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Abstract: For the lower limb exoskeleton, the system control performance and stability of
human-robot coordinated movement is often degraded by some model parametric uncertainties.
To address this problem, the model parameter identification method based on Neighborhood
Field Optimization (NFO) algorithm is proposed to obtain the accurate model parameters
of 2-DOF exoskeleton, which guides the model-based controller design. For the 2-DOF lower
limb exoskeleton experimental platform, the model is constructed by Lagrange equation.
Meanwhile, the excitation trajectory with the setting mechanical constraints is designed by
NFO to guarantee the identification accuracy. Meanwhile, the Huber fitness function is adopted
to suppress the influence of the disturbance points in sampling dataset with respect to the
identification accuracy. Finally, the NFO algorithm with the Huber fitness function is verified
by 2-DOF lower limb exoskeleton experimental platform.

Keywords: Lower limb exoskeleton, Model identification, Excitation trajectory, Neighborhood
Field Optimization, Huber fitness function.

1. INTRODUCTION

Recently, due to the aggravation of the population aging
problem and the demand increase for patients undergo-
ing rehabilitation training, the exoskeleton has became
one of the research hot-point of medical rehabilitation.
In order to ensure the motion safety, wearable comfort,
and work efficiency of human-robot cooperative task, the
exoskeleton has high requirements for response speed and
stable performance. However, the traditional model-free
controller is hard to achieve the desired requirements,
while the model-based controller needs the precise system
model. As a consequence, the efficient model parameters
identification of exoskeleton is the prerequisite step of
model-based controller design.

? The corresponding author is Q. Guo. This work was supported
by National Natural Science Foundation of China (No. 51775089
and 11872147), Sichuan Science and Technology Program (No.
2018JY0565, 20ZDYF3288).

As introduced in the paper of Young and Ferris (2017),
many contributions about model parameter identification
of multi-link robot were proposed in some considerable
literatures in recent years. For the system modeling, the
exoskeleton dynamic model can be obtained by the La-
grange method or Newton-Euler method in Han et al.
(2019) while the model parameter of the exoskeleton is
hard to get by measuring.

Firstly, the excitation trajectory of data sampling exper-
iment should be designed in advance to ensure the high
quality of the sampling data and the dataset for a better
identification in Swevers et al. (1997). For example, Bonnet
et al. (2016) proposed the excitation trajectory design
method for the legged system with mechanical constraints.
Ayusawa et al. (2017) proposed the excitation trajectory
design method based on the singular value of regressor
matrices. Generally, the common methods for model pa-
rameter identification are the inverse dynamic identifica-
tion model (IDIM) and least-squares estimation (LS) (Wu
et al. (2010)), which are widely applied in various proto-
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Fig. 1. Model identification structure

types and industrial robots (Gautier and Briot (2015)).
In addition, with the development of Artificial Intelligence
(AI) algorithms, many AI algorithms have been adopted
in dynamic model identification of robotic, such as the
artificial neural network in Yazdizadeh et al. (2000), the
Particle Swarm Optimization (PSO) in He et al. (2017),
etc. This paper is going to use an AI algorithm named
Neighborhood Field Optimization (NFO) according to Wu
(2013) which shows performance in terms of optimal ac-
curacy and convergence speed.

Furthermore, for the the disturbance point introduced
by data sampling error and poor filter designed, which
degrades the model parameter identification accuracy, a
popular function in M-estimation called Huber function
(Huber et al. (1973)) employed as fitness function to
address this problem for higher identification performance.

In summary, inspired by previous results on NFO (Wu
(2013)) and the Huber fitness function (Huber et al.
(1973)), the model identification method of 2-DOF lower
limb exoskeleton is studied to accurately obtain the pa-
rameters of exoskeleton model. The main contribution of
this paper are shown as follow:

(I) The NFO algorithm is not only adopted in the model
parameter identification of exoskeleton but also design the
excitation trajectory with motion constraints.

(II) The Huber fitness function is used to suppress the
disturbance points of sampling dataset. In comparison
with other common fitness function, the proposed Huber
function has better identification accuracy and convergent
velocity.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Identification Scheme of Identification

For the 2-DOF lower limb exoskeleton whose model pa-
rameters, such as element mass, moment of inertia, and
centroid position, are difficult to be accurately measured,
and the accurate dynamic model can be obtained by pa-
rameter identification with the high-quality method. The
model identification structure is shown in Fig. 1.

2.2 Neighborhood Field Optimization

NFO algorithm is a class of group optimization algorithm,
which is inspired by the interaction (gravity and repulsive)
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Fig. 2. Experimental prototype and mechanical structure

between natural particles and its neighborhood. Each par-
ticle in the group can move to a better place according
to the NFO algorithm rule. Compared with the Genetic
Algorithm(GA) and PSO, NFO has higher optimal accu-
racy and convergence speed since it effectively takes into
account local information and global information.

For the D-dimension research space, randomize the initial
N individuals. And for the i-th individual in the G-th
generation xi,G ∈ RD, the the superior xci,G ∈ RD and
inferior xwi,G ∈ RD are defined as follows:

xci,G = arg min
f(xk,G)<f(xi,G)

‖xk,G − xi,G‖

xwi,G = arg min
f(xk,G)>f(xi,G)

‖xk,G − xi,G‖
, (1)

where xk,G denotes the other individual, f(·) denotes the
fitness function. Specially, xci,G is equivalent to xi,G when
xi,G is the best individual in the population. Similarly, the
worst individual xwi,G is equivalent to xi,G. Then, defined
the mutation factor as follow:

vi,G = xi,G + α · rand(1) · (xci,G − xi,G)
+α · rand(1) · (xci,G − xwi,G)

, (2)

where α denotes the optimization rate which is the setting
optimization parameter, rand(1) ∈ RD is random vector
with each element belonging to [0, 1]. Subsequently, define
the crossover vector as follow:

uj,i,G =

{
vj,i,G, if rand(0, 1) ≤ Cr or j = jrand
xj,i,G, otherwise

, (3)

where j = 1, 2, . . . , D, Cr = 0.5 denotes the crossover
factor, rand(0, 1) denotes a random number belong to [0, 1]
and jrand is a random component to accept the new mutant
vector. Finally, the better fitness between ui,G and xi,G is
selected as the ith individual in the next generation.

3. MODELING AND IDENTIFICATION

3.1 Dynamic Model of Exoskeleton

Fig. 2 illustrates the mechanical structure diagram of the
2-DOF lower limb exoskeleton. The thigh arm and shank
arm of the exoskeleton are securely connected with the op-
erator’s thigh and shank by force sensor respectively, and
real-time human-robot interaction force can be accurately
measured. Moreover, both hip and knee joint actuators of
the exoskeleton are servo motor.
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In the figure, the O, x, y respectively denote the origin, x-
axis, y-axis of the inertial Cartesian coordinate, θ1 and
θ2 respectively denote the hip and knee joint position,
mth and msh respectively denote the the thigh and shank
weights, the ath and ash respectively denote the thigh and
shank length of exoskeleton, lth denote the distance be-
tween the hip motor and centroid of exoskeleton thigh arm,
lsh denote the distance between the hip motor and centroid
of exoskeleton shank arm. g denote gravity constant.

According to Siciliano et al. (2010), the dynamic model of
2-DOF lower limb exoskeleton is constructed by Lagrange
technique as follow:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + τf(θ̇) = τ + τdis, (4)

where θ, θ̇, θ̈ ∈ R2 respectively denote the joint angle,
joint angular velocity and joint angular acceleration of
exoskeleton, τ ∈ R2 denotes the driving torque of servo
motor, τf(θ̇) denotes the joint friction torque,τdis =
JT (θ)Fdis denotes the human-robot interaction torque
where JT (θ) ∈ R2×2 is Jacobian matrix and Fdis denote

the human-robot interaction force. Furthermore, M(θ)θ̈ ∈
R2×2, C(θ, θ̇)θ̇ and G(θ) denote inertia matrix, Coriolis
matrix and gravity, and the detailed forms as follow

M(θ) =

[
M11 M12

M21 M22

]
,C(θ, θ̇) =

[
C11 C12

C21 C22

]
,G(θ) =

[
G1

G2

]
.

(5)
where M11 = Ith + Ish + mthl

2
th + msha

2
th + mshl

2
sh +

2mshathlsh cos θ2, M12 = Ish +mshl
2
sh +mshathlsh cos θ2,

M21 = Ish + mshl
2
sh + mshathlsh cos θ2 and M22 =

Ish + mshl
2
sh. Ish and Ith respectively denote the mo-

ment of inertia of exoskeleton shank and thigh arm. For
the Coriolis matrix, C11 = −2mshathlsh sin θ2θ̇2, C12 =
−mshathlsh sin θ2 θ̇2, C21 = mshathlsh sin θ2θ̇1 and C22 =
0. And G1 = lthmthg sin θ1 +mshg(ath sin θ1 + lsh sin(θ1 +

θ2)) and G2 = lshmshg sin(θ1 + θ2). Additionally, τf(θ̇)
denotes the joint friction torque, and the detailed form as
follow:

τf(θ̇) =

[
k1,1sgn(θ̇1) + k1,2θ̇1
k2,1sgn(θ̇2) + k1,2θ̇2

]
, (6)

where ki,1, ki,2(i = 1, 2) respectively denote the coulomb
and viscous friction coefficient of hip and knee joint.

Lemma 1. The dynamic model of a multi-link system can
be transformed into the minimum inertia linear form,
hence (4) can be transformed into

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) + τf(θ̇) = Y(θ, θ̇, θ̈)Φ, (7)

where Y ∈ R2×8 and Φ ∈ R8 denote the regression matrix
and parameter vector, and the detailed forms as follow:

Φ =
[
Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) Φ(6) Φ(7) Φ(8)

]T
, (8)

where Φ(1) = Ith + Ish +mthl
2
th +msha

2
th +mshl

2
sh, Φ(2) =

Ish + mshl
2
sh, Φ(3) = mshathlsh, Φ(4) = mthathlth − Ith −

mthl
2
th, Φ(5) = k1,1, Φ(6) = k1,2, Φ(7) = k2,1, Φ(8) = k2,2,

and all elements of Φ are constant parameter depending
on the actual mechanical parameters of object. And

Y =

[
Y (11) Y (12) Y (13) Y (14) Y (15) Y (16) Y (17) Y (18)

Y (21) Y (22) Y (23) Y (24) Y (25) Y (26) Y (27) Y (28)

]
,

(9)

where Y (11) = θ̈1 + e sin θ1, Y (12) = θ̈2 − e sin θ1, Y (13) =
2 cos θ2θ̈1 +cos θ2θ̈2−2 sin θ2θ̇1θ̇2−sin θ2θ̇

2
2 +e sin(θ1 +θ2),

Y (14) = e sin θ1, Y (15) = sgn(θ̇1), Y (16) = θ̇1, Y (17) = 0,

Y (18) = 0, Y (21) = 0, Y (22) = θ̈1 + θ̈1, Y (23) = cos θ2θ̈1 +
sin θ2θ̇

2
1 + e sin(θ1 + θ2), Y (24) = 0, Y (25) = 0, Y (26) = 0,

Y (27) = sgn(θ̇2), Y (28) = θ̇2 and e = g/ath.

Because there is no human-robot interaction in the process
of exoskeleton model identification, τdis = 0 and the
dynamic model as follow:

τ = Y(θ, θ̇, θ̈)Φ. (10)

The τ , θ, θ̇ and θ̈ are obtained by real-time sampling, and
Y is the known function. Consequently, if the all elements
of Φ are identified accurately, the accurate dynamic model
can be obtained.

For the N sets of sampling data, respectively define the
sampling regression dataset Ȳ ∈ R2N×8 and sampling
torque dataset τ̄ ∈ R2N as follow:

Ȳ = [Y (1), Y (2), . . . , Y (n)]T

τ̄ = [τ (1), τ (2), . . . , τ (n)]T
, (11)

where Y(i) and τ (i) respectively denote regression matrix
and torque vector based on i-th sampling data according
to (9). According to the (10) and (11), define the current

estimation parameter vector as Φ̂ and current estimation
torque τ̂ as follow:

τ̂ = ȲΦ̂. (12)

And the estimated torque error τ̃ = τ̄−τ̂ is the important
indicator of assessing Φ̂.

3.2 Excitation Trajectory Design

Excitation trajectory is the desired trajectory of the data
sampling experiment. Setting different excitation trajec-
tory under the same sampling conditions may result in
differences in some properties of the sampled data. For
the exoskeleton model identification, And in the process
of data sampling experiment, the external environmental
disturbance and sensor sampling error may result in in-
accurate sampling data and affect the accuracy of model
parameter identification. To address this problem, a rea-
sonable excitation trajectory can be designed to reduce the
impact on the identification accuracy by the disturbance
in the dataset.

Since Fourier series can theoretically approximate arbi-
trary waveform, the excitation trajectory is designed as
follow:

θd = θi,0 +

N∑
k=0

(ai,k sin (kωf t) + bi,k cos (kωf t))

θ̇d =

N∑
k=0

kωf (ai,k cos (kωf t)− bi,k sin (kωf t))

θ̈d =

N∑
k=0

(kωf )2 (−ai,k sin (kωf t)− bi,k cos (kωf t))

, (13)

where i = 1, 2, k = 1, · · · , N , t ∈ [0, T ] with the
setting sampling period T , ωf denotes the set fundamental
frequency, k denotes the frequency coefficient, θi,0 denotes
the offsets of hip and knee joint excitation trajectory, ai,k

and bi,k denote the parameter to be optimized, and the
different values correspond to different trajectory.
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For different identification objects, the constraints of the
excitation trajectory design are set by analyzing the me-
chanical structure and the performance of related compo-
nents. For the 2-DOF lower limb exoskeleton, by taking
into account the limiter ensuring the safety and efficiency
of the human-robot coordination system, the designed
excitation trajectory has some motion constraints adapted
for human walking gait listed in Table 1.

Table 1. Set motion constraints

Parameter Restriction

Hip Angle θ1 [−0.13, 1.26](rad)

Hip Angular Velocity θ̇1 [−1.92, 1.92](rad/s)

Hip Angular Acceleration θ̈1 [−5.16, 5.16](rad/s2)
Knee Angle θ2 [−1.62,−0.23](rad)

Knee Angular Velocity θ̇2 [−1.64, 1.64](rad/s)

Knee Angular Acceleration θ̈2 [−5.16, 5.16](rad/s2)

In order to guarantee optimal efficiency and optimize
performance, NFO is adopted in excitation trajectory
design. According to (11), the current sampling regression
dataset Ȳ can be calculated based on current excitation
trajectory in ideal simulation environment. And compared

with Ȳ
T
Ȳ and log {det {ȲT

Ȳ}}, the condition number
of Ȳ is selected as the optimized criterion considering
engineering practicality. Considering with the constraints
in Table 1, the fitness function of NFO is shown as follow:

FTra =

{
Cond(Ȳ), if θ, θ̇, θ̈ ∈ Table 1

Inf, Otherwise
. (14)

where Cond(Ȳ) represents the condition number of Ȳ.

3.3 Exoskeleton Model Identification

Based on the excitation trajectory designed in last section,
the sampling data can be obtained by data sampling exper-
iment and dataset Ȳ and τ̄ can be calculated according to
(11). If the dataset are accurate enough, NFO is adopted in

exoskeleton model identification to optimize Φ̂ making the
estimated torque vector τ̂ → τ̄ . Meanwhile, according to
(10), the estimated parameter vector needs to be satisfied

such that Φ̂ → Φ. However, the corresponding model
identification error Φ̃ = Φ̂ −Φ is unacceptable since lots
of disturbance points are mixed in the dataset.

If the sampling data is accurate enough, the traditional
sum of squared error(SSE) can be selected as the criterion
of model identification to ensure the ideal identification
accuracy. Hence, the fitness function can be set as follow:

FSSE =

N∑
i=0

(
E(i)

)
E(i) = τ̃ (i)T τ̃ (i)

, (15)

where E(i) denotes the squared error of the i-th data.

τ̃ (i) = Φ̂Ȳ
(i) − τ̄ (i) denotes the torque estimation error

of the i-th data based on the current estimated parameter
vector Φ̂.

However, since the sampling noise is generated by the
external environment disturbance and sensor noise, the
disturbance point of sampling regression dataset Ȳ is
generated by the first and second joint position derivatives
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Fig. 3. Schematic diagram of identification process

θ̇, θ̈. Meanwhile, for disturbance point of the sampling
torque dataset τ̄ , since lots of chatters are mixed with the
control torque signal because of the differentiator of PD
controller in data sampling experiment, it is difficult to
design the lowpass filter for sampling noise.

To address the above problem, inspired by the disturbance
point processing in M-estimation (Huber et al. (1973)),
design the fitness function of NFO with Huber function as
follow:

FHuber =

N∑
i=0

(
E(i)

)

E(i) =



τ̃ (i)T τ̃ (i), |τ̃ (i)| ≤ δ;

|τ̃ (i)1 |2 + 2δ2(|τ̃ (i)2 | −
δ2
2

), |τ̃ (i)1 | ≤ δ1 |τ̃
(i)
2 | > δ2;

2δ1(|τ̃ (i)1 | −
δ1
2

) + |τ̃ (i)2 |2, |τ̃
(i)
1 | > δ1 |τ̃ (i)2 | ≤ δ2;

2δT
(
|τ̃ (i)| − δ

2

)
, Otherwise.

(16)

where τ̃
(i)
j (j = 1, 2) is the j-th element of τ̃ (i), δ = [δ1, δ2]T

is design torque error threshold.

According to (15), the value of torque error threshold δ
need to select from the relatively reasonable range. To
address this problem, based on sampling dataset Ȳ and τ̄ ,
the initial identification result Φ̂SSE is gotten by NFO with
SSE fitness function (15). Then, analysis the torque esti-

mation error τ̃ based on Φ̂SSE, and select 14% sampling
point with bigger torque estimation error as disturbance
point to select the value of δ. Finally, the identification
result Φ̂Huber is obtained by NFO with Huber fitness
function (16). The model parameter identification process
of exoskeleton is shown in Fig. 3.

4. EXPERIMENT

In order to verify the theory and method in above, the
experiment platform of 2-DOF lower limb exoskeleton has
four functional parts as follows:

1) The signal acquisition module: the two joint positions,
the human-robot interaction forces, and the driven torques
are measured by the absolute encoders(INC-4-150 and
INC-3-125), the 3-D force sensors (JNSH-2-10kg-BSQ-
12)and torque sensor (integrating in the servo motor).

2) The control module: the control algorithm is pro-
grammed in Matlab/Simulink and compiled as a .os file,
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Fig. 4. Excitation trajectory of two joints

which is loaded into Labview and run in the system
controller(cRIO-9035).

3) The execution module: the real-time control driven
commands are executed by two servo motors(GDM1-
100N2/120N2) and servo server driver(Elmo-G-SOLHR15/
100E) to drive the 2-DOF lower limb exoskeleton proto-
type and to realize the desired motion.

Since the hip motor and knee motor need the different
requirements for driving torque, the two different absolute
encoders and servo motors are selected for different joints.

4.1 Excitation Trajectory Design

For the data sampling experiment, the NFO with fit-
ness function (14) is used to design the excitation
trajectory under the motion constraint shown in Ta-
ble 1. And the individual number and iteration num-
ber of NFO respectively are set as 20 and 400, and
θi,0 = [0.61rad;−0.925rad]. Finally, the excitation tra-
jectory parameters for for θd in (13) is designed as
a1hip=0.99, b1hip=1.28, a2hip=-0.68, b2hip=-9.73, a3hip=-
16.40, b3hip=-15.52, a4hip=11.49, b4hip=-6.58, a5hip=-
11.03, b5hip=-4.06, a1knee=-4.53, b1knee=7.80, a2knee =3.53,
b2knee=-2.91, a3knee=-0.73, b3knee=-15.50, a4knee =6.46,
b4knee=10.30, a5knee=-7.94 and b5knee=-8.75. Consequent-
ly, the excitation trajectories are shown in Fig. 4. And by
analyzing Fig. 4, it can seen that θd is restricted in the
motion constraints.

4.2 Model Parameter Identification

Based on the dataset Ȳ and τ̄ obtained by 35 sec duration
of data sampling with 10ms sampling period, the 8 model

parameters of both Φ̂
(i)
Huber(i = 1, . . . , 8) and Φ̂

(i)
SSE(i =

1, . . . , 8) are obtained by NFO with 40 individuals and 400

iterations. Firstly, the Φ̂SSE is obtained by NFO with SSE
fitness function. Then, set the 14% of points, whose torque
estimation error τ̃ is higher according to Φ̂SSE ,of dataset
as disturbance point and the torque error threshold δ is
selected as [138.46; 92.89]. The parameters of Φ̂SSE are

shown as Φ̂
(1)
SSE = 27.97kg · m2, Φ̂

(2)
SSE = 12.15kg · m2,

Φ̂
(3)
SSE = 1.79kg · m2, Φ̂

(4)
SSE = −8.41kg · m2, Φ̂

(5)
SSE =

31.83kg·m, Φ̂
(6)
SSE = 15.25N·kg·s·rad−1, Φ̂

(7)
SSE = 52.39kg·

m and Φ̂
(8)
SSE = −5.89N · kg · s · rad−1. Meanwhile, the
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Fig. 5. The two estimated torques τ̂ based on the identified
parameter vector Φ̂SSE for θd
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Fig. 6. The two estimated torques τ̂ based on the identified
parameter vector Φ̂Huber for θd

parameters of Φ̂Huber are shown as Φ̂
(1)
Huber = 25.14kg·m2,

Φ̂
(2)
Huber = 7.42kg · m2, Φ̂

(3)
Huber = 1.43kg · m2, Φ̂

(4)
Huber =

−10.42kg · m2, Φ̂
(5)
Huber = 31.35kg · m, Φ̂

(6)
Huber = 12.53N ·

kg · s · rad−1, Φ̂
(7)
Huber = 43.40kg ·m and Φ̂

(8)
Huber = 28.01N ·

kg · s · rad−1.

Based on the two identified parameter vectors Φ̂SSE and
Φ̂Huber, the two estimated torques τ̂ are obtained and
displayed in Fig. 5-6. It shows that two joint estimated
values τ̂ are consistent with the corresponding measured
motor torques. The new verification trajectory θr is
randomly generated with the motion constraints to ver-
ify the reasonable parameter identification. Similarly, the
estimated motor torque τ̂ computed by two identified
parameters Φ̂SSE and Φ̂Huber are shown in Figs. 7-8.
In the verification experiment, the Huber performance of
torque by using the identified parameters Φ̂Huber is better
than that by using Φ̂SSE in the verification experiment
and the SSE of τ̂ based on the Φ̂Huber and Φ̂SSE is
6.53 × 109 and 1.03 × 1010. Hence, the performance of
estimated torque by using the identified parameter vector
Φ̂Huber is better comparing with that by using Φ̂SSE in
verification experiment.

4.3 NFO Performance Results

The NFO algorithm was used to design the excitation
trajectory of data sampling experiment and identify the
model parameters of 2-DOF lower limb exoskeleton. The
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Fig. 7. The two estimated joint torques τ̂ based on the
identified parameter vector Φ̂SSE for θr
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Fig. 8. The two estimated joint torques τ̂ based on the
identified parameter vector Φ̂Huber for θr
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Fig. 9. Excitation trajectory optimization fitness curves
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Fig. 10. Model parameter identification fitness curves with
SSE

fitness optimization curves with respective to 3 optimiza-
tion algorithm such as PSO, GA, NFO are shown in
Fig. 9-10. Hence, it is clearly seen that the optimization
accuracy and the optimization performance of NFO are
better compared with PSO and GA.

5. CONCLUSION

In this study, the model parameter identification method
of 2-DOF lower limb exoskeleton was proposed to ensure
the identification accuracy and the convergence speed.
Firstly, for the exoskeleton model, the excitation trajectory
parameters was designed by NFO with fitness function

(14) under restrictions in Table. 1. Then, the sampling
dataset Ȳ and τ̄ were obtained by the sampling data.
Next, the NFO with Huber fitness function (16) was
adopted to identify the model parameter vector, which
improves the identification accuracy and show the better
performance compared with SSE fitness function (15).
Finally, the model identification method proposed above
was verified by the identification experiment in 2-DOF
lower limb exoskeleton experimental platform. The future
works will identify online a modification of the model
parameters, and compensate the influence on dynamic
performance of model parameter variation.
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