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Abstract: New types of homogeneous and homogeneous-in-bilimit filtering observers and
differentiators are proposed and applied for the global robust homogeneous asymptotic output-
feedback stabilization of disturbed integrator chains. The type of convergence (finite-time,
fixed-time to any ball or just asymptotic) is determined by the chosen system homogeneity
degree (HD). Output-feedback sliding-mode control is an important particular case. Stabilization
accuracy is calculated in the presence of possibly unbounded noises having a bounded multiple
integral. Successful stabilization is demonstrated for very large noises and different HDs.
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1. INTRODUCTION

The classical output-regulation problem is often reduced
to the stabilization of an integrator chain (Brunowsky
system) σ(n) = h + gu, g 6= 0, with uncertain functions
h and g depending on the time and the state (Isidori,
1989). It is natural to replace the unknown functions h, g
with some known sets producing a separate differential
inclusion to be stabilized. The length of the chain dictates
the number of the output derivatives to be estimated for
the output-feedback control.

The control design method is often based on the homoge-
neous extension (Bernuau et al., 2013). A well-known case
is the high-order sliding-mode (SM) control (SMC), since
it only requires the boundedness of the functions h, g (Bar-
tolini et al., 2003; Cruz-Zavala and Moreno, 2016a; Davila
et al., 2009; Floquet et al., 2003; Harmouche et al., 2017;
Koch et al., 2020; Levant, 2003, 2005, 2017). Integrator
chains are stabilized by homogeneous controllers in many
papers, in particular by Hong (2002).

The problem is solved in finite time (FT) for the negative
homogeneity degrees (HDs), or asymptotically for non-
negative HDs (Levant et al., 2016). The convergence time
to any ball around the origin is uniformly bounded for
positive HDs (fixed time (FxT) convergence) (Andrieu
et al., 2008; Angulo et al., 2013; Polyakov, 2012). SMC
corresponds to the system HD −1/n, provided the HD
deg σ = 1 is chosen.

Being very sensitive to sampling times and very large
already at moderate distances from the origin, FxT control
is often not feasible. Nevertheless, it becomes the best
choice in the control of explosive systems capable of finite-
time escape to infinity. In the homogeneity theory it
corresponds to the positive system HD.

It is well-known that linear control and SMC allow effective
output-feedback control design (Atassi and Khalil, 2000;
Levant, 2003). Such methods are unknown for the system
HDs larger than −1/n and not approximating 0. Standard
SM-based differentiators correspond to semiglobal output-

feedback controllers and destroy the closed system accu-
racy. This paper is to close that gap. For this end we ap-
ply homogeneous differentiators (Perruquetti et al., 2008;
Cruz-Zavala and Moreno, 2016b) also for positive HDs. We
prove that in spite of being exact only on polynomials, they
become effective observers in the homogeneous feedback.

Noisy sampling make observation difficult Khalil and
Priess (2016). We equip the proposed observers with the
filtering extensions (Levant and Yu, 2018; Levant and
Livne, 2019) preserving robust exact observation and pro-
viding for good estimation even in the presence of un-
bounded noises, having a small multiple integral.

We propose a new type of differentiators called hybrid fil-
tering differentiators, extending the fast-converging hybrid
differentiators (Levant and Livne, 2018) to the general
negative homogeneity degrees and equipping them with
the filtering capabilities. Their accuracy is calculated in
the output-feedback SMC case.

Our simulation demonstrates successful stabilization in the
presence of very large measurement noises.

Notation. A binary operation � of two sets is defined as
A �B = {a � b| a ∈ A, b ∈ B}; a �B = {a} �B. A function
of a set is the set of function values on this set; ||x||h is a

homogeneous norm; baeb = |a|b sign a, bae0 = sign a.

2. HOMOGENEOUS STABILIZATION PROBLEM

Recall that solutions of the differential inclusion (DI)

ẋ ∈ F (x), F (x) ⊂ TxRnx , (1)

are defined as locally absolutely continuous functions x(t),
satisfying the DI for almost all t. Here TxRnx denotes the
tangent space to Rnx at x ∈ Rnx .

We call the DI (1) Filippov DI, if the vector-set field
F (x) ⊂ TxRnx is non-empty, compact and convex for any
x, and F is an upper-semicontinuous set function. The
latter means that the maximal distance of the points of
F (x) from the set F (y) tends to zero, as x→ y.
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Filippov DIs feature existence, extendability, etc. of solu-
tions, but not their uniqueness (Filippov, 1988). The Fil-
ippov definition (Filippov, 1988) replaces a discontinuous
vector field f(x) with a Filippov DI.

2.1 Coordinate homogeneity basics

Introduce the homogeneous weights m1, ...,mnx > 0 of
the coordinates x1, ..., xnx in Rnx , deg xi = mi, and the
dilation (Bacciotti and Rosier, 2005)

dκ : (x1, x2, ..., xnx) 7→ (κm1x1, κ
m2x2, ..., κ

mnxxnx),

where κ ≥ 0. Recall that a function g : Rnx → Rm is
said to have the homogeneity degree (HD) (weight) q ∈ R,
deg g = q, if the identity g(x) = κ−qg(dκx) holds for any
x ∈ Rnx and κ > 0.

Consider the combined time-coordinate transformation

(t, x) 7→ (κ−qt, dκx), κ > 0, (2)

where the number −q ∈ R might naturally be considered
as the weight of t. The DI ẋ ∈ F (x), x ∈ Rnx and the
vector-set field F (x) ⊂ TxRnx are called homogeneous of
the HD q, if the identity F (x) = κ−qd−1κ F (dκx) holds for
any x and κ > 0. It implies that the DI is invariant with

respect to (2), i.e. ẋ ∈ F (x)⇔ d(dκx)
d(κ−qt) ∈ F (dκx).

A system of differential equations (DEs) ẋi = fi(x),
i = 1, ..., nx, is a particular case of DI, when the set
F (x) contains only one vector f(x) and is reduced to
the classical definition deg ẋi = deg xi − deg t = mi +
q = deg fi. If f is discontinuous, the DE is equivalent to
the corresponding homogeneous Filippov DI (1).

Note that the weights/degrees −q, m1, ...,mnx are defined
up to proportionality.

Any continuous positive-definite function of the HD 1
is called a homogeneous norm. We denote it ||x||h. In
particular, denote ||x||h∞ = maxi |xi|1/mi . The quotient
of any two homogeneous norms is uniformly bounded and
separated from zero for x 6= 0.

It is proved by Levant (2005); Levant and Livne (2016);
Levant et al. (2016) that if q > 0 then asymptotic stability
(AS) implies FxT convergence to any ball around 0, AS is
exponential for q = 0, and if q < 0 then AS implies FT
stability. In that case, in the presence of a maximal delay
τ ≥ 0 and noises of the magnitudes εi ≥ 0, i = 1, 2, ..., nx,
all extendable-in-time solutions of the disturbed DI

ẋ ∈ F (x(t− τ [0, 1]) + [−ε1, ε1]× ...× [−εnx , εnx ])

starting from some time satisfy the inequalities |xi| ≤
µiρ

mi for some µi > 0, ρ = max[||ε||h∞, τ−1/q].

2.2 Stabilization problem

Let σ ∈ R, introduce the homogeneous weights deg σ(i) =
1 + iq, i = 0, 1, ..., n. Denote −→σ k = (σ, σ̇, ..., σ(k)), k ∈ N∪
{0}. Consider the DI

σ(n) ∈ [−C,C]||−→σ n−1||1+nqh + [Km,KM ]u,
C ≥ 0, 0 < Km ≤ KM ,

(3)

where u ∈ R is the control, || · ||h is some homogeneous
norm. The problem is to globally asymptotically stabilize
the system only using the real-time measurements of σ.

A large number of homogeneous stabilizers are known,
which solve the problem using the full knowledge of−→σ n−1(t). The problem has a well-known output-feedback
HOSM stabilization solution for q = −1/n. It cannot be
solved applying the standard differentiators with constant
(Levant (2003)) or variable (Levant and Livne (2018))
gains for q 6= −1/n, since ||−→σ n−1||h is not available and
can also feature higher than exponential growth. Thus, the
problem remains challenging for q 6= 0,−1/n.

3. HOMOGENEOUS STABILIZATION

3.1 Filtering homogeneous observation

Introduce the weights degwi = 1 − (nf + 1 − i)q, i =
1, ..., nf , deg zi = 1 + iq, i = 0, 1, ..., nd. The homogeneous
filtering differentiator of the differentiation order nd ≥ 0
and the filtering order nf ≥ 0, −1/(nd + 1) ≤ q < 1/nf ,
with the input f(t) and the parameter L > 0 has the form

ẇ1 = −λ̃nd+nfL
|q|

1−nf q bw1e
1−(nf−1)q

1−nf q + w2,

ẇ2 = −λ̃nd+nf−1L
2|q|

1−nf q bw1e
1−(nf−2)q

1−nf q + w3,
...

ẇnf−1 = −λ̃nd+2L
(nf−1)|q|

1−nf q bw1e
1−q

1−nf q + wnf ,

ẇnf = −λ̃nd+1L
nf |q|
1−nf q bw1e

1
1−nf q + z0 − f(t),

(4)

ż0 = −λ̃ndL
(1+nf )|q|
1−nf q bw1e

1+q
1−nf q + z1,

ż1 = −λ̃nd−1L
(2+nf )|q|
1−nf q bw1e

1+2q
1−nf q + z2,

...

żnd = −λ̃0L
(nd+1+nf )|q|

1−nf q bw1e
1+(nd+1)q

1−nf q .

(5)

Here λ̃j > 0, j = 0, ..., nd + nf . Formally define that for
nf = 0 equations (4) disappear, and w1 is replaced with
z0 − f(t) in (5).

In the case q = −1/(nd + 1) the filtering differentiator
(Levant and Livne, 2019) is obtained which is based on
SMs. The ”continuous differentiator” (Perruquetti et al.,
2008; Sanchez et al., 2018) is obtained for nf = 0, 0 > q >
−1/(nd + 1). In the case q = 0 a linear filter is obtained.
Note that system (4), (5) is only homogeneous for f(t) ≡ 0.

Theorem 1. Fix any γL ≥ 0, and denote ζi = zi − f (i).
Then there exist such λ̃0, ..., λ̃nd+nf > 0 that filter (4),
(5) provides for the asymptotically exact estimations zi of
f (i)(t) provided L ≥ 1 and

|f (nd+1)(t)| ≤ γLL
|q|

1+ndq ||(ζ0, ..., ζnd)||1+(nd+1)q
h∞ (6)

holds. The convergence is in FT for q < 0, in FxT to
any ball of errors ζi for q > 0 and exponential for q = 0.

In the case γL = 0 condition (6) means exactness on
polynomials of the degrees not exceeding nd.

It is difficult to find λ̃0, ..., λ̃nd+nf > 0 for each nd, nf ≥ 0
and q, −1/(nd + 1) ≤ q < 1/nf . The task is facilitated by
the identical recursive form of the filter
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ẇ1 = −λnd+nfL
|q|

1−nf q bw1e
1−(nf−1)q

1−nf q + w2,

ẇ2 = −λnd+nf−1L
|q|

1−(nf−1)q bw2 − ẇ1e
1−(nf−2)q

1−(nf−1)q + w3,
...

ẇnf−1 = −λnd+2L
|q|

1−2q
⌊
wnf−1 − ẇnf−2

⌉ 1−q
1−2q + wnf ,

ẇnf = −λnd+1L
|q|
1−q
⌊
wnf − ẇnf−1

⌉ 1
1−q + z0 − f(t),

(7)

ż0 = −λndL
|q|
1

⌊
z0 − f(t)− ẇnf

⌉ 1+q
1 + z1,

ż1 = −λnd−1L
|q|
1+q bz1 − ż0e

1+2q
1+q + z2,

...

żnd = −λ0L
|q|

1+ndq bznd − żnd−1e
1+(nd+1)q

1+ndq .

(8)

If nf = 0 one substitutes ẇnf = 0 in (8), and if also nd = 0
one takes the last equation with żnd−1 = 0. It is easy to
see that

λ̃k = λk, where k = nd + nf ;

λ̃k−i = λk−i · λ̃
1−(nf−i)q

1−(nf−i+1)q

k−i+1 , i = 1, 2, ..., nf ,

λ̃k−i = λk−i · λ̃
1+(nd−i+1)q

1+(nd−i)q
nd−i+1 , i = nd, nd + 1, ..., k.

If q 6= 0 one can rewrite (6) as

d =

{
1/|q|+ (nd + 1) sign q, q 6= 0,
∞, q = 0,

L ≥ 1,

|f (nd+1)(t)| ≤ γLL
1

d−sign q max
i=0,...,nd

|ζi|
d

d−(nd+1−i) sign q ,
(9)

which corresponds to the proportional change of weights
with the HD becoming ±1, the weight of żnd becoming
d. If q = 0 we formally take d = ∞, 1

d−sign q = 0,
d

d−(nd+1−i) sign q = 1, and, correspondingly, L disappears.

Denote sq = sign q. Then the recursive form (7), (8) turns
into

ẇ1 = −λnd+nfL
1

d−(nd+nf+1)sq bw1e
d−(nd+nf )sq

d−(nd+nf+1)sq + w2,

ẇ2 = −λnd+nf−1L
1

d−(nd+nf )sq bw2 − ẇ1e
d−(nd+nf−1)sq

d−(nd+nf )sq

+w3,
...

ẇnf = −λnd+1L
1

d−(nd+2)sq
⌊
wnf − ẇnf−1

⌉ d−(nd+1)sq
d−(nd+2)sq

+z0 − f(t),
(10)

ż0 = −λndL
1

d−(nd+1)sq
⌊
z0 − f(t)− ẇnf

⌉ d−ndsq
d−(nd+1)sq

+z1,

ż1 = −λnd−1L
1

d−ndsq bz1 − ż0e
d−(nd−1)sq
d−ndsq + z2,

...

żnd = −λ0L
1

d−sq bznd − żnd−1e
d

d−sq , sq = sign q.

(11)

The following theorem establishes recursive choice of pa-
rameters λi, i = 0, 1, ....

Theorem 2. Let q ≥ −1, λ0 > γL and d ≥ 0. Then there

exists a universal positive sequence
−→
λ = {λ0, λ1, ...} which

is infinite for q ≤ 0 and finite for q > 0. It is valid
for any nf , nd ≥ 0, d > (nd + nf + 1)sq, any input f(t)
satisfying (9) (and, equivalently, (6)) filter (10), (11) (and
(4), (5)), and provides for the asymptotic convergence of
the estimations zi to the exact derivatives f (i)(t). The
convergence is in FT for q < 0. Parameters λi are chosen
one-by-one sufficiently large starting from λ1.

Note that d = 0 implies the SMC case q = −1/(nd+1). In

that case the valid choice
−→
λ = {1.1, 1, 5, 2, 3, 5, 7, 9, 12...}

is well-known for γL = 1 and is sufficient for nd + nf ≤
7 (Levant and Livne, 2018, 2019). The standard linear
technique by Atassi and Khalil (2000) is probably more
adequate in the case q = 0.

Introduce the short notation for (4), (5):

ẇ = Ωnd,nf ,q(w, z0 − f, L,
−→
λ nd+nf ),

ż = Dnd,nf ,q(w1, z, L,
−→
λ nd+nf ),

(12)

where
−→
λ nd+nf = {λ0, ..., λnd+nf } appear in (10), (11).

3.2 Output feedback stabilization

In practice condition (6) is not natural for q 6= −1/(nd +
1), and, generally speaking, differentiators (4)(5) require
f (nd+1) ≡ 0, i.e. only differentiate polynomials of the order
nd and less. In this section we show that they still can be
used as observers in a homogeneous feedback.

Theorem 3. Let q 6= 0, γL ≥ 0, and assume that
the locally-bounded homogeneous control u = U(−→σ n−1),
degU = 1+nq, asymptotically stabilizes system (3). Then
the output-feedback control

u = U(z),

ẇ = Ωn−1,nf ,q(w, z0 − σ, L,
−→
λ n+nf−1),

ż = Dn−1,nf ,q(w1, z, L,
−→
λ n+nf−1)

(13)

asymptotically stabilizes system (3) for any nf ≥ 0 and
sufficiently large L. The convergence is in FT for q < 0,
and in FxT to any ball around the origin for q > 0.

A similar result is obtained for q = 0 by tuning the
observer eigenvalues as in (Atassi and Khalil, 2000).

3.3 Hybrid filtering differentiation

Here we propose the new type of differentiator combining
the accelerated FT convergence with the filtering features.
Its only practical form is the recursive form

ẇ1 = −λnd+nfL
|q|

1−nf q bw1e
1−(nf−1)q

1−nf q

−µnd+nfMw1 + w2,
...

ẇnf−1 = −λnd+2L
|q|

1−2q
⌊
wnf−1 − ẇnf−2

⌉ 1−q
1−2q

−µnd+2M(wnf−1 − ẇnf−2) + wnf ,

ẇnf = −λnd+1L
|q|
1−q
⌊
wnf − ẇnf−1

⌉ 1
1−q

−µnd+1M(wnf − ẇnf−1) + z0 − f(t),

(14)

ż0 = −λndL
|q|
1

⌊
z0 − f(t)− ẇnf

⌉ 1+q
1

−µndM(z0 − f(t)− ẇnf ) + z1,

ż1 = −λnd−1L
|q|
1+q bz1 − ż0e

1+2q
1+q

−µnd−1M(z1 − ż0) + z2,
...

żnd = −λ0L
|q|

1+ndq bznd − żnd−1e
1+(nd+1)q

1+ndq

−µ0M(znd − żnd−1).

(15)

It probably is practical only for q < 0 and converges even
for variable L(t) > 0 under the condition |L̇|/L ≤ M . In
the case nf = 0, q = −1/(nd + 1) one obtains the hybrid
differentiator by Levant and Livne (2018). If also L = 0
and M >> 1 one gets the classical high-gain observer
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(Atassi and Khalil, 2000). M = 0 produces the filtering
differentiator (7), (8).

In the following only the SMC case q = −1/(nd +
1), L = const is considered. The filter error dynam-
ics are homogeneous in bilimit (Andrieu et al., 2008)
with the HD q at zero and the HD 0 at infinity. Pa-

rameters
−→
λ = {1.1, 1.5, 2, 3, 5, 7, 10, 12, ...} and −→µ =

{2, 3, 4, 7, 9, 13, 19, 23, ...} are well-checked for γL = 1 (Lev-
ant and Livne, 2018) and are sufficient for nd + nf ≤ 7.

3.4 Performance in the presence of noise

Recall the simplest notions from the general theory of the
filtering homogeneous differentiation (Levant and Livne,
2019). Because of the lack of space the discretization issues
(Levant and Livne, 2019) are not considered.

A signal ν(t), ν : [0,∞) → R, is called globally filterable,
or a signal of the (global) filtering order k ≥ 0, if it is a
locally integrable Lebesgue-measurable function, and there
exists a globally bounded Caratheodory solution ξ(t), ξ :
[0,∞) → R, of the equation ξ(k) = ν. Correspondingly
ξ(k−1)(t) is locally absolutely-continuous if k > 0, and
ν(t) is of the filtering order k = 0, if ν is essentially
bounded. Any number exceeding sup |ξ(t)| is called a kth-
order (global) integral magnitude of ν.

Let the output σ(t) of system (3)) be sampled with the
noise η(t) = η0(t) + η1(t) + ... + ηnf (t), where each ηk,
k = 0, ..., nf , is a signal of the global filtering order k
and the kth-order integral magnitude εk ≥ 0. Hence,
components η1, ..., ηnf are possibly unbounded, |η0| ≤ ε0.

Theorem 4. Let L = const, q 6= 0, −1/n ≤ q < 1/nf .
Consider proposed output-feedback controls (with the hy-
brid filtering in the case q = −1/n). Then all solutions
stabilize in the set ||−→σ n−1||h∞ ≤ νρ, for some ν > 0 and

ρ = max[ε0
1
1 , ε1

1
1−q , ..., εnf

1
1−nfq ]. (16)

Here ν only depends on the system parameters C, Km,

KM ,
−→
λ , −→µ and supU(−→σ n−1)/||−→σ n−1||1+nqh∞ . In the case

q = −1/n, M > 0 the asymptotics hold only for small
enough ρ, the system practical stability is always preserved.

4. PROOF SKETCHES

Proof of Theorem 1. The form (4),(5) is obtained from
the form with L = 1 by means of the substitution zi := Lzi
for q < 0 and zi := zi/L for q > 0. Due to the robustness
of the AS of homogeneous systems (Levant et al., 2016) it
is enough to prove the existence of parameters for γL = 0.
Correspondingly the task is reduced to the case nf = 0
(Levant and Livne, 2019) and f(t) ≡ 0.

After a suitable recursive change of coefficients the reduced
error dynamics get the form

ż0 = c0(z1 − bz0e1+q),
ż1 = c1(z2 − bz0e1+2q

),
...

żnd = −cndbz0e
1+(nd+1)q

.

(17)

A proper choice of ci > 0 is to asymptotically stabilize
(17). Fix any a > 3 max[1, 1 + (nd + 1)q]. The following

Lyapunov function (LF) candidate is inspired by Hong
(2002); Cruz-Zavala and Moreno (2019):

V =

∫ z0

bz1e
1

1+q

(bse
a−1
1 − bz1e

a−1
1+q )ds+ ...+∫ znd−1

bznde
1+(nd−2)q

1+(nd−1)q

(bse
a−1−(nd−2)q

1+(nd−2)q − bznde
a−1−(nd−1)q

1+(nd−1)q )ds

+

∫ znd

0

bse
a−1−(nd−1)q

1+(nd−1)q ds. (18)

It is easily checked that V is positive definite. Its derivative
has the form

V̇ = −[c0Wż0 6=0(z) + c1Hż0=0(z)]− ...
− [ciWżi−1=0,żi 6=0(z) + ci+1Hżi−1,żi=0(z)]− ...

− cndWżnd−1=0,żnd 6=0(z),

where all components are continuous homogeneous func-
tions, deg V̇ = a + q > 0, Wż0 6=0 is positive whenever
ż0 6= 0, Wżi−1=0,żi 6=0 is positive whenever żi−1 = 0 and
żi 6= 0, i = 1, ..., nd. The function Hżi−1,żi=0 vanishes
whenever żi−1 = żi = 0, and Hż0=0 = 0 if ż0 = 0.

Fix any cnd > 0, then choose ci sufficiently large to provide

for the negative-definiteness of V̇ on the set ż0 = ... =
żi−1 = 0, i = nd − 1, ..., 1. At last c0 is chosen sufficiently

large providing for the global negative-definiteness of V̇ .
�

Proof of Theorem 2. The proof is by induction and
similar to that for the SM case q = −1/(nd + 1) (Levant,
2003; Levant and Livne, 2018). �

Proof of Theorem 3. Define ξi = zi − σ(i), deg ξi =
deg zi = deg σ(i) = 1 + iq, degwi = 1− (nf − i+ 1)q. The
closed loop system can be rewritten as the homogeneous
DI of the HD q,

σ(n) ∈ [−C,C]|−→σ n−1||1+nqh
+[Km,KM ]U(−→σ n−1 + ξ),

ẇ = Ωn−1,nf ,q(w, ξ0, L,
−→
λ n+nf−1),

ξ̇ ∈ Dn−1,nf ,q(w1, ξ, L,
−→
λ n+nf−1).

(19)

Under the exact measurements of −→σ n−1 get

|σ(n)| ≤ [−C,C]|−→σ n−1||1+nqh + [Km,KM ]U(−→σ n−1)|
≤ L0||−→σ n−1||1+nqh∞ )T

for some L0 > 0. The statement of Theorem 1 is equivalent
to the AS of the homogeneous DI

ẇ = Ωn−1,nf ,q(w, ξ0, L,
−→
λ n+nf−1),

ξ̇ ∈ Dn−1,nf ,q(w1, ξ, L,
−→
λ n+nf−1)

+(0, ..., 0, γLL
|q|

1+(n−1)q ||ξ||1+nqh∞ )T .

(20)

So choose L > 1 such that γLL
|q|

1+(n−1)q > L0, and
let Vu(−→σ n−1) and Vf (w, ξ) be the homogeneous C1 LFs
for (3) closed by u = U(−→σ n−1) and (20) respectively,
deg Vu = deg Vf = a > −q. Such functions always exist
(Bernuau et al., 2013).

Note that V̇u(−→σ n−1) = {∇Vu−̇→σ n−1} and similarly V̇f (w, ξ)

are compact numeric sets. Concequently sup V̇u(−→σ n−1) ≤
−Wu(−→σ n−1), sup V̇f (w, ξ) ≤ −Wf (w, ξ) where Wu,Wf

are positive-definite functions of their arguments, degWu =
degWf = a+ q > 0.
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Search for the LF in the form V (−→σ n−1, w, ξ) = Vu(−→σ n−1)+
µVf (w, ξ), µ > 0. Then

V̇ = V̇u(−→σ n−1)+
∂

∂σ(n−1)Vu[Km,KM ](U(−→σ n−1+ξ)−U(−→σ n−1))+µV̇f (w, ξ).

sup V̇ ≤ −Wu(−→σ n−1) + W1(−→σ n−1, ξ) − µWf (w, ξ),

where the continuous homogeneous function W1(−→σ n−1, ξ)
vanishes for ξ = 0. As follows now from the standard
Lemma by Andrieu et al. (2008), the right hand side is
negative definite for µ large enough. �

Proof of Theorem 4. The proof is a combination of the
proofs by Levant and Livne (2019, 2018). �

5. SIMULATION

Let n = 3. Consider the system

...
σ = cos(12t)|σ|1+3q + |σ̈|

1+3q
1+2q sign(σ̇)

+ [2 + cos(t− σ̇)]u. (21)

Correspondingly the system satisfies the DI
...
σ ∈ [−2, 2]||−→σ 2||1+3q

h + [1, 3]u,

||−→σ 2||h = |σ|+ |σ̇|
1

1+q + |σ̈|
1

1+2q .

The homogeneous stabilizing control (Levant, 2017) is

u = −5||−→σ 2||
1
2+3q

h [bσ̈e
1

2(1+2q) +2bσ̇e
1

2(1+q) +bσe
1
2 ]. (22)

It does not allow developing a Lyapunov function in the
standard way (Cruz-Zavala and Moreno, 2016a).

The cases q = 0.1,−0.1,−1/3 are considered. The authors

have taken γL = 1 and found parameters
−→
λ one by one

by simulation for corresponding d, using the recursive
form (10), (11). The integration is performed by the Euler
method with the integration step τ = 10−5, 10−6.

Fig. 1. The case q = +0.1. a: Asymptotic stability is got for
the exact sampling. b: The system remains practically
exact in spite of the very large sampling noise η.

1. Let q = 0.1, and nd = 2, nf = 3, d = 13, −→σ 2(0) =

(10,−10, 10)T , z(0) = 0, τ = 10−6. The parameters
−→
λ =

{1.1, 2, 3, 8.5, 12, 900}, L = 6 · 1015 are found. Actually L
is not large, since (10), (11) involve L1/12, ..., L1/7.

In the absence of noises the accuracy is described by the
component-wise inequality (|σ|, |σ̇|, |σ̈|) ≤ (3.5 · 10−6, 1.5 ·
10−5, 8 · 10−4) for t ≥ 30 (Fig. 1a). Introduce the sam-
pling noise η(t) = 100 cos(10000t) − 200 cos(50000t) +

100 sin(70000t). In spite of it the system converges into
the region (|σ|, |σ̇|, |σ̈|) ≤ (0.4, 5, 70) (Fig. 1b).

Fig. 2. The case q = −0.1. a: FT stability is got for the
exact sampling. b: The system remains practically
exact in spite of the very large sampling noise η

2. Let q = −0.1, and nd = 2, nf = 5, then d = 7,
−→σ 2(0) = (10,−10, 10)T , z(0) = 0, τ = 10−6. The

parameters
−→
λ = {1.1, 1.4, 2.4, 5, 6, 12, 25, 35}, L = 1012

are found. Also here actually L is not large.

The system stabilizes at t = 10. In the absence of noises the
accuracy is described by the component-wise inequality
(|σ|, |σ̇|, |σ̈|) ≤ (10−34, 10−30, 10−26) for t ≥ 10 (Fig. 2a).
In the presence of the same noise the system converges
into the region (|σ|, |σ̇|, |σ̈|) ≤ (0.034, 0.87, 4) (Fig. 2b).

Fig. 3. The SMC case q = −1/3, hybrid filtering differ-
entiator is applied, z(0) = (−100, 100,−100). a: FT
stability and very fast convergence are got for the
exact sampling. b: The system remains accurate in
spite of the very large sampling noise η.

3. Let q = −1/3 which corresponds to SMC. Apply the
filtering hybrid differentiator with nd = 2, nf = 5, M =
0.2, d = 0, for L = 35[max{2− 0.1t, 1}+ 0.01 cos(1111t)],
z(0) = (−100, 100,−100)T . Let −→σ 2(0) = (10,−10, 10)T ,
τ = 10−5. Note that L is variable and contains a noise.

The differentiator converges at t = 3 in spite of large
initial error z(0). The system stabilizes at about t = 27.
In the absence of noises the accuracy (|σ|, |σ̇|, |σ̈|) ≤ (4.0 ·
10−8, 2.2 · 10−5, 2.7 · 10−2) is kept for t ≥ 30 (Fig. 3a).
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Introduce the unbounded noise η(t) = 104 cos(107t) +

0.1 sin(2 · 106t)
⌊
cos(2 · 106t)

⌉−0.5
+ ηG(t), where ηG(t) ∈

N(0, 0.22) is a Gaussian noise. In spite of it the system
converges into the region (|σ|, |σ̇|, |σ̈|) ≤ (0.89, 0.4, 2.9)
(Fig. 3b). Note the very high noise frequencies 107, 2 · 106

in comparison to the sampling step τ = 10−5.

6. CONCLUSION

The robust homogeneous output-feedback stabilization of
disturbed integrator chains has been obtained for any
homogeneous degree. A corresponding separation principle
is formulated.

The proposed new homogeneous observers are exact, fea-
ture strong filtering properties, and ensure system robust-
ness for any homogeneity degree in the presence of large
and even unbounded, small-in-average noises.

A new type of SM-based differentiator is proposed, called
hybrid filtering differentiator, which combines exactness
with the filtering capabilities and global fast convergence
for variable Lipschitz parameter L.

The proposed extremely robust output-feedback stabiliz-
ers of positive homogeneity degree can probably be useful
in controlling systems capable of fixed-time escape, in
particular, nuclear and thermonuclear reactors.
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