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Abstract: This paper studies a consensus problem for linear multi-agent systems (MASs) over
directed communication networks with nonuniform time-varying delays. To overcome the limited
computing and storage resources, a distributed control scheme is designed for each agent by using
the event-triggered strategy. At the same time, a reduced-order observer is put forward in the
controller design when only the relative output measurement is available. The communication
network model with nonuniform time-varying delays is more challenging than the fixed delays or
non-delays in the literature. Theoretical analysis is provided to show that the proposed control
scheme can guarantee the consensus of MASs, with Zeno-behavior excluded and the upper
bound of time delay obtained. A numerical example is provided to illustrate the feasibility and
effectiveness of the theoretical results.
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1. INTRODUCTION

Consensus problems of MASs have been investigated ex-
tensively since Degroot (1974) developed a consensus algo-
rithm in an opinion pooling problem from the perspective
of the probability theory. Up to now, consensus control
strategies have been widely applied in many fields, such
as formation control, containment control, and distributed
optimization and learning (see Hu and Feng (2011); Hu
et al. (2013); Chen et al. (2018); Peng et al. (2019); Yuan
et al. (2019)), etc.

Event-triggered control strategies seem more applicable
for cooperative control of MASs when the communication,
computation and storage resources are limited. Generally,
the event-triggered strategies can be divided into two cat-
egories: state-dependent and state-independent strategies.
The early works mainly adopted state-dependent strate-
gies. For example, a distributed event-triggered control
strategy was firstly proposed for a first-order MAS in
Dimarogonas and Johansson (2009), in which centralized
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and decentralized schemes were studied. Hu et al. (2011)
made the first attempt to propose a distributed event-
triggered control for leader-follower MASs. An extension
was further presented to consider a tracking problem of
second-order leader-follower MASs in Hu et al. (2015).
Another class of event-triggered control schemes often
adopt state-independent strategies, which can be found
in Seyboth et al. (2013); Yang et al. (2016). The key point
is that the threshold function is independent of the state
information of neighbors. Very recently, event-triggered
strategy was further extended to some practical scenarios
such as quasi-containment control in Yuan et al. (2019),
consensus control with input saturation in Yi et al. (2019).

It is noted that the aforementioned works related to event-
triggered consensus control strategies seldom concerned
observer-type protocols. However, the state information
of agents may not be fully measured in practice, so the
protocols based on observer type seem to have more prac-
tical significance. As far as we know, observer based con-
trol protocols can be divided into full-order and reduced-
order state observers. In the case of full-order observer
protocols, some observer-based consensus controls were
developed in Li, Duan, et al. (2010); Li, Soh, et al.
(2017). If the agent dynamics are of high order or the
number of agents is large, the full-order observer design
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may result in computational redundancy and need large
storage capacity. To this end, Li et al. (2011) present-
ed a new algorithm to design reduced-order observers in
consensus control. Li et al. (2019) proposed two kinds
of reduced-order output-feedback consensus controls with
adaptive gain laws based on edge and node respectively. A
new Kx-functional observer-based output feedback event-
based control was proposed in Jian et al. (2019a,b).

In this paper, we present the first attempt to address the
event-based consensus problem for MASs under directed
graph with reduced-order observer and nonuniform time-
varying delays, a topic that remains challenging. The main
contributions of this paper are threefold. First, in order to
effectively reduce the storage space, a dimension reduc-
tion method is introduced in the reduced-order observer
design. Second, an event-triggered strategy based on state-
independent threshold is proposed and thus the strategy
avoids to compute the threshold with the information from
the neighbors. Third, nonuniform time-varying delays are
considered in the event-triggered consensus of MASs.

The rest of paper is organized as follows. Section 2 gives
some preliminaries and the consensus control problem is
formulated. Section 3 presents the main results. Some
simulation results are given in Section 4. Conclusions are
given in Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Some preliminaries

By convention, Rm×n and Cm×n are the set of m × n
real and complex matrices, respectively. Re(s) denotes
the real part of s ∈ C. In is the n × n identity matrix.
1n = (1, . . . , 1)T ∈ Rn. xT denotes the transpose of vector
x. The conjugate transpose of matrix A is represented by
AH . λmin(A) and λmax(A) represent the minimum and
maximum eigenvalues of the matrix A, respectively. ‖ • ‖
represents the Euclidean norm. ⊗ denotes the Kronecker
product. A matrix is said to be Hurwitz stable if all of its
eigenvalues have negative real parts.

A directed communication network can be modeled as a
digraph G = (V, E ,A), where V = {v1, . . . , vN} represents
the set of N agents, E = {eij | (vi, vj) ∈ V × V} is the

set of edges, and A = [aij ] ∈ RN×N is the adjacency
matrix of G defined by aii = 0, aij > 0 if (vj , vi) ∈ E , and
aij = 0 otherwise. The set of all neighbors of node vi can
be defined by Ni = {vj ∈ V | eji ∈ ε}. The degree matrix

D = {d1, . . . , dN} ∈ RN×N of G is a diagonal matrix with
diagonal elements di =

∑
j∈Ni aij . The Laplacian matrix

of G is defined as L = D − A, which satisfies L1N = 0.
The Laplacian matrix has the following property.

Lemma 1. (Ren and Beard (2005)) Zero is an eigenvalue

of L with 1N and a nonnegative vector r ∈ RN as
the corresponding right and left eigenvectors, respectively,
that is, rTL = 0, rT1N = 1. Moreover, all other nonzero
eigenvalues have positive real parts. Furthermore, zero is
a simple eigenvalue of L if and only if the graph G has a
directed spanning tree.

2.2 Problem formulation

Consider a general linear MAS, where the agent dynamics
is given by {

ẋi(t) = Axi(t) +Bui(t),
yi(t) = Cxi(t),

(1)

where xi(t) ∈ Rn is the state, ui(t) ∈ Rp is the control
input, yi(t) ∈ Rq is the measured output, and A,B,C are
constant matrices with compatible dimensions.

The objective of this study is to design a suitable event-
triggered consensus control scheme such that all the agents
can achieve consensus, i.e., lim

t→∞
(xi(t) − xj(t)) = 0 for

all i, j = 1, · · · , N , when nonuniform delays exist in the
communication links, and at the same time, Zeno behavior
is excluded.

Throughout this study, the following assumptions are
adopted.

Assumption 2. For the high-order MAS (1), (A,B) is
controllable, (A,C) is observable, and C is of full row rank.

Assumption 3. The directed graph G has a spanning tree.

The following lemma will be used in the consensus analysis
of the MAS (1).

Lemma 4. (Yang et al. (2016)) Suppose that A ∈ Rn×n

is Hurwitz. Then there exists a nonsingular matrix PA
such that P−1

A APA = JA with JA being the Jordan

canonical form of A and
∥∥eAt∥∥ ≤ ‖PA‖ ∥∥P−1

A

∥∥ cAe−aAt,
where cA is a positive constant determined by A, and
0 < aA < −max Re(λi(A)).

3. MAIN RESULTS

3.1 Reduced-order observer based consensus control

For each agent i, there exists a series of event time
instants tik (k = 0, 1, . . . ) determined by an event-triggered
threshold function. To reach the consensus of MAS (1)
without using any global information, a distributed event-
triggered control scheme together with a reduced-order
observer is proposed for t ∈ [tik, t

i
k+1):

v̇i(t) = Fvi(t) +Gyi(t) + TBui(t),

ui(t) = cKQ1

∑
j∈Ni

aij [yi(t
i
k − τij(t))− yj(t

j
k′(t) − τij(t))]

+ cKQ2

∑
j∈Ni

aij [vi(t
i
k − τij(t))− vj(t

j
k′(t) − τij(t))].

(2)

where vi(t) ∈ Rn−q is the observer state, c > 0 is the
coupling strength, τij(t) represents the communication

delay from agent j to agent i, K ∈ Rp×n is a control
gain matrix, and tjk′(t) denotes the last event instant of

agent j. F ∈ R(n−q)×(n−q) is Hurwitz and has no common

eigenvalues with matrix A, G ∈ R(n−q)×q, T ∈ R(n−q)×n

is the only solution to the Sylvester equation TA−FT =GC

and
[
CT TT

]T
is nonsingular, Q1 ∈ Rn×q and Q2 ∈

Rn×(n−q) are given by [Q1 Q2] =
{[
CT TT

]T}−1

.
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3.2 Network model with nonuniform time-varying delays

Assume that the nonuniform time-varying delays are
asymmetrical and uniformly bounded. For convenience, let
Ψ = {τij(t) = τσ : σ ∈ {1, . . . ,m}} (m ≤ N(N −1)) be the
collection of independent time-varying delays affecting the
communication links. There exists a set of communication
topologies {G1, · · · ,Gm} such that the network Gσ contains
only a delay τσ.

To illustrate the topology decomposition technique related
to nonuniform delays, we consider a MAS having six
agents, with the communication topology G shown in
Fig. 1. The MAS has four different delays, i.e., τ1 = τ12 =
τ14 = τ61, τ2 = τ13 = τ41 = τ56, τ3 = τ51 = τ45, τ4 = τ23,
and thus G is decomposed to four subgraphs G1,G2,G3 and
G4, as shown in Fig. 2.

1 6

3

5

4

2

Fig. 1. A communication network with nonuniform delays
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Fig. 2. The subgraphs of G associated with the delays τ1,
τ2, τ3 and τ4.

Suppose that the Laplacian matrix corresponding to Gσ
is Lσ. It is clear that Lσ1N = 0,∀σ ∈ {1, · · · ,m} and∑m
σ=1 Lσ = L.

Lemma 5. Lσ is a Laplacian matrix of the subgraph of G.
Then there exists a non-singular matrix S such that

S−1LS = J =

[
0 0
0 J1

]
, S−1LσS = Jσ =

[
0 lTσ
0 J1σ

]
,

where lσ ∈ C(N−1)×1, J1σ ∈ C(N−1)×(N−1).

Proof. According to Assumption 2 that G contains a
directed spanning tree, assuming that there exists a con-
stant α 6= 0 and non-singular matrices S = [α1N S1],

S−1 =

[
1

α
rT

S2

]
, where r ∈ RN is a nonnegative vector

such that rTL = 0 and rT1N = 1. From the Jordan

decomposition of L, we have S−1LS = J =

[
0 0
0 J1

]
,

of which the Jordan matrix J1 ∈ C(N−1)×(N−1) is an
upper triangular matrix with diagonal line consist with the

nonzero eigenvalue of L (see ?). From the foreshadowing
above Lσ1N = 0, σ ∈ {1, . . . ,m}. Hence,

S−1LσS =

[
1

α
rT

S2

]
Lσ[α1N S1]

=

[
rTLσ1N

1

α
rTLσS1

αS2Lσ1N S2LσS1

]

=

[
0 lTσ
0 J1σ

]
.

The proof is thus completed.

3.3 Consensus analysis

For each agent i, we define two measurement error vectors
as exi (t) = xi(t

i
k) − xi(t), e

v
i (t) = vi(t

i
k) − vi(t). Let

ηi(t) = [xTi (t), vTi (t)]T , η(t) = [ηT1 (t), . . . , ηTN (t)]T and

ξi(t) = [exi
T (t), evi

T (t)]T , ξ(t) = [ξT1 (t), . . . , ξTN (t)]T . Then,
from (1) and (2), the closed-loop system is given by

η̇(t)=(IN⊗M)η(t)+

m∑
σ=1

(cLσ⊗R)[η(t−τσ)+ξ(t−τσ)], (3)

where M =

[
A 0
GC F

]
, R =

[
BKQ1C BKQ2

TBKQ1C TBKQ2

]
.

Next, we will show that the event-triggered control (2)
can guarantee consensus of the MAS under a threshold
function given by

fi(t, ξi(t)) = ‖ξi(t)‖ − c1e−α(t−t0), (4)

for some c1 > 0, and α is a positive constant to be
determined. Thus, the event triggered times are given by
tik+1 = inf

{
t : t > tik, fi(t) > 0

}
.

Theorem 6. Under Assumptions 2 and 3, consensus of the
MAS can be achieved under the event-triggered control
scheme (2).

Proof. From Lemma 1, zero is a simple eigenvalue of
L and all other eigenvalues have positive real parts. By
Lemma 5, there exists a coordinate transformation ε(t) =
(S−1 ⊗ I2n−q)η(t). Let ε(t) = [εT1 (t), . . . , εTN (t)]T , where
εi(t) = [x̄Ti (t), v̄Ti (t)]T . Then, system (3) can be rewritten
as follow:

ε̇(t) = (S−1 ⊗ I2n−q)η̇(t)

= (IN ⊗M)ε(t) +

m∑
σ=1

c(

[
0 lTσ
0 J1σ

]
⊗R)ε(t− τσ)

+

m∑
σ=1

c(

[
lTσ S2

J1σS2

]
⊗R)ξ(t− τσ),

(5)

Define ε2−N (t) = [εT2 (t), . . . , εTN (t)]T , then system (5) can
be divided into the following two subsystems:

ε̇1(t) = Mε1(t) +

m∑
σ=1

(clTσ ⊗R)ε2−N (t− τσ(t))

+

m∑
σ=1

(clTσ S2 ⊗R)ξ1(t− τσ(t)),

(6)

and
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ε̇2−N (t)=(IN−1⊗M)ε2−N (t)+

m∑
σ=1

(cJ1σ⊗R)×

ε2−N (t−τσ) +

m∑
σ=1

(cJ1σS2 ⊗R) ξ2−N (t− τσ),

(7)

By Newton-Leibniz formula, one has ε2−N (t − τσ) =

ε2−N (t)−
∫ t
t−τσ ε̇2−N (s)ds, then the subsystem (7) can be

rewritten as

ε̇2−N (t)=(IN−1⊗M)ε2−N (t)+

m∑
σ=1

(cJ1σ⊗R)

{
ε2−N (t)−

∫ t

t−τσ
ε̇2−N (s)ds

}
+

m∑
σ=1

(cJ1σS2 ⊗R) ξ2−N (t−τσ)

= M̄ε2−N (t)−
m∑
σ=1

C1σ

∫ t

t−τσ
ε̇2−N (s)ds

+

m∑
σ=1

C2σξ2−N (t− τσ),

(8)

where M̄ = IN−1 ⊗M + cJ1 ⊗R,C1σ = cJ1σ ⊗ R, and
C2σ = cJ1σS2 ⊗R. The solution of (8) is given by

ε2−N (t) = eM̄(t−t0)ε2−N (t0) +

∫ t

t0

eM̄(t−θ)

{
m∑
σ=1

(−C1σ)

∫ θ

θ−τσ
ε̇2−N (s)ds+

m∑
σ=1

C2σξ2−N (θ − τσ)

}
dθ,

(9)

In order to check whether M̄ is Hurwitz, it is equivalent
to analyze the stability of

F̄ =

[
A+ cλiBKQ1C cλiBKQ2

GC + cλiTBKQ1C F + cλiTBKQ2

]
,

Let matrix F̄ be multiplied by T̄ =

[
In 0
−T In−q

]
and

T̄−1 =

[
In 0
T In−q

]
, then we have

T̄ F̄ T̄−1 = T̄

[
A+ cλiBKQ1C cλiBKQ2

GC + cλiTBKQ1C F + cλiTBKQ2

]
T̄−1

=

[
A+ cλiBK cλiBKQ2

0 F

]
,

Select the coupling coefficient c ≥ 1
2minλi 6=0{Re(λi(L))} , then

there exists a P > 0 which satisfies the following algebraic
Riccati equation:

(A+ cλiBK)TP + P (A+ cλiBK)

= ATP + PA− 2cRe(λi(L))PBBTP

= −Q+ (1− 2cRe(λi(L)))PBBTP ≤ −Q,
Hence, A+cλiBK(i = 2, . . . , N) are stable matrices. Since
F is Hurwitz, F̄ is Hurwitz as well. Then,from Lemma 4,
one has, for t ≥ t0,∥∥∥eM̄(t−t0)

∥∥∥ ≤ k1e
−γ(t−t0), (10)

where k1 = ‖PM̄‖
∥∥P−1

M̄

∥∥ cM̄ , PM̄ is a nonsingular matrix

such that P−1
M̄
M̄PM̄ = JM̄ , JM̄ is the Jordan canonical

form of M̄ , cM̄ > 0 is a positive constant determined by
M̄ , and 0 < γ < −max{Re(λi(M̄))}.
Assume that there exist α, λ ∈ (0, γ) such that

k1(mα1+mα2

m∑
σ=1

eλτσ )(eλτmax − 1)

λ(γ − λ)
< 1, (11)

χ =

√
N − 1α3k1mc1

(
eλτmax−1

)
+ αk1k2

α(γ − α)− k1(mα1 +mα2

m∑
σ=1

eατσ ) (eλτmax−1)
,

(12)

where α1 = ‖C1max‖ ‖IN−1 ⊗M‖, α2 = ‖C1max‖2, and
α3 = ‖C1max‖ ‖C2max‖ with C1max = max{C1σ}, C2max =

max{C2σ}, k2 = ‖C2max‖
√
N − 1c1

m∑
σ=1

eλτσ , then the

following inequality holds for t ≥ t0.

‖ε2−N (t)‖ < k1 ‖ε2−N (t0)‖ e−λ(t−t0) + χe−α(t−t0). (13)

First, we show that λ exists. Define f(λ) = k1(mα1 +

mα2

m∑
σ=1

eλτσ )(eλτmax − 1)− λ(γ− λ). Obviously, f(0) = 0

and f ′(0) = mα1τmax + m2α2τmax − γ < 0 when τmax <
γ

k1(mα1+m2α2) . Thus the constant λ satisfies (11) can be
set up.

Next, we prove that inequality (13) is true. Define
k1 ‖ε2−N (t0)‖ e−λ(t−t0) + χe−α(t−t0) = ω(t). If equa-
tion (13) does not hold for any t ∈ (t0 − τmax, t∗), then
there must exist a t∗ > t0 such that ‖ε2−N (t∗)‖ = ω(t∗),

and ‖ε2−N (t)‖ < ω(t). Define D =
k1

λ
‖ε2−N (t0)‖ (mα1 +

mα2

m∑
σ=1

eλτσ )
(
eλτmax−1

)
, and E =

1

α
[ (mα1 + mα2

m∑
σ=1

eατσ )χ+
√
N − 1mα3c1 ]

(
eατmax−1

)
, Then we have∥∥∥∥∥

m∑
σ=1

(−C1σ)

∫ θ

θ−τσ
ε̇2−N (s)ds

∥∥∥∥∥
≤
∫ θ

θ−τmax

{
mα1 ‖ε2−N (s)‖+mα2

m∑
σ=1

‖ε2−N (s− τσ)‖

+mα3

m∑
σ=1

‖ξ2−N (s− τσ)‖

}
ds

≤ De−λ(θ−t0) + Ee−α(θ−t0),

and∥∥∥∥∥
m∑
σ=1

C2σξ2−N (θ − τσ)

∥∥∥∥∥ ≤ ‖C2max‖
m∑
σ=1

‖ξ2−N (θ − τσ)‖

≤ k2e
−α(θ−t0).

From above and (9), (13), we have

ω(t∗) = ‖ε2−N (t∗)‖ < k1e
−γ(t∗−t0) ‖ε2−N (t0)‖

+

∫ t∗

t0

k1e
−γ(t∗−θ)

[
De−λ(θ−t0)+(E+k2)e−α(θ−t0)

]
dθ

< k1 ‖ε2−N (t0)‖ e−λ(t∗−t0) +
k1(E + k2)

γ − α
× (e−α(t∗−t0) − e−γ(t∗−t0))

< k1 ‖ε2−N (t0)‖ e−λ(t∗−t0) + χe−α(t∗−t0) ∆
= ω(t∗).
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The contradictory result shows that (13) holds un-
der the conditions (11) and (12). Thus, (13) implies
lim
t→∞

ε2−N (t) = 0, that is, lim
t→∞

x̄i(t) = 0, and lim
t→∞

v̄i(t) =

0, i = 2, · · · , N .

On the other hand, since η(t) = (S ⊗ I2n−q)ε(t) = 1N ⊗
ε1(t) + (S1 ⊗ I2n−q)ε2−N (t), thus we have η(t) − 1N ⊗
ε1(t) → 0 as t → ∞. Moreover, the variable ε1(t) evolves
according to system (6). Then, from the definitions of ηi(t)
and ε1(t), we have xi(t)− x̄1(t)→ 0, vi(t)− v̄1(t)→ 0, i =
1, · · · , N , as t→∞, which shows that consensus is reached
for the MAS. The proof is thus completed.

Theorem 7. Zeno behavior can be avoided in the close-
loop system (3) under event-triggered control scheme (2).

Proof. Since ξi(t) = ηi(t
i
k) − ηi(t), thus the upper right-

hand Dini derivative of ξi(t) over interval [tik, t
i
k+1) is given

by

D+ ‖ξi(t)‖ ≤
∥∥∥ξ̇i(t)∥∥∥ ≤ ‖η̇i(t)‖ ≤ ‖η̇(t)‖

=

∥∥∥∥∥(IN ⊗M)η(t) +

m∑
σ=1

(cLσ ⊗R)[η(t− τσ) + ξ(t− τσ)]

∥∥∥∥∥
≤ ‖IN⊗M‖ ‖η(t)‖+

m∑
σ=1

‖cLσ⊗R‖ [‖η(t−τσ)‖+‖ξ(t−τσ)‖].

Since ‖η(t)‖ ≤ α4e
−λ(t−t0) + α5e

−α(t−t0), where α4 =
k1 ‖S ⊗ I2n−q‖ ε(t0), α5 = χ ‖S ⊗ I2n−q‖. Thus, we have∥∥∥ξ̇i(t)∥∥∥ ≤ ‖IN ⊗M‖ [α4e

−λ(t−t0) + α5e
−α(t−t0)

]
+

m∑
σ=1

‖cLσ ⊗R‖
[
α4e
−λ(t−t0−τσ)

+ α5e
−α(t−t0−τσ) +

√
Nc1e

−α(t−t0−τσ)
]

= α6e
−λ(t−t0) + α7e

−α(t−t0) ∆
= ϕ(t),

where α6 = α4

(
‖IN ⊗M‖+mc ‖Lmax ⊗R‖

m∑
σ=1

eλτσ
)
,

α7 = ‖IN ⊗M‖α5+mc
m∑
σ=1

eλτσ ‖Lmax ⊗R‖ [α5+
√
Nc1].

During the interval [tik, t
i
k+1), it is not difficult to ob-

tain that ‖ξi(t)‖ = ‖
∫ t
ti
k
ξ̇i(s)ds‖ ≤

∫ t
ti
k
ϕ(s)ds. From the

threshold function given by (4), the next event time of
agent i will not be triggered before fi(t, ξi(t)) ≥ 0 or equiv-
alently ‖ξi(t)‖ = c1e

−α(t−t0). Hence, the next event is not

triggered before
∫ t
ti
k
ϕ(s)ds = c1e

−α(t−t0). Let τ = t−tik be

the time length between the two triggered events. Thus, τ
is greater than or equal to the solution to the implicit equa-

tion
(
α6e
−λ(tik−t0) + α7e

−α(tik−t0)
)
τ = c1e

−α(tik+τ−t0), or

equivalently, α6e
−(λ−α)(tik−t0) + α7 = c1e

−ατ . Since 0 <

α < λ < γ, we know that α6e
−(λ−α)(tik−t0) +α7 is bounded

by α6 + α7. Thus, the solution to the implicit equation
is greater than or equal to the solution to (α6 + α7)τ =
c1e
−ατ . Thus, if there exist c1 > 0 and 0 < α < λ < γ,

there is a positive lower bound τ on the inter-event time
for agent i. Therefore, Zeno behavior is avoided. The proof
is completed.

4. SIMULATION RESULTS

Consider a MAS with six agents, which is shown in Fig. 1.
It is not difficult to find that the nonzero eigenvalues
of L are 1, 1.3376 ± 0.5623i, 2, 3.3247, respectively. The
state matrices are given by A = [0, 1, 0; 0, 0, 1; 0, 0,−4],
B = [0, 0; 1, 0; 0, 1], and C = [1, 0, 0; 0,−1, 0]. Select F =
−1, G = [−2 −1] in the reduced-order observer, and we
solve the Sylvester equation to obtain that T = [−2 3 1].
Additionally, Q1 = [1, 0; 0,−1; 2, 3] and Q2 = [0, 0, 1]

can be calculated by [Q1 Q2] = {
[
CT TT

]T }−1. We
use the LMI toolbox in MATLAB to solve the Riccati
equation to obtain a solution P , and then have K =

−BTP =

[
−0.9869 −1.6953 −0.3156
−0.1613 −0.3156 −0.1871

]
. Choose c = 0.6,

c1 = 0.66, and α = 0.34. According to Theorem 6,
the upper bound of the communication delay is given
by τmax = 0.3. The initial conditions of the agents are
randomly selected in [0, 1]. Nonuniform delays are selected
as τ1 = 0.29 |sin(t)| , τ2 = 0.27 |cos(t)| , τ3 = τ14(t) =
0.14 |sin(t) + cos(t)|, and τ4 = 0.2 + 0.05 |sin(t)|.
Fig. 3 shows the evolution of the 3-th state variables xi(t)
of the six agents. From Fig. 3, consensus is achieved for
the six agents under the proposed event-triggered strategy
when the communication links suffer from nonuniform
time-varying delays. Fig. 4 shows the evolution of the
observer state vi. Additionally, the evolution of the mea-
surement errors are shown in Fig. 5. It can be found that
all the measurement errors are bounded by c1e

−αt.
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Fig. 3. The state evolution of the six agents.
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Fig. 4. The state evolution of the reduced observers.
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Fig. 5. The evolution of the measurement errors of the six
agents.

5. CONCLUSION

This paper addressed an event-triggered consensus prob-
lem of a general linear MAS over directed communica-
tion network. A distributed consensus control scheme has
been proposed by using reduced-order observer. Moreover,
state-independent threshold function has been presented
for each agent to achieve consensus under the proposed
control scheme. Some sufficient conditions have been es-
tablished for the consensus of MAS, with the upper bound
of nonuniform time-varying delays obtained. Additionally,
it has been shown that Zeno behavior can be avoided.
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