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Abstract: Wake interactions caused by the complex wakes between the turbines within a wind
farm have significant adverse effect on the total power generation of the wind farm. To mitigate
the effect of wake interactions and optimize the total power output of wind farm, this paper
proposes a model-free control scheme using reinforcement learning by developing a decentralized
Q learning method. The proposed approach guarantees that the output power of wind farm
converges to the optimal total power under different wind conditions, and further ensures the
gradual changes of control variables of wind turbines and thus avoids the unexpected sharp
drop of the power generation performance of wind farm. Simulation results are provided to
demonstrate the effectiveness of the proposed method.

Keywords: Wind farm, power optimization, model-free approach, decentralized control, Q
learning method.

1. INTRODUCTION

In wind farm, the wakes generated by upstream wind
turbines can significantly degrade the output power of
the downstream wind turbines due to reduced wind speed
inside the wakes (Park and Law (2016)). The greedy pol-
icy which is widely used in practice, where each turbine
works only to maximize its own individual output power
(Gebraad et al. (2016)), may not be able to produce the
maximum output power of the wind farm. It is a locally
optimal control strategy due to the neglect of the wake
interactions among wind turbines (Marden et al. (2013)).
The interactions through wakes and their effect on the
output power of wind farm have been investigated exper-
imentally in (Adaramola and Krogstad (2011), Dahlberg
(2009)) and the results show that the serious power loss
for the entire wind farm is made below rated wind speeds.

To reduce the effect of wake interactions and increase the
power output of wind farm, the cooperative control of wind
farm has attracted the great interest of researchers (Park
and Law (2016)). The cooperative control strategies of
wind farm can be classified into two categories, the model-
based methods and model-free methods.

⋆ This work was supported by the National Natural Science Foun-
dation of China under Grants 61722307 and 5191101838.

The model-based methods for wind farm can be commonly
divided into the following three steps. The wake inter-
action model among wind turbines is firstly constructed.
Then, the optimization problem that maximizes the out-
put power of wind farm is formulated. The cooperative
control strategy of wind farm is finally developed by solv-
ing the formulated optimization problem. As examples, in
Park et al. (2013), the wake interaction model based on
Park model is linearized by the first order Taylors expan-
sion and thus the steepest descent method is employed to
obtain the optimal control inputs. In Heer et al. (2014),
Jensen model is used to model wake interactions and a
heuristic algorithm is proposed to find the optimal set
points. The model-based control methods have significant
difficulties in practice, mainly because that the widely
used wake models, such as Park model and Jensen model,
can only represent the ideal characterizations of the wind
turbine wake and could not accurately capture the actual
system dynamics (Zhong and Wang (2018)). Furthermore,
the system parameters in these models are difficult to
obtain in practice, especially for some wind farms built in
coteau or highland area. Consequently, the model-based
methods usually have limited practical performance.

The model-free methods, on the other hand, aim to maxi-
mize the output power of wind farm using only the control
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inputs and the power measurements without needing an
analytic expression of the wake model (Gratacos (2017)).
For examples, in Marden et al. (2013), two game the-
oretic learning algorithms are proposed, including safe
experimentation dynamics and payoff-based distributed
learning for Pareto optimality. In Park and Law (2016), a
Bayesian ascent algorithm is developed, which can rapidly
and almost monotonically look for a local optimum. How-
ever, the above algorithms are carried out under constant
wind condition. A distributed simultaneous perturbation
approach is applied to wind farm for energy maximiza-
tion, which accommodates slowly changing wind condition
(Xu and Soh (2016)). A adaptive scheme is presented
by using gradient-based optimization technique (Gebraad
and Wingerden (2015)), which can adapt to the changing
wind direction quickly. Since the strong wake interactions
among many turbines may exist, it will be insufficient for
the turbines that their gradient information is estimated
by only using information from the nearest neighbouring
downstream turbine. Two decentralized discrete adaptive
filtering algorithms are proposed in Zhong and Wang
(2018). However, the sharp change of control action may
happen when the adaptive filtering algorithms are applied,
which is not desirable for wind turbines due to the limita-
tions in stability and the unexpected drops of the output
power of wind farm (Park and Law (2016)). In Graf et al.
(2019), a combination of the alternating direction method
of multipliers and reinforcement learning is developed to
optimize the output power of wind farm, where it is very
difficult to achieve the effective partition of turbines due
to the complexity of wake interactions.

To address the aforementioned limitations, this paper
proposed a model-free wind farm control scheme using
reinforcement learning by developing a decentralized Q
learning method. Q learning is a machine learning algo-
rithm, aiming at enabling the agent to learn how to behave
through interactions with the environment (Hung and
Givigi (2017), Sutton and Barto (1998)). A key advantage
of Q learning is that it does not need the prior model
of the environment and it also has the ability to escape
local minima due to its stochastic optimization property
with many successful applications (Anderlini et al. (2017),
Liu et al. (2017), Kofinas et al. (2017), and Xu et al.
(2012)), making Q learning a particularly suitable tool
for our power optimization problem of wind farm. As an
online learning method by interacting with the system, Q
learning has ability to adapt to the dynamic environment
of wind farm, e.g. time varying wind condition. Since the
action can be selected from the predesigned action set by Q
learning, the gradual changes of control variables of wind
turbines can be guaranteed, and thus the unexpected drop
of output power of wind farm can be avoided. Simulation
is performed in different wind conditions and results are
close to the optimal behaviours of all turbines without
requiring any prior knowledge on wake interaction mod-
el. As far as we know, the model-free wind farm power
optimization scheme based on decentralized Q learning is
firstly developed in this paper.

The remaining parts of this paper are organized as follows.
In Section 2, the wind farm power optimization problem is
described. In Section 3, a decentralized model-free control
scheme is proposed based on Q learning algorithm to
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Fig. 1. Single turbine wake example

perform the power optimization of wind farm. Section 4
presents the simulation results to demonstrate the effec-
tiveness of the proposed scheme and finally, conclusions
and possible directions for future research are given in
Section 5.

2. WIND FARM POWER OPTIMIZATION PROBLEM

In this section, the power generation model of wind farm
and its power optimization problem are formulated.

A wind farm with n wind turbines is considered and let
N = {1, 2, · · · , n} be the set of all turbines. The control
variable of wind turbine i ∈ N is chosen as its axial
induction factor (AIF) ui, whose admissible set is given by
the set Ui = {ui |0 ≤ ui ≤ 0.5}. The AIF accounts for the
reduction of the wind velocity over rotor plane, which can
be adjusted by the blade pitch and generator torque. The
joint axial induction factor of all turbines is represented by
the tuple u = (u1, · · · , un), whose admissible set is denoted
as U = U1 × · · · × Un, where × is the Cartesian product.

When one wind turbine extracts energy from the wind, it
will cause changes of the downstream wind flow (Boersma
(2017)). The altered flow is called the wake of wind
turbine, through which the upwind turbine will affect the
wind speed and output power of downwind turbines and
thus decreases the power output of whole wind farm. A
key modelling challenge for wind farm is describing the
interactions among the turbines due to wakes (Marden et
al. (2013)). The Park model (Katic et al. (1986)) is the one
of the most popular wake models, which gives the wake
velocity profile of wind turbine (Xu and Soh (2016)). It
is also applied in this paper to resemble the interactions
between the turbines.

Consider the situation in Fig. 1, where turbine i is the only
turbine. V∞ is the freestream wind speed. Di denotes the
diameter of turbine i, x is the distance from turbine i along
the wind direction, and r is the distance orthogonal to the
wind direction. Between the top and bottom dotted lines is
the wake area generated by turbine i. Denote Vi (x, r, ui)
as the wake velocity profile at point (x, r) generated by
turbine i with the AIF ui. According to Park model,

Vi (x, r, ui) = V∞ (1− δVi (x, r, ui))

where δVi (x, r, ui) represents the fractional deficit of the
velocity at the point (x, r) and is expressed as

δVi (x, r, ui)=

{
2ui

(
Di

Di+2kx

)2
, for any r ≤ Di+2kx

2

0, for any r > Di+2kx
2

where k is the roughness coefficient that measures the slope
of the wake expansion from turbine (Marden et al. (2013)).
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Fig. 2. A two-turbine wake interaction example

Based on the Park model, the aggregate wind velocity
Vi (u) at an arbitrary wind turbine i can be calculated
as follows

Vi (u) = V∞ (1− δVi (u))

and the aggregated velocity deficit δVi (u) generated by all
the upstream turbines of turbine i can be formulated as

δVi (u) = 2

√ ∑
j∈N :xj<xi

(
uj

(
Dj

Dj+2k(xi−xj)

)2Aoverlap
j→i

Ai

)2

where xi is the distance of turbine i from a common
vertex along the wind direction, Ai is the area of the disk

generated by the blade of turbine i, Aoverlap
j→i is the part

area of the Ai that overlaps with the wake generated by
turbine j. An example with two wind turbines is given
in Fig. 2, where turbine i is denoted as Wi and its 3-
D location relative to the common vertex is defined as
(xi, yi, zi).

Remark 1: Note that the Park model will only be used for
simulating the wake, whose uncertainties do not influence
the performance evaluations of the algorithm in the power
optimization problem of wind farm because it is not used
in the control design.

The power generated by turbine i is given by

Pi (u) = (1/2 ) ρAiCp (ui)Vi(u)
3

(1)

where ρ is the density of air and Cp (ui) is the power
efficiency coefficient defined as

Cp (ui)=4ui(1− ui)
2

(2)

The total output power of wind farm is simply the sum of
the power generated by all individual turbines (Zhong and
Wang (2018)), namely

P (u) =
∑
i∈N

Pi (u) (3)

In this paper, we focus on developing a cooperative control
scheme to increase the total output power (3) of wind farm.
More specifically, the optimal joint axial induction factor
should be obtained by solving the following optimization
problem without using wake interaction model:

uopt = argmax
u∈U

P (u) (4)

Remark 2: From (1) and (2), it can be shown that ignoring
the turbine interactions, i.e. the couplings between the
aggregate wind velocity Vi (u), the ui = 1/3 for wind
turbine i is the optimal input. However, as mentioned
earlier, this called greedy policy might not be optimal in

maximizing the total output power of the wind farm due
to the wake interactions among the turbines.

3. DECENTRALIZED Q LEARNING METHOD FOR
WIND FARM POWER OPTIMIZATION

In this section, a decentralized model-free control scheme
for wind farm is developed based on Q learning algorithm
to solve the optimization problem (4).

3.1 Wind Farm Power Optimization as Multi-agent
Markov Decision Process

To achieve this, the power optimization problem of wind
farm is formulated into a multi-agent Markov decision
processes, which is denoted by a tuple (I, S,A, T, r): I =
{1, 2, · · · , n} is a set of agents, where the agent i ∈ I
represents the controller of wind turbine i; S=×iSi is the
set of states of wind farm and × is the Cartesian product
operator, where Si is the set of observable states of agent i

and the state si ∈ Si is defined as si = [ui Vd]
T
, where Vd

denotes wind direction; A is the set of joint actions of all
agents and A = ×iAi, where Ai denotes the set of action
ai of the agent i and is defined as

Ai = {−∆ui, 0,+∆ui} (5)

where ∆ui is the change of AIF ui of the wind turbine i.
The update formula of ui is designed as

ui,t+1 = ui,t + ai,t+1 (6)

where ai,t+1 ∈ Ai denotes the action taken by agent i at
time step t + 1. Note that the change of control variable
ui from time step t to t+1 is decided by the action ai,t+1,
whose admissible set Ai can be designed in advance as
(5). Therefore, the gradual change of control variable ui

for wind turbine i can be guaranteed, and the unexpected
drop of output power of wind farm can be avoided. T
is the state transition probability function of wind farm,
defined as T : S × A × S → [0, 1]. It is very challenging
to build a model for T due to the great complexity of
the wake interactions among the turbines. Then model-
free reinforcement learning method is desired for the power
optimization problem of wind farm. r is a reward function
and the reward rt+1 that agent i receives at time step t+1
is designed as

rt+1 = Pt+1 − Pt (7)

where rt+1 represents the change of output power of wind
farm for being in state st = [s1,t, · · · , sn,t] ∈ S and taking
the action at = [a1,t, · · · , an,t] ∈ A.

The goal of agent i is to find an optimal policy h∗
i that

maximizes its return shown in (8). The return is the
expected cumulative aggregation of discounted reward (7)
while starting from a given state si,0, taking a given action
ai,0, and following policy hi.

Qi (si,0, ai,0) = Ehi

( ∞∑
t=0

γtrt+1

)
(8)

where γ ∈ [0, 1) is the discount factor. All agents receive
a common reward from (7) and then they have same goal.
Thus, the power optimization problem (4) of wind farm is
modelled as a fully cooperative game. In this paper, the
discount factor γ in (8) is set as zero. This means that
each agent only considers the one-step reward. The action
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taken by agent i ∈ I at time step t is to maximize the
output power of wind farm at time step t+ 1.

3.2 A Decentralized Q Learning Method

The Q-learning was first proposed in (Watkins (1989)),
which has been a very popular model-free reinforcement
learning method. It consists of two parts, namely Q value
estimation and action selection. Fig 3 shows the schematic
diagram of Q learning algorithm developed for agent i ∈ I.
The Q value is firstly estimated by an Q function (action-
value function), which gives the expected return of taking
action ai ∈ Ai in a given state si,t. Then an action ai,t is
selected from Ai by using action selection policy.

In the traditional Q learning, the Q function is modelled
as a lookup table (Wei et al. (2016)). After each state
transition, the Q function is updated by using observed
state transition and reward, i.e., data tuple of the form
(si,t, ai,t, si,t+1, rt+1), based on the following iterative for-
mula (Watkins and Dayan (1992)):

Qi,t+1 (si,t, ai,t) = Qi,t (si,t, ai,t)

+ η

[
rt+1 + γmax

ai

Qi,t (si,t+1, ai)−Qi,t (si,t, ai,t)

]
(9)

where η ∈ (0, 1] is the learning rate and specifies how far
the current estimate Qi,t (si,t, ai,t) is adjusted toward the
update target rt+1 + γmax

ai

Qi,t (si,t+1, ai). The expression

in the square bracket is the temporal difference, i.e., the
difference between the estimates of the optimal Q value
of (si,t, ai,t) at two successive time steps t+ 1 and t. The
observable state si of agent i is made up of its AIF ui and
wind direction Vd, which are continuous variables. Then
the state space Si is so large that the lookup table cannot
store the Q values of all the state-action pairs. To eliminate
the need of the large lookup table, the Q function of agent
i in this paper is also approximated via artificial neural
network (ANN) as shown in Fig 4. Based on the formula
(9), the weight matrix θi of the approximate Q function
can be updated by using (Wei et al. (2016))

θi,t+1 = θi,t + η∆θi,t (10)

∆θi,t = [rt+1 + γmax
ai

Qi,t (si,t+1, ai; θi,t)

−Qi,t (si,t, ai,t; θi,t)]×∇θiQi,t (si,t, ai,t; θi,t) (11)

where ∇θiQi,t (si,t, ai,t; θi,t) denotes the gradient of the
approximate Q function Qi,t (si,t, ai,t; θi,t) with respect to
its weight matrix θi at time step t.

The pure exploitation causes easily the agent to fall
into the suboptimal solution when one action is selected,
whereas excessive exploration degrades the convergence
performance of the Q learning algorithm by consuming
too much time (Xu et al. (2012)). To achieve the balance,
the ε-greedy algorithm, a classical exploratory policy, is
adopted by agent i , which selects action according to

ai,t=

{
argmaxaiQi,t (si,t, ai; θi,t) with probability 1− ε

a random action in Ai with probability ε
(12)

where ε ∈ (0, 1) is the exploration probability. In (12),
with probability 1−ε, an action that has maximal Q value
is chosen, but with probability ε an action at random is
instead selected.

Algorithm 1: Decentralized Q Learning Algorithm

for Wind Farm Power Optimisation

1. Initialize learning rate η, exploration rate ε, and

weight matrix θi,0, i ∈ I.

2. measure initial state si,0.

3. for every time step t = 0, 1, 2, · · · , do
4. estimate Qi,t (si,t, ai; θi,t) for si,t and choose

action ai,t from Ai by ε greedy algorithm (12);

5. apply ai,t, measure next state si,t+1 and calculate

reward rt+1 according to (7);

6. update θi,t by (10) and (11);

7. End for

i t
ai t i t i

Q s a

tr

i t
s

e g ANN e g

Fig. 3. Schematic diagram of Q learning algorithm for
agent i ∈ I.

i tu

d tV

i t i t i i tQ s u

i t i t i i tQ s u

i t i t i tQ s

Fig. 4. Schematic diagram of the approximate Q function
based on ANN for agent i.

The flow chart of the decentralized Q learning algorithm
proposed for wind farm power optimisation is shown in
Algorithm 1. Note that during the implement process of
the algorithm, it requires no any prior knowledge of the
transition function T and learns the optimal policy by
online interaction with wind farm. The weight update
(10) and (11) of the approximate Q function of agent i is
carried out without using the information of other agents.
Meanwhile, from Fig. 3 and Fig. 4, it can be observed that
the input of the Q learning algorithm for agent i do not
use the observable information from other agents. Then,
the decentralized solution of optimal joint axial induction
factor is finished by the proposed algorithm.

4. SIMULATION RESULTS

In this section, two simulation examples are presented to
verify the performance of the decentralized Q learning
algorithm in different wind conditions.

As shown in Fig. 5, the wind farm with three turbines is
considered. Its layout is an isosceles right triangle area.
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Fig. 5. A 3-turbine wind farm with various wind condition.

(a) The evolution of AIFs.

(b) The evolution of normalized power on wind farm.

Fig. 6. Simulation results on wind farm under constant
wind condition.

The spacing between turbine W1 and W2 is 400 m. All
the turbines are of the same size and have a diameter
D of 80 m. The roughness coefficient is k = 0.075. The
density of the air is ρ = 1.225kg/m3. The upstream
wind speed is set as V∞=8m/s. A common AIF set
Ui = {ui |0.1 ≤ ui ≤ 0.33} is applied to turbine i ∈ N
in this simulation. It is a subset of the general AIF
set of Ui = {ui |0 ≤ ui ≤ 0.5}, but it is sufficient to
show the performances of algorithms (Zhong and Wang
(2018)). Suppose that the yaw control of turbines can
guarantee their blade disk planes be perpendicular to the
wind direction. The action set of agent i is designed as
Ai = {−0.01, 0, 0.01}, which can guarantee the gradual
change of control input ui of the turbine i according
to (6). The initial joint AIF profile of wind farm is set

(a) The evolution of AIFs.

(b) The evolution of normalized power on wind farm.

Fig. 7. Simulation results on wind farm under time varying
wind condition.

as u0 = (0.33, 0.33, 0.33). The parameters of Q learning
algorithm are set as ε = 0.01, η = 0.95. The three-layer
neutral network is used to model the Q function of agent
i, who has two inputs, five hidden nodes, as well as three
outputs. For comparison purpose, the wind farm power
optimizations based on greedy policy and optimal policy
are also performed, respectively. The optimal policies of
wind farm under different wind conditions are obtained
over the total joint AIF set U by exhaustive search.

4.1 Simulation results under constant wind condition

In this example, the constant wind direction is used, which
points horizontally from west to east. Fig. 6 presents
simulation results, including the evolution of the AIFs
and the evolution of normalized power of wind farm. The
normalization of wind farm power output is performed by
the total power without wake interaction. The Dec Q in
Fig. 6 stands for decentralized Q learning algorithm.

Fig. 6(a) illustrates that the AIFs of all turbines can
converge to the optimal values with the application of
decentralized Q learning algorithm. Further, there is no
sharp change in the control, which is desirable in practice.
Fig. 6(b) shows that the output power of wind farm using
proposed algorithm achieves great improvement than the
one based on greedy policy and approaches the optimal
output power. Therefore, the proposed algorithm can
improve the power efficiency of wind farm under constant
wind condition.
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4.2 Simulation results under time varying wind condition

This example assumes that the upstream wind sweeps
from west-east direction to north-south direction, having
an angle set of {0◦, 10◦, 45◦, 65◦, 90◦} as shown in Fig. 5.
The corresponding simulation results are given in Fig. 7.

From Fig. 7(a), it can be observed that the presented
algorithm can guarantee the AIFs of all turbines converge
to the optimal values under time-varying wind condition.
Fig. 7(b) shows that with the proposed algorithm the wind
farm obtains higher power output than the one with greedy
policy, whose output power is close to the optimal power.
It means that the decentralized Q learning algorithm can
adapt to time varying wind condition by online learning
and improve the power efficiency of wind farm.

5. CONCLUSIONS

In this paper, a model-free decentralized Q learning
method is proposed for the power optimization problem
of wind farm. Preliminary simulation results indicate that
the proposed algorithm can converge to the optimal power
without using wake interaction model. It can also adapt
to different wind conditions through online learning. This
approach also avoids the sharp change of control variable
of wind turbine and therefore it is beneficial to the stability
of the wind farm. Future research includes improving the
algorithm’s convergence rate based on eligibility traces or
experience replay, rigorous proof of the algorithm’s conver-
gence properties, as well as simulation and experimental
tests on a large-scale wind farm.
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