
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V =
√

(u− uw)2 + (v − vw)2 + (w − ww)2 (16)

α = arctan

(
w − ww
u− uw

)
β = arcsin

(
v − vw
V

)
(17)

As classically done in the aerospace community, uw(t),
vw(t), ww(t) are modelled by means of Dryden filters.

Mathematical expression of the aerodynamic coefficients:
A key feature consists now, in obtaining a mathematical
description of the aerodynamic coefficients Cl, Cm, Cn, Cx,
Cy and Cz. To proceed, let us first remark that Caero =

[Cx, Cy, Cz, Cl, Cm, Cn]T =

7∑
i=0

Ci where the terms Ci, i =

1, 7 are given by (18).

As it can be seen, the components of Caero mainly con-
sist of two kinds of terms: i) the aerodynamic compo-
nents depending uniquely on the angle-of-attack α, say
the 1-dimensional coefficients and ii) the aerodynamic
terms having a dependency with angle-of-attack α and
the angle-of-sideslip β . These latter coefficients are thus
2-dimensional coefficients. Towards this end, the following
modelling approach are used:
i) For the 1-dimensional coefficients, a least-square poly-
nomial interpolation technique allows to derive analytical
expressions such that:

Ĉj =

n∑
k=0

ajkρ
k, ρ = {α, β}, max(n) = 6

j =


y0, lβ , xδe , zδe ,mδe , x∆f , y∆f , l∆f , n∆f

xf+ , zf+ ,mf+ , xf− , zf− ,mf− , xδr , yδr
zδr , lδr ,mδr , nδr , xδa , yδa , zδa , lδa
mδa , nδa , lp, np,mq, lr, nr


(19)

ii) Referring to the 2-dimensional coefficients in clean
configuration, a principal component analysis method is
used, that is{

Ĉj0(α, β) = σ(Cj0(α, β))û(:,1),j(α)v̂(:,1),j(β)
j = {x, z,m, n} (20)

where û(:,1),j =

6∑
l=0

ajlα
l and v̂(:,1),j =

6∑
v=0

bjvβ
v corre-

spond to polynomial approximations (in the least square
sense) of the left and right singular vectors associated to
σ(Cj0(α, β)), the maximum singular value of Cj0(α, β).

To validate these models, the aerodynamic coefficients
provided by the look-up tables are superimposed with
those computed by equations (19) and (20), see Fig. 4
where the example for Cx0 is provided. As it can be seen,
an approximation error remains. However, we argue that
this error can be adequately covered by imposing sufficient
performance and stability margins to K.

Determination of G: Using the above derived models of
the aerodynamic coefficients and joining equations (9)-(20)
together, one can derive the following nonlinear state space
model (the measurement noise, the wind and turbulence
models are ignored from now on since they are not required
to derive G):

ẋb = f(xb, u, q)

y = Cxb
(21)

Then, by performing a linear approximation of (21) around
the flight trajectory described by (xbref (t), uref (t)), one
can derive the following (approximated) linear parameter
varying state space model

ẋb = A(xbref , uref , q)xb +B(xbref , uref , q)u

y = Cxb
(22)

A(xbref , uref , q) and B(xbref , uref , q) are matrices of ap-
propriate dimensions. Expressing xbref , uref and q as func-
tions of the reference flight velocity Vref and selecting the
adequate measurements (i.e. p, q, r), it follows that the
model we are looking for is given by

G(Vref ) :

{
ẋb = A(Vref )xb +B(Vref )u

[p q r]
T

= NCxb
(23)

where N is a matrix that selects p, q, r. Considering
the slow variation of Vref during the auto-landing phase
(no abrupt acceleration or deceleration), G(Vref ) = G
remains a family of LTI models, each model of this
family corresponding to a fixed Vref . Fig. 5 illustrates the
principals gain (”singular value plot”) for a sufficient dense
gridding of Vref over the overall landing trajectory. From
these figures, it can be seen that K must be designed to
be robust to the variations of G induced by Vref .

For that purpose, the following strategy is used:
i) first, K is designed based on a unique model computed
at a judiciously chosen speed Vref , i.e. Vref = 135m/s;
i) second, the ability of K to satisfy the required control
performance ∀Vref , is checked using (23).

2.3 Step 2: Determination of W1 and W2

With regards to W1, since there does not exist a priori
justifications to control the vehicle along its 3 axis with
different performance, it is chosen as:

W−1
1 (s) = C1

s+ ωl
s+ ωu

I3 ωl � ωu (24)

ωu refers to the bandwidth of the closed loop and ωl is a
frequency introduced to make W1 invertible that can be
chosen arbitrarily. Since limω→0 |W−1

1 (jω)| = C1
ωl
ωu

, the
smallest ωl is, the smallest will be the static error since
W−1

1 (and thus S) will have small gain. With regards to
C1, since it is nothing else than the high frequency gain of
W−1

1 , it represents the constraint on the module margin. It
is then chosen to C1 = 2 (≈ 6dB). The remaining problem
is then the determination of ωu. A fundamental issue in
designing a controller is to manage adequately the effect
of the measurement noise n(t) on the control signal u(t).
Especially, a high value of ωu implies a high amplification
of n(t) on u(t). Thus, determining ωu is strictly equivalent
to determining the maximum amplification of n(t) that is
tolerated on u(t).

To solve this problem, let us first come back to the
theory of SISO control. With the same notations than used
previously, the transfer between the measurement noise n
and the control signal is given by u

n = −K
1+GK . Assuming

that K is a correctly designed controller, K has high
gain in low frequencies (thanks for instance to its integral
component). Generally, G has no gain in high frequencies
(this is the case there, see Fig. 4.b). Furthermore, K has
constant or no gain in high frequencies. It follows that
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C0 =


Cx0(α, β)
Cy0(β)
Cz0(α, β)
Clβ(β)
Cm0(α, β)
Cn0(α, β)

 , C1 =


Cxδa (α).|δa|
Cyδa (α).δa
Czδa (α).|δa|
Clδa (α).δa
Cmδa (α).|δa|
Cnδa (α).δa

 , C2 =


Cxδe (α).δe
0
Czδe (α).δe
0
Cmδe (α).|δe|
0

 , C3 =


Cxδr (α).|δr|
Cyδr (α).δr
Czδr (α).|δr|
Clδr (α).δr
Cmδr (α).|δr|
Cnδr (α)δr

∀α ≥ 0, C4 =


Cxδ

f+
(α).δf+

0
Czδ

f+
(α).δf+

0
Cmδ

f+
(α).|δf+ |

0



C5 =


Cxδ

f−
(α).δf−

0
Czδ

f−
(α).δf−

0
Cmδ

f−
(α).|δf− |

0

 , C6 =


Cxd∆f (α).|δ∆f |
Cy∆f (α).δ∆f
0
Cl∆f (α).δ∆f
0
Cn∆f (α)δ∆f

 , C7 =

 b.p

2V


0
0
0
Clp(α)
0
−Cnp(α)

+
c.q

2V


0
0
0
0
Cmq(α)
0

+
b.r

2V


0
0
0
Clr(α)
0
Cnr(α)




(18)
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Fig. 4. Cx0 an Ĉx0

Fig. 5. σi (G(jω, Vref ))

(the sign is ignored since only the gain is interest for our
reasoning):

u

n
≈ 1

G
∀ω � ωu and

u

n
≈ K ∀ω � ωu (25)

For a PID controller with 50o − 60o of phase margin, we
know that between these two frequency ranges (i.e. those
that conatin ωu), the bode diagram of K

1+GK does not

”overshoot” 15dB from 1
G . Thus, determining admissible

values for ωu can be derived knowing the maximum values
nmax and umax of n and u:

ωu = ω :

∣∣∣∣ 1

G(jω)

∣∣∣∣
dB

<
≈
∣∣∣∣umaxnmax

∣∣∣∣
dB

− 15dB (26)

This reasoning can be extended to MIMO systems, replac-
ing |G(jω)| by σ(G(jω)). Thus, for the case of the HL-20,
since i) the measurement noise on p, q, r provided by the
IMU does not exceed 0.01o/s and ii) the amplification of

this noise on u = [da de dr]
T

is fixed to 2o max, ii) G
depends on Vref , it follows with the help of the Fig. 5 that
ωu if fixed to ωu = 10rd/s.

With regards to W2, it is chosen according to

W−1
2 (s) = C2

1 + 1/ωhs

1 + 1/ωcs
I3 ωh � ωc (27)

ωh is a frequency introduced to make W2 invertible and
can be chosen arbitrarily. Noting that the term C2

1+1/ωcs

describes a low pass-filter of static gain C2 with cutting
frequency ωc, it follows that minimizing both C2 and ωc
enables to minimize the energy of the control commands
||u||2 over the largest frequency range possible.

2.4 Step 3: Design of K

The controller K is next computed using the theory de-
scribed in section 1. For that purpose,the block diagram
illustrated on Fig. 1 is drawn using Simulink. The con-
troller K is of course removed, since it is looked for. The
model P is then derived using the ”linmod” Matlab code.
Next, the ”hinflmi” function is used to compute K. This
results in the following Matlab’s sequence code:

[AP,BP,CP,DP]=linmod(file name);
P=pck(AP,BP,CP,DP);

[gopt,K] = hinflmi(P,[3 3]);
[AK,BK,CK,DK]=unpck(K);

Then, the ability of the so computed K to satisfy
the required control performance specified by W1 and
W2 are checked for a dense gridding of Vref . Fig.
6.a and 6.b illustrate the results. Clearly, it can be
seen that the robust control requirements are satis-
fied since σ (S(jω, Vref )) ≤ |W−1

1 (jω)|, ∀(ω, Vref ) and

σ (R(jω, Vref )) ≤ |W−1
2 (jω)|, ∀(ω, Vref ).

2.5 Nonlinear simulation results

The controller K is finally implemented in the HL-20
simulator as illustrated on Fig. 3.b. The simulator is
next interfaced with FlightGear flight simulator 1 using

1 www.flightgear.org
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Fig. 6. (a): Sensitivity function S(Vref ) vs W−1
1 (left) - (b): Control sensitivity function R(Vref ) vs W−1

2 (right)

the Matlab AEROSPACE toolbox facilities. Fig. 7 il-
lustrates the behaviour of the roll angle φ(t), angle-of-
attack α(t), angle-of-sideslip β(t) versus their references
φref (t), αref (t), βref (t) provided by the guidance loop.
Fig. 8 gives the behaviour of the control signal u(t) =

[da(t) de(t) dr(t)]
T

. Finally Fig. 9 gives an illustration
coming from FlightGear. As it can be seen, the controller
K is able to control the HL-20 so that the vehicle can land
autonomously.

Fig. 7. φ(t), α(t) and β(t)

3. CONCLUSION

This paper investigated the application of the mixed-
sensitivity approach of the robust H∞ control theory, to
the auto-landing phase of a re-entry mission. The paper
covers all the aspect of the engineer exercise, i.e. from es-
tablishing the non-linear model of the vehicle, considering
especially the mathematical description of the non-linear
aerodynamic coefficients, until the implementation of the
robust H∞ controller in a GNC architecture. A particular
attention is paid on the design of the frequency weighting
functions that enable to correctly constraint the design
of the controller. Simulation of the complete auto-landing
phase, interfaced with the FlightGear flight simulator,
should convince that the mixed-sensitivity approach of the
robust H∞ control theory is now a viable theory to be used
in aerospace industries.

Fig. 8. control signal u(t)

Fig. 9. Flightgear illustration
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