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Abstract: As a key technology for industry 4.0, data-driven soft sensing plays an important
role in the control and optimization of industrial processes. However, due to the large-scale,
nonlinear and dynamic characteristics of industrial data, it is difficult to process industrial
data. To solve these difficulties, a soft sensor modeling method based on a sequence to sequence
model and a gradient boosting tree algorithm is developed. In this method, an unsupervised
trained Seq2Seq model is used to extract dynamic features at first. Then a high-precision model
based on LightGBM is constructed with the dynamic features and the original features as
inputs. The developed method is validated on pulping data and compared with other machine
learning methods such as RNN and SVR. The result shows the developed method has a better
performance.
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1. INTRODUCTION

In practical industrial processes, measuring quality vari-
ables and other key variables is important to ensure the
quality of products. However, some key product qualities
are difficult to measure because of technical or economic
limitations. Therefore, soft sensors have been widely stud-
ied and implemented in the process industry over the past
thirty years. There are three typical soft sensor modeling
methods: mechanism modeling, knowledge-based modeling
and data-driven modeling. With the rapid development of
computer hardware and machine learning methods, data-
driven soft sensors have become an important development
direction of industry 4.0 for its excellent ability in large-
scale data processing and high precision modeling .

Data plays a key role in data-driven soft sensor. However,
industrial data processing faces many difficulties:

1) Large scale:

Industrial processes often involve complex reactions and
numerous processes. The equipment characteristics, ex-
ternal working conditions, process formulation and even
material parameters of each process are closely related
to the final product quality, which means industrial data
have high dimension. Industrial data have diverse sampling
intervals with large differences in duration. For example,
the sampling rate of vibration and current may be in
milliseconds whereas some other quality variables may be
? This work is supported by the National Science Foundation of
China (61933015 and 61903326)

in hours. For these reasons, industrial data are much larger
than their effective scale, which is termed as data rich but
information poor.

2) Poor quality

Industrial data have poor quality, which reflect in three
aspects. Data invalidation (inaccuracy): happens when
sensors stop working properly. Data formats chaos: manual
labeled data and automatically collected data are mixed
and missing values appear from time to time. Uneven
distribution of data: the proportion of anomaly data is
very small.(Zhang et al., 2017)

3) Dynamicity

Industrial data are generally time series data which con-
tain dynamic characteristics of industrial processes.

Many methods have been applied to solve these problems.
As the most popular multivariate statistical approaches,
principal component analysis (PCA) and partial least
squares (PLS) are used to reduce data dimensionality
(Geladi and Kowalski, 1986; Zheng and Qian, 2006), but
they can not deal with time series data. So, dynamic PCA
and dynamic PLS were proposed to handle dynamic char-
acteristic (Perera et al., 2006). In order to deal with non-
linearity, many kernel-based algorithms, such as support
vector regression (SVR), kernel-driven fisher discriminant
analysis (KFDA) and kernel principal component analysis
(KPCA) were proposed (Jain et al., 2007; Lee et al., 2004;
Ge et al., 2016). However, in recent years, two methods
have been proven to have better performance on many
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Fig. 1. The framework of the proposed method.

tasks: recurrent neural network (RNN) for dynamic issues
and gradient boosting decision tree (GBDT) for large-scale
problems. it is a good idea to apply these methods to an
industrial data process.

GBDT is an ensemble machine learning method for regres-
sion and classification problems, which ensembles decision
trees as weak prediction models to generate a strong pre-
diction model. Models are built in a stage-wise fashion
and generalized by the optimization of an arbitrary dif-
ferentiable loss function. The concept of gradient boosting
was first proposed by (Friedman, 2001), and developed by
(Friedman, 2002). Then, LightGBM, which used a variety
of engineering techniques to speed up the construction of
decision trees without reducing the prediction accuracy,
was proposed by (Ke et al., 2017).

RNN have made a breakthrough in the field of natural
language processing (NLP), which shows its ability in
dealing with time series (Lu and Tsai, 2008). However,
conventional RNN requires that the dimension of inputs
and outputs is known and fixed, which is inconvenient in
many NLP tasks. So, RNN encoder-decoder, also called
sequence to sequence (Seq2Seq), modeling was proposed
(Sutskever et al., 2014; Cho et al., 2014). The main idea of
Seq2Seq is using an RNN to map an input sequence into
a vector and using another RNN to map the vector into a
variable-length output. Because the decoder only uses the
vector as input, the vector contains dynamic information
of whole input sequence and even the future tendency.

GBDT has great performance in dealing with large-scale
data whereas RNN model especially Seq2Seq model is
good at processing time series data. In order to comple-
ment the advantages of each, many scholars have com-
bined GBDT, RNN and other methods together to deal
with dynamic and nonlinear data. For example, Sun Qin-
qiang proposes probabilistic sequential network (PSN)
based on Gaussian-Bernoulli Restricted Boltzmann Ma-
chine (GRBM) and the recurrent neural network (RNN)
structure (Qingqiang and Zhiqiang, 2018). Zhu J pro-
poses Deep Embedding Forest by integrating the deep
neural network with GBDT (Zhu et al., 2017). Yun Ju
combines convolutional neural network and LightGBM to
forecast ultra-short-term wind power (Ju et al., 2019). In
this paper, we construct a model based on Seq2Seq and
LightGBM for the purpose of soft sensor application. The
modeling algorithm consists of two parts: unsupervised
dynamic feature extraction and supervised modeling for
prediction. It is suitable for industrial data and has a

good expansibility, which can process both time series and
categorical features. And it is only suited for soft sensors
but also for fault diagnosis in industrial processes.

The layout of this paper is given as follows. The modeling
method is explained in detail in section 2. In section 3,
the effectiveness and feasibility of the proposed method
is validated on a real industrial soft sensor application.
Finally, conclusions are made.

2. PROPOSED MODELING METHOD

This paragraph include sections. First, we introduce the
structure of our proposed model, secondly, we present its
training method.

2.1 Structure of the proposed model

In this paper, we construct a model combined with se-
quence to sequence network and LightGBM algorithm. Fig
1 shows the structure of the modeling method. First, at
each time step, the input sequence data are serialized and
put into the trained sequence to sequence model. Then,
the sequence to sequence model extracts dynamic features
and combines it to the original features at every timestep.
Finally, a prediction model, which is constructed using
LightGBM makes a prediction according to the integrated
features. In summary, the model consists of two parts: an
unsupervised trained Seq2Seq model to extract dynamic
features and LightGBM to make predictions.
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Fig. 2. Procedure of serialization with length t=3.
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2.2 Model training method

Serializing the original data are first step for Seq2Seq
model training. Define the original data as D = {X,Y } =
{(xi, yi)}, i ∈ 1, 2, ..., n where xi and yi denote the
process variables and quality variables. Use a time window
to scan the data and obtain the serialized data Ds =
{Xs

j , Y
s
j } = {(xs

j , y
s
j )}. In this paper we trained Seq2Seq

in an unsupervised way, xs
j = (xj , xj+1, ..., xj+t−1) and

ysj = (xj+t, xj+t+1, ..., xj+2t−1) where t is the time window
width. Fig. 2 shows the procedure of serialization with
length t=3. Time window width decides the sequence
length and influences the performance of the model which
will be discussed further in the later part.

After the data are serialized, the Seq2Seq model is trained
in an unsupervised way as Fig 3 shown. By encoder and de-
coder processing, the final output sequence Ŷj is generated.
Then Y s

j and Ŷj are used to compute the sequence loss and
train the model through back propagation. The training of
Seq2Seq model only requires data without labels.

After that, dynamic features are extracted for every time
step based on the pre-trained Seq2Seq model. Finally, an
ensemble decision tree model is trained to predict the
quality variables. The dataset used to train the Seq2Seq
model and LightGBM is different to avoid overfitting. The
flowchart of the proposed procedures for the soft sensor
modeling methods is displayed in Fig 4.
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Fig. 3. Sequence to sequence framework.

3. CASE STUDY

The proposed method is validated on a real industrial
dataset, a froth flotation process.

3.1 Froth flotation process

Froth flotation is a process of selectively separating hy-
drophobic materials from hydrophilic materials, and used
in the mining industry to obtain high grade concentrate. In
this process, the plant uses froth flotation to get high grade
iron ore for the iron smelting industry. Silicon content is an
important reference index in the ironmaking process and
closely related to the iron ore. Under stable conditions,
in order to keep the ironmaking process stable, control of
the silicon content between 0.4% and 0.6% is necessary
(see (Zhou et al., 2017)).When silicon content is less than
0.4%, the furnace temperature is generally lower than 1500
◦C, and the ironmaking environment can not be achieved;
when silicon content is higher than 0.6%, the tempera-
ture is too high and much energy is wasted((Zhou et al.,
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Fig. 4. Complete training process of the proposed model.

2019)). So, for an appropriate silicon content in ironmaking
process, the ore silicon content needs to be appropriate
and fluctuations of it needs to be as smooth as possible.
However, silicon concentration is obtained through lab
measurement, which means that it takes at least two hours
for the process engineers to have this value. Two hours is
too long for real-time closed-loop control. Therefore, we
need to predict silicon concentration, and building a soft
sensor is meaningful.

The flotation column diagram and its explanation are
shown in Fig 5. In this plant, there are several flotation
columns placed in series or parallel to extract concentrates
from pulp as much as possible. In this process there are
total 21 process variables and 1 quality variables, the
detailed descriptions of these process variables are listed
in Table 1.

3.2 Experiment

There are total of 730000 samples collected from a dis-
tributed control sysytem (DCS) with a sampling interval
of 20 seconds in this dataset 1 . The iron feed and silicon
concentrate are analyzed every 2 hours in a laboratory;
other variables are measured through sensors. For the con-
venience of comparing to other methods, we downsample
the data with interval of 5 minutes and get 32000 training
samples, 8000 validation samples and 8647 samples for
testing; this partitioning ensure that the test dataset is
completely unseen for model.

1 The dataset is downloaded from
https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-
mining-process
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Table 1. Process variables for soft sensor.

No Tag Explanation

1 Iron Feed % of Iron that comes from the iron ore that is being fed into the flotation cells
2 Silica Feed % of silica (impurity) that comes from the iron ore that is being fed into the flotation cells
3 Starch Flow Starch (reagent) flow measured in m3/h
4 Amina Flow Amina (reagent) flow measured in m3/h
5 Ore Pulp Flow t/h
6 Ore Pulp pH pH scale from 0 to 14
7 Ore Pulp Density Density scale from 1 to 3 kg/m3

8-14 Flotation Column 01-07 Air Flow Air flow that goes into the flotation cell 01-07 measured in Nm3/h
15-21 Flotation Column 01-07 Level Froth level in the flotation cell 01-07 measured in mm (millimeters)
22 Silicon Concentrate1 % of silicon in the end of the flotation process (generally 0-6%, lab measurement)

1 Note that the silica content demand of the froth floatation process is different from the content demand in iron making process. In this
dataset, the sillicon conten fluctuates between 0% and 6%.

Fig. 5. Flotation column diagram, where numbered tri-
angles show direction of stream flow. Pulp which is
a mixture of water and ore enter to the bottom of
the column. A vertical impeller passes down air and
breaks the air stream into small bubbles by shearing
forces. Then the mineral concentrate froth is collected
from the top of cell and the pulp flows to the next
flotation column.

To better show the proposed model’s performance, com-
parison will be done among four different algorithms. In
the deep learning field an RNN model is used, in time
series process field an SVR model is used, besides, two
LightGBM models with and without dynamic features are
constructed respectively.

The hyper parameters to train different models are shown
in Table 2; these parameters are the best results we
get from multiple experiments. SVR takes the Radial
Basis Function (RBF) as its kernel function. For Light-
GBM+Seq2Seq algorithm, the normalized data is serial-
ized by a sliding window of width 20 to obtain a sequence
input. Because the Seq2Seq model is only used to extract
features, the encoder and decoder RNN are set two layers
with 5 hidden units each. The main parameters in Light-
GBM are “learning rate", “feature fraction" and “bagging
fraction", we set these parameters manually by choosing
the best results from multiple experiments too.

The predicted and real values of four algorithms for the
testing data are displayed in Fig 6 and the prediction error
is shown in Fig 7. Four numerical evaluation indices are
calculated in Table 3 include coefficient of determination
(R2) which is closer to 1 the better, mean squared error

Table 2. Hyper parameters of four methods.

SVR C Epsilon Gamma

100 0.1 0.1

LSTM Layers Units Learning rate

3 64 0.01

LightGBMBagging
fraction

Feature
fraction

Learning rate

0.78 0.64 0.05

seq2Seq
+

Bagging
fraction

Feature
fraction

Learning rate

LightGbm 0.75 0.45 0.05

(MSE), mean absolute deviation (MAD) and median abso-
lute deviation (MdAD) which has small impact of outliers.

Table 3. Evalution indices of four methods.

indices SEQLGB LGB LSTM SVR

R2 0.6981 0.6504 0.2982 0.5379
MSE 0.4090 0.4737 0.9510 0.6262
MAD 0.5099 0.5535 0.7782 0.6099
MdAD 0.4267 0.4736 0.6572 0.4909

3.3 Discussion

Several conclusions are draw from the above results: 1)
In this case, the small size RNN has poor performance.
2) The low MSE of LightGBM indicates that LightGBM
has the ability of high precision modeling. 3) After inte-
grating dynamic features extracted by a Seq2Seq model,
the LightGBM model has better performance on silicon
content prediction, which proves that this algorithm does
combine the advantages of Seq2Seq and LightGBM, and
lets the LightGBM lets the LightGBM learn dynamic
characteristic and construct a better model.

The time window width influences the performance of
model. In this case, we set the time width to be 20, based
on the model results with different time window widths
shown in Table 4. However, this approach is not the best
way to utilize the RNN model, because RNN only extracts
information in a short time period instead of aggregate
information ovwe the whole time frame. If we do not
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Fig. 6. Predicted results of LSTM,SVR,LightGBM and proposed algorithm.
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Fig. 7. Prediction error by LSTM,SVR,LightGBM and proposed algorithm.

use the time window, the training and predicting process
will be much easier because we do not need to serialize
the input data but only update the RNN unit when new
samples come in. As Table 4 shows, we try to build the
model without the time window(time window width is ∞),
although the MSE is not the best, it has an advantage in
computing time.

Table 4. Influence of different time window
width.

time window width MSE feature construction time

11 0.4563 21s
3 0.4221 34s
10 0.4112 50s
20 0.4090 87s
50 0.4196 210s
100 0.4214 527s
∞2 0.4219 17s

1 The time window width is zero means the Seq2Seq only
use the present data to train.

2 The time window width is infinity means the Seq2Seq
model uses all the history data to extract the features.

Another parameter that affects the results is the number
of dynamic features. Through simple experiments (results
shown in Fig. 8), we draw the conclusion that the appro-
priate number of dynamic features is 20 in this case.

0 10 20 30 40 50

The number of dynamic features

0.40

0.45

0.50

0.55

0.60 MSE

MAE

Fig. 8. The influence of changing dynamic feature num-
bers.

4. CONCLUSION

In this paper, taking the difficulties of industrial data into
consideration, a framework using deep learning to extract
features and LightGBM for modeling is constructed for
the purpose of a soft sensor application. Taking advantage
of the unsupervised dynamic feature extraction ability of
Seq2Seq and large-scale data processing ability of Light-
GBM, the proposed algorithm have a good performance
which have the MSE less than 0.5. So, it is reasonable
to believe this method can provide accurate and reliable
prediction of sillic content for field engineers to help them
control the process.
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