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Abstract: The stability for a class of linear hyperbolic systems with distributed sampled-data
controllers is discussed in this paper. The original sampled-data system is firstly transformed
into a new equivalent system by modelling the sampling induced error as a reset integrator
operator. Then we construct an appropriate Lyapunov function and obtain sufficient conditions
for the Rε - stability of the system based on linear matrix inequalities (LMIs). A numerical
example illustrates our results: when the sampling interval is within the allowable range, the
solution of the system converges from the domain of attraction to a positive invariant set.
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1. INTRODUCTION

Nowadays, control systems are usually implemented on
digital platforms. The properties of digital implementa-
tions are studied in the domain of sampled-data system-
s (Åström and Wittenmark (2013); Chen and Francis
(2012)). For finite-dimensional systems (linear or non-
linear), the stability and control design problems have
been extensively studied (see the references in Hetel et al.
(2017); Laila et al. (2006); Monaco and Normand-Cyrot
(2001, 2007)). Here we are interested in the sampled-data
control problem of partial differential equations (PDEs)
which involves an infinite dimensional state space. More
precisely we focused on sampled-data control of systems
governed by hyperbolic PDEs since many typical examples
of processes can be described by this kind of system Bastin
and Coron (2016), such as the transmission of electrical
energy, the flow of liquid in a pipe, the light propagation
in optical fibers, the road traffic, etc. Different from the re-
search method of finite dimensional systems, fewer results
are available for hyperbolic PDEs.

For the case of idealized sample-and-hold process, Loge-
mann et al. (2003, 2005) provided sampled-data control
design methods which stabilized an infinite dimensional
system for sufficiently small sampling periods. E. Fridman
and co-authors have addressed several problems related
to the sampled-data control of parabolic PDEs using
a time-delay method (Kang and Fridman (2018); Seliv-
anov and Fridman (2016, 2017)). For hyperbolic PDEs,
event-triggered sampled-data control with controller on
the boundaries was considered in Espitia et al. (2016,
2017). In Karafyllis and Krstic (2017), the application

⋆ This work was partially supported by the French “Rgion Hauts-

de-France” grant and by the project H2020 UCOCOS.

results of Zero-Order-Hold boundary feedback control in
one-dimensional linear hyperbolic systems with non-local
terms on bounded domains were given. The boundary feed-
back control of a 2×2 hyperbolic system was implemented
by backstepping method in Davó et al. (2018), and the
global asymptotic stability was realized. As we can see
from the literature review, the analysis of sampled-data
controller for hyperbolic PDEs is a wide open research field
and there is still the place for important contributions.

In this paper, we address the stability problem for
sampled-data hyperbolic PDEs. Differently from the ex-
isting works where boundary control has been considered,
here we study distributed sampled-data controllers. The
problem is studied from an Input-Output point of view,
extending the approaches for finite dimensional systems
(Fujioka (2009); Kao and Rantzer (2007); Mirkin (2007);
Omran et al. (2014)). The main idea is to represent the
sampling induced error as a perturbation for a contin-
uous time hyperbolic equation. By converting the orig-
inal sampled-data system into an interconnection of a
continuous-time PDEs and a reset-integral operator, con-
structive local stability results are derived.

The layout of this paper is as follows. Section 2 introduces
the systems we will study and the problem we have to deal
with. In Section 3, we give the equivalent transformation
form of the system including sampling error and the
concrete stability analysis process. A numerical example
in Section 4 shows that our method is feasible. Finally,
the summary and prospect of the paper are presented in
Section 5.

Notations: N is the set of nonnegative integers from
0 to infinity, R+ is the set of nonnegative reals, R

n is
used to denote the set of n-dimensional Euclidean space
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with the norm | · |. L2(0, L) stands for the Hilbert s-
pace of square integrable scalar functions on (0, L) with
the corresponding norm ‖ · ‖ L2(0,L), defined by ‖

e ‖ L2(0,L) =
√

∫ L

0
|e (x)|

2
dx. The associated norm

to Sobolev space H1(0, L) is defined as ‖ e ‖H1(0,L)=
√

∫ L

0

(

|e (x)|
2
+ |ex (x)|

2
)

dx. The set of functions ϕ :

[0, L] → R
n such that

∫ L

0
|ϕ (x)|2dx < ∞ is denoted by

L2([0, L];Rn) and given a functional V : H1([0, L];Rn) →
R+ such that LV ≤C =

{

y ∈ H1([0, L];Rn) : V (y) ≤ C
}

.
The notationM ≤ 0 denotes thatM is symmetric and neg-
ative semidefinite. The symmetric elements are denoted by
∗ in the symmetric matrix. The identity matrix is denoted
by I and λmin(Q) and λmax(Q) are the minimum and
maximum eigenvalues of the matrixQ. C0 is the continuous
function and C1 is the continuously differentiable function.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

2.1 System Description

We consider the sampled-data controlled hyperbolic sys-
tem (1) given below














∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = y(t, L) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(1a)

(1b)

(1c)

(1d)

where y : [0,+∞)× [0, L] → R
n, Λ = diag {λ1, λ2, ..., λn}

with λ1, λ2, ..., λn > 0, K and Υ are real n × n constants
matrices. The sequence is defined as {tk}k∈N where

t0 = 0, tk+1 − tk ∈ (0, h̄], (2)

and h̄ > 0.

To deal with the problem under consideration, we need the
following compatibility condition:

Condition 1. The initial condition y0(x) for ∀x ∈ [0, L],
satisfies

y0(0) = y0(L) = 0, ∂xy0(0) = ∂xy0(L) = 0. (3)

Remark 1. Let us discuss the notion of solution used in
the present work. The system (1)-(2) can be rewritten as
a first order system

{

dy(t)
dt

= Ay (t) + f (y (tk)) , t ∈ [tk, tk+1) , k ∈ N,
y (0) = y0,

where f(y(tk)) = −ky(tk), and the operator A is defined
by

Ay = −Λ∂xy (t, x)−Υy (t, x) , (4)

with domain

D(A) =

{

y ∈ H1(0, L;Rn)

∣

∣

∣

∣

y(0) = y(L) = 0,
yx (0) = yx (L) = 0.

}

(5)

The operator A generates a stable C0 semigroup (see
the proof of theorem A.1. in Bastin and Coron (2016)).
Moreover, we note that fk : H1(0, L) → H1(0, L) is
continuously differentiable for t ∈ [tk, tk+1). If y0 ∈ D(A),
then according to Theorem 6.1.5 of Pazy (1983), there
exists a classical solution for each t ∈ [tk, tk+1), k ∈ N.

Therefore, we can construct a solution by choosing the
last value of the previous sampling interval as the initial
condition of the following sampling interval such that it is
continuous at each sampling instant.

2.2 Problem Formulation

In our work, we prove Rε-stability, which is defined in
Definition 1 below.

Definition 1. Rε-stability Polyakov (2008)
Consider positive scalars R and ε, such that 0 < ε < R,
and a candidate Lyapunov function V : H1([0, L];Rn) →
R+. If for all solutions of system (1) with y0(x) ∈ LV ≤R,
the trajectory of the state y(t, x) converges to LV ≤ε as t
goes to infinity and the set LV ≤ε is positive invariant, then,
system (1) is said to be Rε-stable from LV≤R to LV ≤ε.

In this work, our main goal is to guarantee the Rε-stability
of the closed loop system (1)-(2) based on an Input-Output
approach.

3. MAIN RESULT

This section is divided into two parts. First, we represent
the sampled-data system as an equivalent continuous hy-
perbolic PDE where the sampling induced error appears in
the input, as a disturbance. Secondly, based on the provid-
ed model, constructive Rε-stability criteria are provided.

3.1 System Remodelling

System (1) can be equivalently re-expressed as














∂ty (t, x) + Λ∂xy (t, x) + (Υ +K)y (t, x)

+Kω (t, x) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = y(t, L) = 0, ∀t ≥ 0,

y(0, x) = y0(x), ∀x ∈ [0, L] .

(6a)

(6b)

(6c)

with the sampling induced error

ω (t, x) = y (tk, x)− y (t, x) . (7)

Define the function ϕ as

ϕ (t, x) =
∂y (t, x)

∂t
, ∀t ≥ 0, x ∈ [0, L] . (8)

Note that

ω (t, x) = −

∫ t

tk

∂y (θ, x)

∂θ
dθ = −

∫ t

tk

ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] . (9)

As a result, the closed-loop system can be regarded as the
interconnection of two systems G and Ψ shown in Figure
1, where the operator G : L2(0, L) → L2(0, L) is defined
by

G :











∂ty (t, x) = −Λ∂xy (t, x) − (K + Υ) y (t, x) − Kω (t, x),

y(t, 0) = y(t, L) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

ϕ (t, x) = −Λ∂xy (t, x) − (K + Υ) y (t, x) − Kω (t, x)

= ∂ty (t, x) ,

(10)
and the operator Ψ : L2(0, L) → L2(0, L) is defined by

Ψ :

{

ω (t, x) = (Ψy)(t, x) = −
∫ t

tk
ϕ (θ, x) dθ,

∀t ∈ [tk, tk+1) , k ∈ N, x ∈ [0, L] .
(11)
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ϕ
G

ω
Ψ

Fig. 1. Alternative representation of the closed-loop sys-
tem.

3.2 Stability Analysis

In the following, we introduce our main result.

Theorem 1. Consider systems (10)-(11) with (2)(or equiv-
alently (1) with (2)) and the initial condition satisfying
(3):

(i) Let λ = min
i∈{1,...,n}

λi. Assume that there exist

µ1, γ1, µ2, γ2 > 0, and symmetric positive matrices Q1 ∈
R

n×n , Q2 ∈ R
n×n satisfying

M(0) ≤ 0, M(L) ≤ 0, (12)

with M(x) defined for all x ∈ [0, L] as

M(x) =







Ω −e−2µ1xQ1K 0 0
∗ −γ1I 0 0
∗ ∗ E −e−2µ2xQ2K
∗ ∗ ∗ −γ2I






,

(13)
where

Ω = −e−2µ1x
[

(K +Υ)
T
Q1 +Q1(K +Υ)

]

,

E = −e−2µ2x
[

ΥTQ2 +Q2Υ+ βQ2

]

. (14)

(ii) If ∃ε ∈ R+; R ∈ R+ s.t. 0 < ε < R and

γ13h̄
(

|Λ|
2
Φ+

(

|Υ|
2
+ |K|

2
)

Ψ
)

+ γ2Φ

< min(2ν1, 2ν2 − β)ε, (15)

with

Φ =
R

λmin (Q2) e−2µ2L
,Ψ =

R

λmin (Q1) e−2µ1L
,

where ν1 = µ1λ, ν2 = µ2λ, 0 < β < 2ν2.

Then the considered system (1) is Rε-stable from LV≤R to
LV ≤ε for any sampling sequence satisfying (2). Moreover,
a Lyapunov function is defined as

V (y) = V1(y) + V2(y), (16)

with

V1(y) =

∫ L

0

yT e−2µ1xQ1ydx, (17)

V2(y) =

∫ L

0

yTx e
−2µ2xQ2yxdx. (18)

Proof. Consider the Lyapunov function (16)-(18). It can
be bounded as follows:

Θ ‖y (t, ·)‖
2
H1( [0,L] ;Rn) ≤ V (y (t, ·))

≤ Ξ ‖y (t, ·)‖
2
H1( [0,L] ;Rn) , (19)

where

Θ = min(λmin (Q1) , λmin (Q2))e
−2µL, µ = max(µ1, µ2),

Ξ = max(λmax (Q1) , λmax (Q2)).

Step 1: In this step we study the continuity of the function
V defined in (16).

(1) Since y(t, x) is continuous with respect to t for all
t ∈ [tk, tk+1), k ∈ N, and continuous at sampling
instants by construction (see Remark 1) , then V1 is
continuous for all t ≥ 0.

(2) From system (1), we can get

yx (t, x) = Λ−1 (−yt (t, x)−Υy (t, x)−Ky (tk, x)) ,
(20)

for all t ∈ [tk, tk+1), k ∈ N. Since all the terms on
the right of the equation (20) are continuous in t on
(tk, tk+1), ∀k ∈ N, then yx(t, x) and thus V2 are also
continuous in t for all (tk, tk+1), k ∈ N.
Now we consider the time interval [tk, tk+1), for

some k ∈ N and an initial condition yk(x). The
solution of (1) is defined as y(t, x) on the time interval
[tk, tk+1), and is such that y and yx are both C0 in
t ∈ [tk, tk+1).
Next, we prolong the solution to C1 in t on [tk, tk+1].

We denote z(t, x) the solution on [tk, tk+1] with ini-
tial condition yk(x). z(t, x) and zx(t, x) are C0 in
t on [tk, tk+1]. We got the following properties on
[tk, tk+1)

{

y(t, x) = z(t, x),
yx(t, x) = zx(t, x).

(21)

Then the left limit can be calculated as

lim
t→t−

k+1

yx (t, x) = lim
t→t−

k+1

zx (t, x) = zx (tk+1, x) . (22)

For the next time interval [tk+1, tk+2), we set the
initial condition yk+1(x) = z(tk+1, x). Then the
solution y(t, x) of system (1) on [tk+1, tk+2) satisfies
yx(t, x) is C0 in t on [tk+1, tk+2). Therefore, we have
the right limit property

lim
t→t+

k+1

yx (t, x) = yx (tk+1, x) = zx (tk+1, x) . (23)

According to (22) and (23), we can see that by
construction, yx(t, x) is continuous in t at time instant
tk+1. Similarly, we can show that the function yx(t, x)
is continuous at all sampling instants, which shows
both the continuity of yx(t, x) with respect to time
for all t ≥ 0 and the continuity of V2.

Remark 2. Here V1 is used in order to bound y, and V2 is
used to deal with the term yx that appears in the derivative
of V1.

Step 2: In this step we study the time derivative of the
function of V (y) defined in (16). We first compute the time
derivative of V1(y) along the solutions to (10)-(11),∀t ∈
[tk, tk+1) , k ∈ N,

V̇1(y) =

∫ L

0

(

∂ty
T e−2µ1xQ1y + yT e−2µ1xQ1∂ty

)

dx

=

∫ L

0

(

(−Λ∂xy − (K +Υ)y −Kω)
T
e−2µ1xQ1y

+yT e−2µ1xQ1 (−Λ∂xy − (K +Υ)y −Kω)
)

dx
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=

∫ L

0

−∂x
[

yTΛe−2µ1xQ1y
]

dx

+

∫ L

0

(

−yT (K + Υ)
T
e−2µ1xQ1y

− yT e−2µ1xQ1(K +Υ)y − yT e−2µ1xQ1Kω

−2µ1y
TΛe−2µ1xQ1y − ωTKT e−2µ1xQ1y

)

dx

= −
[

yTΛe−2µ1xQ1y
]L

0

+

∫ L

0

(

−yT
(

(K +Υ)T e−2µ1xQ1

+e−2µ1xQ1(K +Υ)
)

y

−ωTKT e−2µ1xQ1y − yT e−2µ1xQ1Kω
)

dx

− 2µ1

∫ L

0

yTΛe−2µ1xQ1ydx. (24)

In order to get the time derivative of yx in V2, we refer to
the original system (1). Since y : [0,+∞) × [0, L] → R

n

has consecutive partial derivatives in [0,+∞) × [0, L],
according to Schwartz’s theorem (James (1966)) we can
obtain

∂xty (t, x) = ∂txy (t, x)

= −Λ∂xxy (t, x)−Υ∂xy (t, x)−K∂xy (tk, x) ,

∀t ∈ (tk, tk+1), k ∈ N. (25)

For the next calculation of the time derivative of V2, we use
Lemma 1 in the appendix. According to (25) and Lemma
1, we have
{

∂xy(t, 0) = ∂xy(t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N,

y0(0) = y0(L) = 0, ∂xy0(0) = ∂xy0(L) = 0.

(26a)

(26b)

Similarly to the computation of V̇1, the time derivative of
V2(y) along the solutions to (25)-(26), ∀t ∈ (tk, tk+1) , k ∈
N is shown as follows

V̇2(y) =−
[

∂xy
TΛe−2µ2xQ2∂xy

]L

0

+

∫ L

0

(

−∂xy
T
(

ΥT e−2µ2xQ2 + e−2µ2xQ2Υ
)

∂xy

− ∂xy
T (tk, ·)K

T e−2µ2xQ2∂xy

−∂xy
T e−2µ2xQ2K∂xy

T (tk, ·)
)

dx

− 2µ2

∫ L

0

∂xy
TΛe−2µ2xQ2∂xydx. (27)

Adding γ1‖ω (s, ·)‖
2
L2( [0,L] ;Rn)−γ1‖ω (s, ·)‖

2
L2( [0,L] ;Rn) to

(24) and

γ2‖∂xy (tk, ·)‖
2
L2( [0,L] ;Rn) − γ2‖∂xy (tk, ·)‖

2
L2( [0,L] ;Rn),

β

∫ L

0

yTx e
−2µ2xQ2yxdx− β

∫ L

0

yTx e
−2µ2xQ2yxdx

to (27) for some γ1 > 0, γ2 > 0, β > 0, and using boundary
condition (6b) and (26b) we have

V̇ (y) =V̇1(y) + V̇2(y)

≤− 2ν1V1(y)− (2ν2 − β)V2(y)

+

∫ L

0

ηTM(x)ηdx + γ1 ‖ω (s, ·)‖2L2( [0,L] ;Rn)

+ γ2 ‖∂xy (tk, ·)‖
2
L2( [0,L] ;Rn) . (28)

with

ν1 = µ1λ, ν2 = µ2λ,

η = [yT ωT (∂xy)
T (∂xy)

T (tk, ·)]
T (29)

and M(x) defined in (13).

Since M(x) satisfies LMIs (12), by convexity we have
ηTM(x)η ≤ 0, ∀x ∈ [0, L] and thus

∫ L

0

ηTM(x)ηdx ≤ 0, (30)

we deduce from (28)

V̇ (y) ≤− 2ν1V1(y)− (2ν2 − β)V2(y)

+ γ1‖ω (s, ·)‖
2
L2( [0,L] ;Rn)

+ γ2‖∂xy (tk, ·)‖
2
L2( [0,L] ;Rn). (31)

Step 3: The negative properties of function V̇ (y) for t ∈
[tk, tk+1), k ∈ N will be discussed in this step. Consider
some k ∈ N and let us first assume that y (t, ·) ∈ LV ≤R \
LV ≤ε and ∀θ ∈ [tk, t], y (θ, ·) ∈ LV ≤R.

∫ L

0

yT e−2µ1xQ1ydx ≤ R, ∀y(θ, ·) ∈ LV ≤R,

∫ L

0

∂xy
T e−2µ2xQ2∂xydx ≤ R, ∀∂xy(θ, ·) ∈ LV ≤R. (32)

Then the following inequalities are further derived

‖y (θ, ·)‖
2
L2([0,L];Rn) ≤

R

λmin (Q1) e−2µ1L
, ∀θ ∈ [tk, t], (33)

‖∂xy (θ, ·)‖
2
L2([0,L];Rn) ≤

R

λmin (Q2) e−2µ2L
, ∀θ ∈ [tk, t].

(34)

Recalling y (t, ·) ∈ LV ≤R \ LV ≤ε and ∀θ ∈ [tk, t],
y (θ, ·) ∈ LV≤R, for t ∈ [tk, tk+1), k ∈ N. The bound of

‖ω (s, ·)‖2L2([0,L];Rn) can be calculated by (9)

‖ω (s, ·)‖
2
L2([0,L];Rn)

=

∫ L

0

|ω (s, x)|
2
dx =

∫ L

0

∣

∣

∣

∣

∫ t

tk

∂y (θ, x)

∂θ
dθ

∣

∣

∣

∣

2

dx

≤ 3h̄

(

|Λ|2
R

λmin (Q2) e−2µ2L

+
(

|Υ|
2
+ |K|

2
) R

λmin (Q1) e−2µ1L

)

= ̟. (35)

In addition, since y (t, ·) , ∂xy (t, ·) /∈ LV≤ε, we have

− 2ν1V1(y)− (2ν2 − β)V2(y)

≤ − min(2ν1, 2ν2 − β)(V1(y) + V2(y))

< − min(2ν1, 2ν2 − β)ε. (36)

Therefore, instituting (35) and (36) into (31), we have that
for all t ∈ [tk, tk+1), k ∈ N,

V̇ (y) <− min(2ν1, 2ν2 − β)ε+ γ1̟

+ γ2
R

λmin (Q2) e−2µ2L
, (37)

and thus from assumption (15), we have shown that if
y (t, ·) ∈ LV ≤R \ LV ≤ε and ∀θ ∈ [tk, t], y (θ, ·) ∈ LV≤R for
∀t ∈ [tk, tk+1), k ∈ N

V̇ (y) < 0, (38)
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Fig. 2. Response of state y1.

which means that since V is continuous, that y will remain
in LV ≤R during the whole sampling interval [tk, tk+1],
and by recursion, we can see that it will always remains
there. As a consequence, LV ≤R is positively invariant.

Furthermore, since V̇ < 0 wherever y /∈ LV ≤ε, that
means that LV ≤ε is attractive, which ends the proof of
Rε-stability. �

4. NUMERICAL SIMULATION

In this section, we present a numerical example to il-
lustrate the stability we proposed in section 3. Consider
system (1)











∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,
u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,
y(t, 0) = y(t, L) = 0, ∀t ≥ 0,
y(0, x) =y0(x), ∀x ∈ [0, L] ,

where

Λ =

[

10 0
0 12

]

, Υ =

[

20 15
20 25

]

, K =

[

2 0
2 1

]

,

L = 2π, y0 (x) =

[

(1 − cosx) sin 2x
3(1− cosx) sinx

]

.

The parameters in Theorem 1 are selected as:

h̄ = 0.0001, β = 0.01, µ1 = 0.1, µ2 = 0.08,

γ1 = γ2 = 0.01, R = 10, ε = 3.3842,

Q1 =

[

0.1232 −0.0432
−0.0432 0.1106

]

, Q2 =

[

0.1299 −0.0368
−0.0368 0.1319

]

,

which satisfy the conditions (12), (13), and (15). The
results of numerical simulations are presented in Figs. 2-4.
Figs. 2-3 show the states converge to the vicinity of the
origin with the controller. The initial conditions satisfying
the compatibility condition (3) are given in Figs. 4-5. The
time-evolution of Lyapunov function V is shown in Fig. 6.
One can see that the Lyapunov function V deceases when
ε < V (y) < R.

5. CONCLUSION

The main work of this paper is to construct a sampling
controller for distributed control of linear hyperbolic bal-
ance laws. The closed-loop system is reformulated from an
Input-Output point of view. In addition, we prove the local

Fig. 3. Response of state y2.
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Fig. 4. Initial data of y1 and y2.
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Fig. 5. Initial data of ∂xy1 and ∂xy2.

stability of the system by means of the Lyapunov method.
This is somewhat conservative because the sampling inter-
val needs to be small enough. In the future, we will expand
the sampling interval by virtue of dissipativity theory, and
sample the controller in space not only in time, so as to
propose a more general stability theory.
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Fig. 6. Time-evolution of function V.
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Appendix A. PROOF OF LEMMA 1

Lemma 1. Consider the system (1)-(2) with initial condi-
tion y0 satisfying Condition 1. Then ∀t ∈ [tk, tk+1), k ∈ N,
∂xy(t, 0) = ∂xy(t, L) = 0.

Proof. We recall system (1)










∂ty (t, x) + Λ∂xy (t, x) + Υy (t, x) + u (t, x) = 0,

u (t, x) = Ky (tk, x) , ∀t ∈ [tk, tk+1), k ∈ N,

y(t, 0) = y(t, L) = 0, ∀t ≥ 0,

y(0, x) =y0(x), ∀x ∈ [0, L] ,

(A.1a)

(A.1b)

(A.1c)

(A.1d)

The time derivative of the boundary condition leads to

∂ty (t, 0) = ∂ty (t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (A.2)

Combining (A.1a) with (A.2), we obtain
{

0 = ∂ty (t, 0) = −Λ∂xy (t, 0)−Υy (t, 0)−Ky (tk, 0) ,
0 = ∂ty (t, L) = −Λ∂xy (t, L)−Υy (t, L)−Ky (tk, L) .

Since y(t, 0) = y(t, L) = 0, ∀t ≥ 0, we have

∂xy(t, 0) = ∂xy(t, L) = 0, ∀t ∈ [tk, tk+1), k ∈ N. (A.3)
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