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Abstract: This paper investigates the issue of control design for linear systems with prescribed
performance. The novelty of the proposed solution relies on a switching control scheme that
uses the interval theory. Different from the existing prescribed performance control approaches,
the error transformation and the logarithmic/tangent function are no longer required in
the presented control. Alternatively, a switching scheme inspired by the interval observer
technique is introduced to ensure the errors not violating performance bound functions. The
proposed control establishes an unified prescribed performance control framework which covers
the bounded stability, asymptotic stability and finite-time stability only via selecting the
corresponding performance bound functions. Numerical examples are simulated to demonstrate
the effectiveness of the proposed approach.
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1. INTRODUCTION

Prescribed performance control (PPC) is a recent control
approach that aims to ensure the tracking error to satisfy
predefined transient and steady-state bounds, see (Bech-
lioulis et al., 2008; Bu et al., 2018; Li et al., 2018) to cite
a few papers. PPC means that the tracking error should
be limited to an arbitrarily small residual set, while its
convergence rate is not less than a given constant and the
maximum overshoot is less than a prescribed value.
This technique is also exploited in (Bechlioulis and
Rovithakis, 2011) in a robust setting for cascade systems
by applying partial states. Under the framework of back-
stepping, a PPC method is presented in (Hu Y., 2014;
Song H., 2014) and further investigated in (Bu et al.,
2018). Other approaches combine PPC with other tech-
niques to solve the adaptive control (Li et al., 2018), fault-
tolerant control (Zhang et al., 2017) and unknown control
direction issue (Li et al., 2018). Recently, a low-complexity
approximation-free universal control scheme was proposed
for unknown pure-feedback systems (Bechlioulis et al.,
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2014) inspired by the PPC. This method extends the
PPC to the robust field since there is no requirement
for any disturbance observer or fuzzy/neural networks
approximation mechanism. Furthermore, some practical
applications, such as flexible joint robots subject to actual
system nonlinearities (Kostarigka et al., 2013), hypersonic
flight under parametric uncertainties (Bu et al., 2016; Guo
et al., 2020) and spacecraft (Hu et al., 2018) have also been
addressed by the PPC technique.

Actually, the basic thought of the PPC includes two steps:
i) The error transformation is conducted in the first step
to convert the constrained system to a unconstrained one.
In this phase, the logarithmic or tangent function is com-
monly used to define the new error variables based on the
performance bound functions. ii) The second step is to
design a control to stabilize the transformed system. Here,
all existing control theories are potentially viable.

However, there exist two major drawbacks in the existing
PPC theories. i) The first one is related to the system
stability. The standard PPC theory only guarantees the
bounded stability (Bechlioulis et al., 2008). A PPC frame-
work covering all types of stability such as asymptotic and
finite-time stability, has not been yet established. Note
that solutions have been proposed to this problem, see
(Li et al., 2018) for asymptotic and (Chen, 2019) for
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finite-time stability issues. However, the stability relies
on the control method itself, and not at the performance
bound function tuning level. ii) The second drawback is
concerned by the prescribed value that can be set for the
steady-state bound. In the existing PPC, this bound can-
not be set to zero since it results in the large control burden
since the state is very close to the performance bound.
Thus, the control parameters tuning is quite sensitive to
this steady-state bound.

Motivated by these drawbacks, the aim of this paper is
to investigate an unified solution for the PPC theory.
Especially, we investigate a PPC framework whose design
is based only on tuning the performance bound functions,
so that, by tuning them adequately, it is possible to enforce
independently bounded, asymptotic or finite-time stabil-
ity. In other words, the PPC scheme is thought unified and
the obtained stability only depends on the selection of the
performance bound functions. To proceed, it is proposed
to use the interval theory, see for instance (Farina et al.,
2000; Raissi et al., 2012; Ellero et al., 2019). The basic
thought of the interval theory is to enforce signals to stay
in an envelop, whose tight is minimized by means of an
optimisation procedure. To some degrees, this philosophy
is similar with the PPC at the point of restricting the
variables into a certain range, and this is the genesis of
the PPC theory we investigate in this paper.

Compared to existing PPC schemes, the presented ap-
proach no longer needs the error transformation and log-
arithmic/tangent function. This provides an alternative
solution. More interestingly, the proposed solution allows
the steady-state bound to be set to zero, which means
that asymptotic stability can be enforced. Moreover, the
finite-time performance bound function can be chosen such
as the output converges to zero in finite time and always
falls into the prescribed performance limitations. However,
it is worth to note that the proposed theory is currently
only available for a restricted class of linear time invariant
system, i.e. systems of relative order equal to 1. Further
investigations are necessary to deal with higher relative
order systems.

The paper is organized as follows. Section 2 lays down
some preliminaries and section 3 states the problem. Main
results are given in sections 4 and 5. Section 6 provides
simulation examples.

2. PRELIMINARIES

This section is devoted to notations, definitions and lem-
mas that will be later used in the paper.

R and R+ := [0,∞) ⊂ R are the set of real numbers
and the set of nonnegative real numbers, respectively.
Rn is a n-dimensional real space and Rn×m is the set
of real n × m matrices. The function sgn(y) denotes
the standard sign function for a scalar y, and sgn(x) =
diag(sgn(xi)) ∈ Rn×n (i = 1, 2, . . . , n) for a vector
x ∈ Rn. For a matrix A ∈ Rn×m, ≥,≤, >,< refer to
component-wise. For vectors a1 ∈ Rn, . . . , am ∈ Rn,
the function Max(a1, . . . , am) : Rn × · · · × Rn → Rn

is also defined component-wise, i.e., Max(a1, . . . , am) =
[max(a11, . . . , am1), . . . ,max(a1n, . . . , amn)]T .

Definition 1. (Bechlioulis et al., 2008) (Prescribed per-
formance control PPC). Consider a system’s realization
with state x(t) ∈ Rn and control input u(t) ∈ Rm. Any
control u(t) that guarantees x(t) ∈ [ρ(t), ρ(t)],∀t ≥ 0
is called a prescribed performance control. The functions
ρ̄(t), ρ(t) ∈ Rn are called performance bound functions.

Definition 2. (Polyakov et al., 2014) (bounded, asymp-
totic and finite-time stability) Define that B(r) = {x ∈
Rn : ||x|| < r} is an open ball of the radius r ∈ R+ with
the origin. The origin of the system (1) is said to be
i) bounded stable (Lyapunov stable), if for ∀ε ∈ R+,
∃δ = δ(t0, ε) ∈ R+ such that for ∀x(t0) ∈ B(δ), x(t) ∈ B(ε)
for t ≥ t0.
ii) asymptotically stable, if it is bounded stable and
lim
t→∞

||x(t)|| = 0.

iii) finite-time stable, if it is bounded stable and there
exists a function T : Rn → R such that for t ∈ [0, T (x)),

lim
t→T (x)

||x(t)|| = 0.

Definition 3. (Farina et al., 2000) (Metzler matrix). A
square matrix S is said to be Metzler if all its off-diagonal
elements are non negative, i.e. Si,j ≥ 0, 1 ≤ i 6= j ≤ n.

Lemma 1. (Farina et al., 2000). Let an autonomous sys-
tem be given by ż(t) = Sz(t) + θ(t), z ∈ R, θ : R+ → Rn

+

where the matrix S ∈ Rn×n is Metzler. If z(t0) ≥ 0 then
z(t) ≥ 0, ∀t ≥ t0. Such systems are called cooperative.

3. PROBLEM STATEMENT

Consider the particular class of linear time-invariant (LTI)
systems

ẋ = Ax+Bu

y = x
A,B ∈ Rn×n (1)

where the state x ∈ Rn is assumed measured and u ∈
Rn denotes the control input. (A,B) is supposed to be
controllable without loss of generality. Obviously, the
relative order of (1) equals to one and the control matrix
B is a square matrix.

The goal we pursue is to design a (state feedback) control
law so that x(t) ∈ Rn belongs to an a priori given interval
[ρ(t), ρ(t)],∀t ≥ 0 with performance bound functions ρ, ρ ∈
Rn. In other words, we look for a PPC law according to
Definition 1.

The following assumptions are made:

Assumption 1. (Farina et al., 2000) For the linear system
(1), ∃K such that the matrix A+K is Metzler.

Assumption 2. The performance bound functions ρ̄(t) and
ρ(t) can be set as ρ̄(t) = −ρ(t) = ρ(t) where ρ(t) is a
differentiable, bounded, positive and decreasing function
of time. Furthermore, ρ(t) is assumed to be known.

Assumption 3. The control matrix B is nonsingular.

Assumption 1 will enable us to use the theory of cooper-
ative systems, see lemma 1. Assumption 2 is nothing else
than a centred formulation of the performance bound func-
tion proposed in (Bechlioulis et al., 2008, 2014) which is
defined as ρ(t) = [ρ1(t), . . . , ρn(t)]T where ρi(i = 1, . . . , n)
is given by the following form

ρi(t) = (ρi,0 − ρi,∞)e−lit + ρi,∞ (2)

where ρi,0 > ρi,∞ > 0, and li > 0. Assumption 3 is re-
quired for the proposed solution to be valid. Assumption 3
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seems conservative for the control design. However, the
aim of this paper is only to show the basic spirit of the
novel PPC framework inspired by the interval theory, and
the solution for the system with general form (such as the
cascade form) will be discussed in future work.

4. SOLUTION FOR n = 1

Let us first consider the case n = 1 for a good understand-
ing. Then (1) is re-written according to

ẋ = ax+ bu (3)

where the state x, the control u and a, b are scalars. The
proposed PPC scheme is given by

u =
1

b

−rsgn(x) +


−kē x > 0

0 x = 0

ke x < 0

 (4)

where the parameter k ∈ R is to be designed and the errors
are defined as ē = ρ̄− x and e = x− ρ. The gain r ∈ R is
selected to satisfy

r ≥ aρ− ρ̇ ∀t (5)

Besides, it is assumed that the initial condition of the
system state satisfies ρ(0) ≤ x(0) ≤ ρ̄(0).

Since symmetric performance bound functions are consid-
ered, the fact that x(t) ≥ 0 ∀t implies that e(t) > 0 ∀t
holds and, vice versa, x(t) ≤ 0 ∀t ensures that ē > 0 ∀t.
Thus, without loss of generality, let us assume that x(0) ≥
0 is set. According to (4), u = 1

b (−kē− r) and it follows

˙̄e = ˙̄ρ− ax+ kē+ r = (a+ k)ē+ ˙̄ρ− aρ̄+ r (6)

or equivalently
˙̄e = (a+ k)ē+ v (7)

with v = r + ˙̄ρ − aρ̄. Using assumption 2, it follows
v = r + ρ̇ − aρ and by virtue of (5), we have v(t) ≥ 0
∀t ≥ 0. Then, by virtue of lemma 1 and since ē(0) ≥ 0
(thanks to the condition x(0) ≤ ρ̄(0)), it follows ē(t) ≥ 0
∀t ≥ 0 and any value for k (including zero) is suitable
to keep ē(t) positive. This case is also a special case for
scalars with respect to Lemma 1.

The property ē(t) ≥ 0 ∀t ≥ 0 does not guarantee that the
system state x(t) do not cross zero. In this case, there
exists t1: x(t1) = 0. Then the control is switched into
u = 1

b (ke+ r) for t1 + ∆t where ∆t > 0 denotes a small
time interval. Differentiating the error e leads to

ė = ax+ ke+ r − ρ̇ = (a+ k)e+ aρ− ρ̇+ r (8)

or equivalently with Assumption 2

ė = (a+ k)e+ v (9)

with v(t) ≥ 0 ∀t according to (5). Noting that e(t1 +
∆t) > 0, it follows by virtue of Lemma 1 that e(t) ≥ 0
∀t ≥ t1 + ∆t.

This reasoning leads to the following theorem.

Theorem 1. Consider the system (3) satisfying the initial
condition ρ(0) ≤ x(0) ≤ ρ̄(0), the control law (4) and
the performance bound function (2). If the gain r satisfies
(5), then the (closed-loop) system state is bounded so that
ρ(t) ≤ x(t) ≤ ρ̄(t) ∀t ≥ 0.

Proof. Immediate using the above developments. 2

Based on the analysis above, the overall dynamics of ē and
e can be written according to

˙̄e ∈


(a+ k) ē+ ˙̄ρ− aρ̄+ r x > 0

aē− ke+ ˙̄ρ− aρ̄− r x < 0

Co

 ⋃
j∈N(t,x)

{
(a+ k) ē+ ˙̄ρ− aρ̄+ r,

aē− k + ˙̄ρ− aρ̄− r

} x = 0

(10)
and

ė ∈


ae− kē+ aρ− r − ρ̇ x > 0

(a+ k) e+ r + aρ− ρ̇ x < 0

Co

 ⋃
j∈N(t,x)

{
ae− kē+ aρ− r − ρ̇,
(a+ ke) + r + aρ− ρ̇

} x = 0

(11)
where the symbol ”Co” represents the convex closure.
Therefore, the solution of closed-loop discontinuous system
(3) with its control law (4) should be understood in the
right-hand side under the Filippov sense (Filippov, 1998).

5. EXTENSION TO n > 1

5.1 Main results

Let us now consider the generalization of the developments
stated in section 4 to the case n > 1. Define the PPC law
according to the following switching control scheme

u = B−1 (Kx−Ksgn(x)ρ− sgn(x)R) (12)

where the matrix K ∈ Rn×n is designed such that A+K
is Metzler. The function R ∈ Rn represents the control
gain to be designed. The initial system state is assumed to
satisfy ρ(0) ≤ x(0) ≤ ρ̄(0). Since the state x is a vector,
the positiveness/negativeness of x(0) must be discussed in
the following way. Without loss of generality, consider the
case that some elements of x(0) are negative and others
are positive. Let us denote l as the number of non-negative
elements of x(0), which can be represented as xsi(0) (i =
1, . . . , l, si ∈ {1, 2, . . . , n}). Thus, there exist m−l negative
elements, say xqj (0) (j = 1, . . . , n − l, qj ∈ {1, 2, . . . , n}).
Define that

xs = [xs1 , . . . , xsi , . . . , xsl ]
T ∈ Rl, 0 ≤ l ≤ n

i = 1, . . . , l, si ∈ {1, 2, . . . , n}
xq = [xq1 , . . . , xqj , . . . , xqm−l

]T ∈ Rn−l

j = 1, . . . , n− l, qj ∈ {1, 2, . . . , n}

(13)

satisfying xs(0) ≥ 0, xq(0) < 0. Consider the following
upper and lower errors associated to xs and xq respectively

ēs = ρ̄s − xs, eq = xq − ρq (14)

where ρ̄s = ρs ∈ Rl, ρ
q

= −ρq ∈ Rn−l play similar

roles with ρ̄, ρ, where ρs = [ρs1 , . . . , ρsl ]
T and ρq =

[ρq1 , . . . , ρqn−l
]T . Define that Bs = [Bs1 ; . . . ;Bsl ] ∈ Rl×n

and Bq = [Bq1 ; . . . ;Bqn−l
] ∈ Rl×(m−l) where Bsi ∈

R1×n and Bqj ∈ R1×n denote the sith and qjth row

of the matrix B. Define that us = [us1 , . . . , usl ]
T ∈

Rl and uq = [uq1 , . . . , uqn−l
]T ∈ Rn−l where usi(i =

1, . . . , l), uqj (j = 1, . . . , n − l) denote the corresponding

sith and qjth elements of Bu ∈ Rn×1. Recall that sgn(x) ∈
Rn×n is a diagonal matrix, and it can be verified that
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x = (BsB
−1)Txs + (BqB

−1)Txq

sgn(x)ρ = (BsB
−1)T ρs − (BqB

−1)T ρq
(15)

hold, and then one has that

us = BsB
−1Bu

= BsB
−1Kx−BsB

−1Ksgn(x)ρ−BsB
−1R

= BsB
−1K(BsB

−1)Txs +BsB
−1K(BqB

−1)Txq

−BsB
−1K(BsB

−1)T ρs +BsB
−1K(BqB

−1)T ρq

−BsB
−1R

= −BsB
−1K(BsB

−1)T ēs +BsB
−1K(BqB

−1)T eq

−BsB
−1R

(16)
and

uq = BqB
−1Bu

= BqB
−1Kx−BqB

−1Ksgn(x)ρ+BqB
−1R

= BqB
−1K(BsB

−1)Txs +BqB
−1K(BqB

−1)Txq

−BqB
−1K(BsB

−1)T ρs +BqB
−1K(BqB

−1)T ρq

+BsB
−1R

= −BqB
−1K(BsB

−1)T ēs +BqB
−1K(BqB

−1)T eq

+BqB
−1R

(17)
Note that ˙̄es = ˙̄ρs − ẋs and ėq = ẋq − ρ̇q, and combining

(16) and (17) yields

˙̄es = ρ̇s −BsB
−1(Ax+Bu)

= ρ̇s −BsB
−1Ax− us

= BsB
−1(A+K)(BsB

−1)T ēs −BsB
−1A(BsB

−1)T ρs

−BsB
−1(A+K)(BqB

−1)Txq −BsB
−1K(BqB

−1)T ρq

+ ρ̇s +BsB
−1R

(18)
and
˙̄eq = BqB

−1(Ax+Bu) + ρ̇q

= BqB
−1Ax+ uq + ρ̇q

= BqB
−1(A+K)(BsB

−1)Txs −BqB
−1K(BsB

−1)T ρs

+BqB
−1(A+K)(BqB

−1)T eq −BqB
−1A(BqB

−1)T ρq

+ ρ̇q +BqB
−1R

(19)
Further, (18) and (19) can be rewritten as the following
compact dynamic system[

˙̄es
ėq

]
=[

BsB
−1(A+K)(BsB

−1)T 0
0 BqB

−1(A+K)(BqB
−1)T

]
·
[
ēs
eq

]
+

[
−BsB

−1(A+K)(BqB
−1)Txq

BqB
−1(A+K)(BsB

−1)Txs

]
+

[
Vs
Vq

]
(20)

where Vs = BsB
−1(R + ρ̇ − Aρ − (K − A)(BqB

−1)T ρq)
and Vq = BqB

−1(R+ ρ̇−Aρ− (K−A)(BsB
−1)T ρs). The

function R ∈ Rn should be selected to satisfy the following
requirement

R ≥ Aρ− ρ̇
+ Max((K −A)(BqB

−1)T ρq,

(K −A)(BsB
−1)T ρs, 0n×1) ∀t

(21)

which leads to the following property.

Lemma 2. For the system (20), if the matrix A + K is
Metzler and the condition (21) holds, then it can be
verified that:
−BsB

−1(A+K)(BqB
−1)Txq(t) + Vs(t) ≥ 0 ∀t ≥ 0

BqB
−1(A+K)(BsB

−1)Txs(t) + Vq(t) ≥ 0 ∀t ≥ 0
(22)

and the matrix[
BsB

−1(A+K)(BsB
−1)T 0

0 BqB
−1(A+K)(BqB

−1)T

]
(23)

is Metzler.

Proof. Let Ā = A + K = [āij ] (i, j = 1, 2, . . . , n), then
the following relationships are satisfied

BsB
−1(A+K)(BsB

−1)T

= [āij ]l×l(i = s1, . . . , sl; j = s1, . . . , sl)

BqB
−1(A+K)(BqB

−1)T

= [āij ](n−l)×(n−l)(i = q1, . . . , qn−l; q1, . . . , qn−l)

BsB
−1(A+K)(BqB

−1)T

= [āij ]l×(n−l)(i = s1, . . . , sl; j = q1, . . . , qn−l)

BqB
−1(A+K)(BsB

−1)T

= [āij ](n−l)×l(i = q1, . . . , qn−l; j = s1, . . . , sl)

(24)

Since that A + K is Metzler and āij ≥ 0 (i 6= j), it can
be obtained that the matrices BsB

−1(A + K)(BsB
−1)T

and BqB
−1(A+K)(BqB

−1)T are Metzler and BsB
−1(A+

K)(BqB
−1)T ≥ 0 and BqB

−1(A + K)(BsB
−1)T ≥ 0.

Thus, (23) must be hold.
Note that xs(t) includes the non-negative elements, and
thus xs(t) ≥ 0 holds for ∀t ≥ 0. Also, xq(t) < 0,∀t ≥ 0.
Furthermore, the condition (21) implies that Vs(t) ≥ 0 and
Vq(t) ≥ 0 ∀t ≥ 0. Therefore, (22) is guaranteed, and this
completes the proof. 2

Remark 1. The matrix BsB
−1 acts an role of selecting the

corresponding si row of a vector. For example, if n = 3 and

s1 = 1, s2 = 3, then BsB
−1 =

[
1 0 0
0 0 1

]
holds. Similarly, the

qi row of a vector is selected with the help of BqB
−1.

By virtue of Lemma 1 and Assumption 1, it is demon-
strated that ēs(t) ≥ 0, eq(t) ≥ 0 ∀t ≥ 0, since ēs(0) ≥ 0
and eq(0) ≥ 0. The following theorem then yields.

Theorem 2. Consider the system (1) satisfying the initial
condition ρ(0) ≤ x(0) ≤ ρ̄(0), the control law (12) and the
performance bound functions (2). If the gain R satisfies
(21), then the (closed-loop) system state is bounded so
that ρ(t) ≤ x(t) ≤ ρ̄(t) ∀t ≥ 0.

Proof. Consider the ith element xi of x. If the initial
value xi(0) satisfies xi(0) ≥ 0, then xi(0) ∈ xs(0), and
thus es(t) ≥ 0 ∀t ≥ 0 holds, which implies that ēi ≥ 0
for this ith element. In the same time period, xi ≥ 0 ≥ ρ

i
must be satisfied, and thus ρ

i
≤ xi ≤ ρ̄i holds.

If there exists a moment t1 when xi(t1) < 0, then the
non-negative or positive elements have changed, and thus
the symbols s and q can be changed into s′ and q′.
Correspondingly, (20) will be reformulated as a [ēTs′ , e

T
q′ ]

T

system with the similar form. In this new dynamics,
the moment t1 is taken as the new initial point. The
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conclusions in Lemma 2 also hold and ēs′(t) ≥ 0, eq′(t) ≥ 0
for ∀t ≥ t1. Note that xi(t1) ∈ xq′(t1), and thus ei ≥ 0.
Combining that ρ̄i ≥ 0 ≥ xi, and it follows that ρ

i
≤

xi ≤ ρ̄i. By using the similar statements, we can extend
the conclusion to other time interval where the sign of xi(t)
changes. Therefore, it can be concluded that the state xi(t)
will keep inside the upper bound ρ̄i(t) and lower bound
ρ
i
(t) even the switching happens.

The same conclusion can be obtained when xi(0) < 0.
Thus, ρ

i
(t) ≤ xi(t) ≤ ρ̄i(t) is always satisfied. Similar

analysis can be conducted into the other elements of the
state x. Therefore, it can be concluded that the state
ρ
i
(t) ≤ xi(t) ≤ ρ̄i(t),∀t ≥ 0. Note that the performance

bound functions ρ̄(t) and ρ(t) are bounded, and thus the
closed-loop system is ultimately bounded. This completes
the proof. 2

Remark 2. Compared with existing PPC approaches (Bech-
lioulis et al., 2008, 2014; Zhang et al., 2017; Li et al., 2018),
the presented control no longer needs the error transfor-
mation and logarithmic/tangent function, and provides an
alternative switching scheme to ensure the performance
restricted in a certain limitation. More interestingly, the
proposed control allows the final bound ρ∞ to be set to
zero which cannot be admitted in existing PPC approaches
due to the logarithmic or tangent function.

5.2 Discussion on the unified PPC framework

The proposed control provides a new way to address the
PPC issue through the following corollary.

Corollary 1. Consider the system (1) satisfying the initial
condition ρ(0) ≤ x(0) ≤ ρ̄(0), the control (12) and the
performance bound functions (2). If R satisfies (21), then
ρ(t) ≤ x(t) ≤ ρ̄(t) is always satisfied and (see definition 2)

(1) arbitrary ρ(t) allows to guarantee bounded stability
of the closed-loop;

(2) If the final value ρi,∞ = 0 ∀i are set in the perfor-
mance bound function (2), then asymptotic stability
is achieved for the controlled system;

(3) If the performance bound function ρ(t) is chosen
as a finite-time and at least first-order differentiable
function, then finite time stability is guaranteed for
the closed loop.

Proof. Immediate considering the property ρ(t) ≤ x(t) ≤
ρ̄(t) ∀t ≥ 0. 2

As stated in Corollary 1, the different system stability can
be obtained only by using different performance bound
functions, and thus the proposed control method can es-
tablish a framework to achieve the bounded, asymptotic
or finite-time stability. For instance, the finite-time perfor-
mance bound function can be selected as

ρ̇(t) = −csgn(ρ(t)), c > 0 (25)

6. SIMULATION STUDY

Consider the simple linear system

ẋ = x+ u (26)

with x(0) = 2, and the following performance bound
functions
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Fig. 1. Responses of the state and control in Case 1
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Fig. 3. Responses of the state and control in Case 2
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• Case 1: (2) with ρ0 = 3, l = 1, ρ∞ = 0.1
• Case 2: (2) with ρ0 = 3, l = 1, ρ∞ = 0
• Case 3: (25) with c = 1 and ρ0 = 3

Case 1 is to demonstrate the bounded stability, case 2 is for
asymptotic stability and case 3 is concerned by finite-time
stability.

The control parameters are set as r = 7, k = −3. In fact,
ρ̇ = −l(ρ0−ρ∞)e−lt = −2.9e−t, and thus it can be verified
that the condition (21) holds.

As shown in Fig. 1, Fig. 3 and Fig. 5, the state x is
restricted between the prescribed performance functions,
and thus simulation results verify the proposed control
method in all three cases. Note that Fig. 4(a) and Fig. 6(a)
reveal that ē(t) < 0 for some t, and thus x1 escapes the
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Fig. 5. Responses of the state and control in Case 3
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Fig. 7. Responses of the state and control under k = 1

zero, see Fig. 3(a) and Fig. 5(a). It can be explained that
the absolute zero-tracking cannot be achieved in the nu-
merical simulation via the switching scheme. However, this
phenomenon exactly demonstrates the advantage of the
proposed control approach. The escape from the required
performance bound does not destroy the control system,
but the existing PPC system will be terminated once the
escape occurs due to the logarithmic/tangent function.

Finally, we would like to discuss the selection of k. For k =
−3, the transition matrix of the closed-loop is Hurwitz,
which is not the case for k = 1. However, the state x can
still be driven to zero using the proposed control scheme,
and thus, the bounded stability can be ensured, see Fig. 7.
This means that the state is forced to the region between
the upper bound and lower bound, thus, switching occurs
around zero which causes a chattering in the control u.

7. CONCLUSION

This paper proposes a switching control scheme to guaran-
tee prescribed performance for a particular case of linear
time invariant system. The main feature consists of a
unified prescribed performance control framework which
covers the bounded stability, asymptotic stability and
finite-time stability only via choosing the corresponding
performance bound functions. Simulation results verify the
effectiveness of the proposed method. Future works include
the extension to the industrial system with general form.
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