
The J-Orthogonal Square-Root
MATLAB-Based Continuous-Discrete
Unscented Kalman Filtering Method ⋆

Maria V. Kulikova ∗, Gennady Yu. Kulikov ∗

∗ CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av.
Rovisco Pais 1, 1049-001 LISBOA, Portugal (emails:
maria.kulikova@ist.utl.pt, gkulikov@math.ist.utl.pt).

Abstract: The paper suggests a general solution to the square-rooting problem existed for the
Unscented Kalman Filter (UKF) since its appearance in the late 1990s. As properly noted in
engineering literature, the previously suggested Cholesky-based UKF implementations are, in
fact, the ‘pseudo’ square-root versions. Their key feature is the utilization of one-rank Cholesky
update procedure required at each filtering step because of the possibly negative sigma points’
weights. In a finite precision arithmetic, the resulting downdated matrix might be not a positive
definite matrix. This yields a failure of the UKF estimator in practice. We resolve this problem
by suggesting a novel square-root approach based on the J-orthogonal matrix utilization for
updating the required Cholesky factors. Additionally, we explain how the MATLAB language
with built-in numerical integration schemes developed for solving ordinary differential equations
can be easily and effectively used for accurate calculations when implementing the continuous-
discrete UKF time update stage.

Keywords: Unscented Kalman filter, Cholesky decomposition, square-root methods.

1. PROBLEM STATEMENT

Consider continuous-discrete stochastic system of the form

dx(t) = f
(
t, x(t)

)
dt+Gdβ(t), t > 0, (1)

zk = h(k, x(tk)) + vk, k = 1, 2, . . . (2)

where x(t) ∈ Rn is the unknown state vector to be es-
timated and the vector-function f : R × Rn → Rn is
the time-variant drift function. The process uncertainty
is modelled by the additive noise term where G ∈ Rn×q

is the time-invariant diffusion matrix and β(t) is the q-
dimensional Brownian motion whose increment dβ(t) is
independent of x(t) and has the covariance Qdt > 0. Addi-
tionally, measurement equation (2) implies a nonlinear re-
lationship h : R×Rn → Rm between the unknown dynamic
state x(tk) and available data zk := z(tk) measured at
some discrete-time points tk. This measured information
zk ∈ Rm comes with the sampling rate (sampling period)
∆k = tk−tk−1. The measurement noise term vk is assumed
to be white Gaussian noise with zero mean and known
covariance Rk > 0, i.e. E

{
vkv

T
j

}
= Rkδkj and δkj is the

Kronecker delta function. Finally, for solving the nonlinear
Bayesian filtering problem, a priori information about the
system state distribution should be available as well. The
initial state x(t0) is assumed to be normally distributed
with the mean x̄0 and covariance Π0 > 0. The initial
state and noise processes are all assumed to be statistically
independent.
⋆ The authors acknowledge the financial support of the Portuguese
FCT — Fundação para a Ciência e a Tecnologia, through the
projects UIDB/04621/2020 and UIDP/04621/2020 of CEMAT/IST-
ID, Center for Computational and Stochastic Mathematics, Instituto
Superior Técnico, University of Lisbon.

Following the continuous-discrete implementation frame-
work for implementing any nonlinear KF-like Bayesian
filtering method, the related moment differential equations
(MDEs) for the mean and error covariance matrix should
be derived, first. This problem has been solved for the UKF
technique by Särkkä (2007). More precisely, the sampled-
data UKF estimator is based on a set of 2n+1 determinis-
tically selected vectors called the sigma vectors; e.g., see a
general representation in Wan and Van der Merwe (2001):

ξ0 = 0n, ξi =
√
n+ λei, ξn+i = −

√
n+ λei, i = 1, n,

where Xi = x̂+ SP ξi, i = 0, . . . , 2n

where the vector 0n is the zero column of size n and
ei denotes the i-th unit coordinate vector in Rn where
n is the dimension of the state vector. The term SP

stands for a square-root factor of the filter error covariance
P , i.e. P = SPS

⊤
P . It is traditionally defined by using

the Cholesky decomposition; e.g., SP is assumed to be
a lower triangular matrix with positive diagonal entries.
We stress that Cholesky decomposition is required for
generating the sigma vectors at each recursive filtering
step. This operation is numerically unstable in a finite
precision arithmetic because of the well known KF pitfall
recognized since the 1960s; for more details, see the first ill-
conditioned estimation scenario discussed in Examples 7.1
and 7.2 in Dyer and McReynolds (1969) and many other
studies. To summarize, the roundoff errors may destroy
the theoretical properties of error covariance matrix P ,
which are the symmetric form and positive definiteness.
As a result, the Cholesky factorization fails to perform
for such matrix as discussed in Kailath et al. (2000);
Simon (2006); Grewal and Andrews (2015). Recall, the
Cholesky decomposition exists and is unique when the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5041

symmetric matrix to be decomposed is positive definite;
see Golub and Van Loan (1983). The general way to avoid
the discussed numerical instability is to derive the square-
root filtering methods. The key idea is to perform the
factorization only once, i.e. at the initial filtering step.
Additionally, the filtering equations should be re-derived in
terms of propagating and updating the square-root factors
SP instead of the full matrix P . This approach ensures
the symmetric form and positive (semi-) definiteness of
the filter error covariance matrix SPS

⊤
P := P although the

roundoff errors influence the SP calculation.

The first attempt to design numerically stable square-root
methods for the UKF filtering strategy has been taken
in Van der Merwe and Wan (2001). Since that time a wide
variety of square-root UKF implementation methods has
been derived; e.g., see Wan and Van der Merwe (2001).
However, as correctly noted in Arasaratnam and Haykin
(2009) all these methods are, in fact, the pseudo-square-
root algorithms. All of them are based on the one-rank
Cholesky update procedure required at each iterate when
the negative UKF weights need to be processed. In a finite
precision arithmetic, the resulting downdated matrix may
possibly be non-positive definite. Consequently, it results
in unexpected interruption of the computations because
of a failure of the one-rank Cholesky update procedure.
This means that the exact square-root solution for the ad-
vanced UKF estimation methodology still does not exist.
In this paper, we solve this problem by using the so-called
J-orthogonal transformations for updating the Cholesky
square-root factors of the filter error covariance matrix.
Additionally, we show how the build-in MATLAB func-
tions for solving ordinary differential equations (ODEs)
can be effectively used for elegant implementation of the
continuous-discrete UKF. It is worth noting here that the
build-in ODEs solvers’ local error controlling mechaniza-
tion provides an improved estimation accuracy compared
to the discrete-discrete UKF implementation strategy.

The rest of the paper is organized as follows. In the next
section we discuss the conventional UKF implementation
strategy in a continuous-discrete manner. In Section 3,
the new square-root UKF solution is proposed. Results
of numerical experiments are presented in Section 4 and
illustrate a performance of the novel UKF methods.

2. CONTINUOUS-DISCRETE UNSCENTED
KALMAN FILTER

The sample-data UKF estimator depends on three pa-
rameters. This makes the estimator to be a flexible and
advanced technique. Three pre-defined scalars α, β and κ
define some sigma points’ weights, which are constant and
chosen in such a way that the sample mean and covariance
of the state are determined precisely, e.g. Van der Merwe
and Wan (2001):

w
(m)
0 = λ/(n+ λ), w

(m)
i = 1/(2n+ 2λ),

w
(c)
0 = λ/(n+ λ) + 1− α2 + β, w

(c)
i = 1/(2n+ 2λ)

where i = 1, 2n and λ = α2(κ+n)−n regulates the spread
of the sigma points around the mean x̂ while the secondary
scaling parameters β and κ can be used for a further filter’s
tuning in order to match higher moments of the random
variable at hand.

An excellent and the most comprehensive survey of al-
ternative UKF parametrization variants existing in engi-
neering literature can be found in Menegaz et al. (2015).
To illustrate a capacity of novel square-root solution sug-
gested in this paper, we focus on the so-called classical
parametrization where α = 1, β = 0 and κ = 3 − n;
e.g., see Van der Merwe and Wan (2001). This set yields

the negative sigma points’ weights w
(m)
0 and w

(c)
0 when

the number of states to be estimated is n > 3. Taking
into account this scenario as an illustrative example, we
explain how to manage the possibly negative weights while
deriving the Cholesky factorization-based UKF methods.

To implement the continuous-discrete UKF easily and
effectively by using the MATLAB language, one needs to
represent the required operations in a matrix-vector man-
ner for vectorizing the calculations. For that, the following
notation is introduced: the vector 12n+1 is the unitary
column of size 2n + 1 and I2n+1 is the identity matrix
of that size, the symbol ⊗ is the Kronecker tensor product
(the built-in function kron in MATLAB). Additionally, the
UKF coefficient vectors and the related weighted matrix
are, respectively, defined as follows:

w(m) =
[
w

(m)
0 , . . . , w

(m)
2n

]⊤
, w(c) =

[
w

(c)
0 , . . . , w

(c)
2n

]⊤
, (3)

W =
[
I2n+1 − 1⊤

2n+1 ⊗ w(m)
]
diag

{
w

(c)
0 , . . . , w

(c)
2n

}
×

[
I2n+1 − 1⊤

2n+1 ⊗ w(m)
]⊤

(4)

where diag
{
w

(c)
0 , . . . , w

(c)
2n

}
is the diagonal matrix of size

2n+ 1 with the given w
(c)
i , i = 0, . . . , 2n entries.

Following the continuous-discrete implementation frame-
work, one should solve the related UKF MDEs at the filter
prediction step. In other words, at each sampling interval
[tk−1, tk] we should propagate the mean and covariance
matrix by solving the MDEs derived in Särkkä (2007) and
expressed in simple matrix-vector form:

dx̂(t)

dt
= f

(
t,X(t)

)
w(m),

dP (t)

dt
= X(t)Wf⊤(t,X(t))+ f

(
t,X(t)

)
WX⊤(t) +GQG⊤

where the term X(t) stands for the matrix collected from
the sigma vectors Xi(t) defined by Xi(t) = x̂(t) + SP (t)ξi.
They are located by columns in the discussed matrix, i.e.

X(t) =
[
X0(t)| . . . |X2n(t)

]
is of size n× (2n+ 1).

An alternative approach is to use the so-called Sigma-
Point Differential Equations (SPDEs) instead of the UKF
MDEs presented above. Following Särkkä (2007), the UKF
SPDEs are given as follows:

X′
i(t) = f

(
t,X(t)

)
w(m)

+
√
n+ λ

[
0, S(t)Φ(M(t)), −S(t)Φ(M(t))

]
i

(5)

where the subscript i refers to the i-th column in the
related matrices, i = 0, . . . 2n. The notation 0 stands for
the first column, which is a zero column. The matrix S(t)
is the lower triangular Cholesky factor of P (t) and matrix
M(t) is calculated by the formula

M(t) = S−1(t)
[
X(t)Wf⊤(t,X(t))

+f
(
t,X(t)

)
WX⊤(t) +GQG⊤]S−⊤(t) (6)

with the mapping Φ(·) that returns a lower triangular
matrix defined as follows: (1) split the argument matrix

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5042

M as M = L̄+D + Ū where L̄ and Ū are, respectively, a
strictly lower and upper triangular parts of M , and D is
its main diagonal; (2) compute Φ(M) = L̄+ 0.5D for any
argument matrix M .

For an accurate and efficient implementation of this time
update step, one employs advanced numerical integration
schemes designed for solving ordinary differential equa-
tions (ODEs). The key benefit of such an implementation
strategy is that these include an automatic mechaniza-
tion for bounding the discretization error committed in
line with a user-supplied accuracy request. Previously, we
have designed such self-adaptive continuous-discrete UKF
methods grounded both in the variable-stepsize nested
implicit Runge-Kutta formulas and in the MATLAB ODE
solvers in Kulikov and Kulikova (2017) and Kulikov and
Kulikova (2018). In this paper, we solve the square-rooting
problem existing in these filters and improve their numer-
ical robustness in a finite precision arithmetic underlying
computational devices in use. We devise our novel square-
rooting method in a general way, i.e. we show how any
built-in MATLAB ODE solver (see Table 12.1 in Higham
and Higham (2005)) can be applied for implementing the
earlier- published accurate continuous-discrete UKF meth-
ods and their newly-proposed square-root versions as well.

The continuous-discrete UKF method based on solving the
related SPDEs is summarized in Algorithm 1.

Algorithm 1. SPDE-based CD-UKF (Conventional)

Initialization: (at time instance t0)
1 Set ξ0 = 0, ξi =

√
n+ λei, ξn+i = −

√
n+ λei

2 (i = 1, n) and find w(m), w(c), W by (3), (4);
3 Set solver’s options with given tolerances ϵa, ϵr:

options = odeset(‘AbsTol’,ϵa,‘RelTol’,ϵr,
‘MaxStep’,0.1);

4 Set initial values x̂0|0 = x̄0 and P0|0 = Π0;
Time Update: (at interval [tk−1, tk]) � Priori est.

5 Cholesky dec.: Pk−1|k−1 = P
1/2
k−1|k−1P

⊤/2
k−1|k−1;

6 Xi,k−1|k−1 = x̂k−1|k−1 + P
1/2
k−1|k−1ξi, (i = 0, 2n);

7 Form Xk−1|k−1 =
[
X0,k−1|k−1, . . . ,X2n,k−1|k−1

]
;

8 Reshape in MATLAB: X̃k−1|k−1 = Xk−1|k−1(:);

9 X̃k|k−1 ← odesolver[SPDEs, X̃k−1|k−1, [tk−1, tk]];

10 Xk|k−1 ← reshape(X̃k|k−1(tk), n, 2n+ 1);
11 Recover the state x̂k|k−1 = X0,k|k−1 = [Xk|k−1]1;
12 Sk|k−1 = tril([Xk|k−1]2:2n+1 − x̂k|k−1)/

√
n+ λ;

13 Recover the covariance Pk|k−1 = Sk|k−1S
⊤
k|k−1;

Measurement Update: (at tk) � Posteriori est.

14 Propagate Zi,k|k−1 = h
(
k,Xk|k−1

)
, (i = 0, 2n);

15 Collect Zk|k−1 =
[
Z0,k|k−1, . . . ,Z2n,k|k−1

]
;

16 Compute the predicted ẑk|k−1 = Zk|k−1w
(m);

17 Find Re,k = Zk|k−1WZ⊤
k|k−1 +Rk;

18 Compute Pxz,k = Xk|k−1WZ⊤
k|k−1;

19 Calculate the filter gain Kk = Pxz,kR
−1
e,k;

20 Update x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1);
21 Update Pk|k = Pk|k−1 −KkRe,kK⊤

k .

In summary, the set of 2n+1 SPDE equations (5) should be
solved at each sampling interval [tk−1, tk] for propagating
the sigma vectors and, then, they are utilized at the
measurement update step for computing the state estimate

and the related error covariance matrix. We indicate the
utilized numerical integration scheme as odesolver where
values ϵa and ϵr are, respectively, absolute and relative
tolerances given by users for solving the ODEs.

We stress that Algorithm 1 is, in fact, the conventional
implementation of the UKF estimator because of the full
error covariance matrix update at each iteration step;
see lines 13 and 21 in Algorithm 1. As a result, the
Cholesky decomposition is required at each filtering step
for generating the sigma vectors at line 5 of Algorithm 1.
It is worth noting here that the examined SPDE-based
implementation of the continuous-discrete UKF estimator
allows one of the demanded Cholesky factorizations to be
avoided compared to the MDEs-based implementations. In
fact, it is clearly seen that one does not need to generate
the sigma vectors at the measurement update step of
Algorithm 1 because the propagated sigma vectors are
directly available after the time update step; see line 10 in
Algorithm 1. Thus, the Cholesky decomposition is avoided
at the measurement update step in each filter iterate.

Taking into account that the square-root factor Sk|k−1 is
recovered when the SPDEs are solved, it makes sense to
re-derive the measurement update equations in terms of
the square-root factors Sk|k−1 and Sk|k, only. A possible
solution yields the square-root implementation of the dis-
cussed SPDE-based continuous-discrete UKF estimator.
We propose a novel solution in the next section.

To conclude this section, we give the pseudo-code ex-
pressed by MATLAB language notation for computing the
right-hand side of the SPDEs function, which is to be sent
to the chosen ODEs solver at the time update step.

[X̃′(t)]← SPDEs(X̃(t), t, n, λ,W, w(m), G,Q)

1 Get matrix X(t)← reshape(X̃(t), n, 2n+ 1);
2 Recover x̂(t) = [X(t)]1;
3 Recover S(t) = tril

(
[X(t)]2:2n+1 − x̂(t)

)
/
√
n+ λ;

4 Propagate f
(
t,X(t) and find X(t)Wf⊤(t,X(t));

5 Find M(t) by (6) and split M = L̄+D + Ū ;
6 Compute Φ(M) = L̄+ 0.5D;
7 Set matrix [X′(t)] by columns defined in (5);

8 Reshape into a vector form [X̃′(t)] = [X′(t)](:).

Finally, the built-in MATLAB function tril used both
in the pseudo-code above and Algorithm 1 is required
for taking a lower triangular part of the computed ma-
trices. It is done for the following reason. In fact, when
the covariance square-root factor is recovered by formula
S(t) =

(
[X(t)]2:2n+1 − x̂(t)

)
/
√
n+ λ, the resulted matrix

S(t) should be a lower triangular matrix. However, in a
finite precision arithmetic, this is not always the case. To
avoid any unexpected non-zero entries in the computed
square-root factor, we skip such entries by implementing
the operation tril. Theoretically, it is not required, but
preferable while implementing in practice.

3. SQUARE-ROOT SOLUTION

Derivation of a square-root solution means that we should
re-derive the SPDE-based UKF equations in terms of
propagating and updating the Cholesky factors Sk|k−1

and Sk|k of the filter error covariance matrix. The new

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5043

equations should be equivalent to the conventional ones
summarized in Algorithm 1, but the numerical properties
of these two computational approaches will no longer
agree. The square-root methods are numerically stable
with respect to roundoff errors. Taking into account the
condition number of covariance matrices, Cholesky-based
implementations are proved to maintain the computations
with a double precision as shown in Kaminski et al. (1971).

The key problem for finding the square-root solution for
the discussed UKF is the possibly negative weights w(c)

and unavailable square root operation for negative real
numbers. To resolve this problem, we suggest the following
elegant strategy. First, we define the square-root matrix
|W|1/2 where the required square root operation is taken
for the absolute values |w(c)|. In addition, we determine
the corresponding signature matrix in order to save the
information about the sign of these entries 1 . In summary,

|W|1/2 =
[
I2n+1 − 1⊤

2n+1 ⊗ w(m)
]

× diag

{√
|w(c)

0 |, . . . ,
√
|w(c)

2n |
}
,

S = diag
{
sgn(w

(c)
0), . . . , sgn(w

(c)
2n)

}
.

Next, the appearance of a signature matrix in our square-
root solution demands the utilization of a hyperbolic QR
factorization instead of traditionally used standard QR
factorization. Following Higham (2003), the J-orthogonal
matrix Q is defined as one, which satisfies Q⊤JQ =
QJQ⊤ = J where J = diag(±1). Clearly, if the matrix J
equals to identity matrix, i.e. J = I, then the J-orthogonal
matrix Q reduces to usual orthogonal one.

Following Higham (2003), the J-orthogonal transforma-
tions are used for computing the Cholesky factorization
of a positive definite matrix C = A⊤A − B⊤B, where
A ∈ Rp×n (p ≥ n) and B ∈ Rq×n. If we can find a J-
orthogonal matrix Q such that

Q

[
A
B

]
=

[
R
0

]
(7)

with J = diag{Ip,−Iq}, R ∈ Rn×n upper triangular, then

C =

[
A
B

]⊤
J

[
A
B

]
=

[
A
B

]⊤
Q⊤JQ

[
A
B

]
= R⊤R

so R is the Cholesky factor, which we are looking for.
The factorization in (7) is called the hyperbolic QR
factorization and its effective implementation methods are
discussed in Bojanczyk et al. (2003).

Thus, we propose the following square-root solution for the
examined UKF estimator with the classical parametriza-
tion α = 1, β = 0 and κ = 3 − n: (i) negative weights
in w(c) are sorted in such a way that they are located at
the end of the column; (ii) the column w(m) is sorted at
the same way as w(c); (iii) the matrix W is defined by (4);
(iv) finally, define the square-root and related signature
matrices as follows:

|W|1/2cUKF =
[
I2n+1 − 1⊤

2n+1 ⊗ w(m)
]

× diag

{√
1

6
, . . . ,

√
|3− n|

3

}
(8)

1 For zero entries w
(c)
i = 0 we set sgn(w

(c)
i) = 1.

with the signature matrix

ScUKF = diag {1, . . . , 1, sgn((3− n)/3)} . (9)

The above steps yield the signature matrix of the form J =
diag{Ip,−Iq} required in hyperbolic transformation (7)
with p = 2n and q = 1 for the estimation problems of size
n > 3. Now, we are ready to formulate the first square-root
implementation method for the discussed SPDE-based
continuous-discrete UKF estimator.

Algorithm 1a. SPDE-based SR CD-UKF (Cholesky)

Initialization: Repeat lines 1-3 of Algorithm 1;
1 Rearrange w(c) and, then, w(m) similarly;

2 Find |W|1/2cUKF and signature ScUKF by (8), (9);

3 Cholesky factorization: Π0 = Π
1/2
0 Π

⊤/2
0 ;

4 Set initial values x̂0|0 = x̄0 and P
1/2
0|0 = Π

1/2
0 ;

Time Update: (at interval [tk−1, tk]) � Priori est.

5 Repeat lines 6-12 of Algorithm 1, but note that

here W := WcUKF = |W|1/2cUKFScUKF |W|⊤/2
cUKF ;

Measurement Update: (at tk) � Posteriori est.

6 Propagate Zi,k|k−1 = h
(
k,Xk|k−1

)
, (i = 0, 2n);

7 Collect Zk|k−1 =
[
Z0,k|k−1, . . . ,Z2n,k|k−1

]
;

8 Compute the predicted ẑk|k−1 = Zk|k−1w
(m);

9 Build pre-array Ak and triangularize it[
R

1/2
k Zk|k−1|W|

1/2
cUKF

0 Xk|k−1|W|
1/2
cUKF

]
︸ ︷︷ ︸

Pre−array Ak

Q=

[
R

1/2
e,k 0m×n 0m×(n+1)

P̄xz,k P
1/2
k|k 0n×(n+1)

]
︸ ︷︷ ︸

Post−array Rk

with Q is any J = diag{Im, ScUKF }-orthogonal
transformation that block lower triangulates;

10 Extract and save blocks R
1/2
e,k , P̄xz,k and P

1/2
k|k ;

11 Calculate the filter gain Kk = P̄xz,kR
−1/2
e,k ;

12 Update x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1).

Following the definition of hyperbolic QR factorization
and the fact that AkJA⊤

k = AkQkJQ⊤
k A⊤

k = RkJR⊤
k , one

may justify the algebraic equivalence between equations of
Algorithm 1 and 1a by computing AkJA⊤

k and comparing
with RkJR⊤

k . Indeed, let us consider the transformation in
line 9 of Algorithm 1a that implies

AkJA⊤
k =

[
R

1/2
k ,Zk|k−1|W|

1/2
cUKF

][
diag{Im, ScUKF }

]
×
[
R

1/2
k ,Zk|k−1|W|

1/2
cUKF

]⊤
= R

1/2
k ImR

⊤/2
k + Zk|k−1|W|

1/2
cUKFScUKF |W|⊤/2Z⊤

k|k−1

= Rk + Zk|k−1WZ⊤
k|k−1

line 17, Alg. 1
= Re,k

=RkJR⊤
k =

[
R

1/2
e,k ,0m×n,0m×(n+1)

][
diag{Im, ScUKF }

]
×
[
R

1/2
e,k ,0m×n,0m×(n+1)

]⊤
.

Similarly, we justify other formulas as follows:

AkJA⊤
k =

[
R

1/2
k ,Zk|k−1|W|

1/2
cUKF

][
diag{Im, ScUKF }

]
×
[
0,Xk|k−1|W|

1/2
cUKF

]⊤
= Zk|k−1WX⊤

k|k−1

Alg.1,18
= P⊤

xz,k

=RkJR⊤
k =

[
R

1/2
e,k ,0m×n,0m×(n+1)]

[
diag{Im, ScUKF }

]
×
[
P̄xz,k, P

1/2
k|k ,0n×(n+1)

]⊤
= R

1/2
e,k ImP̄⊤

xz,k,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5044

i.e. R
1/2
e,k P̄

⊤
xz,k = P⊤

xz,k and, hence, P̄xz,k = Pxz,kR
−⊤/2
e,k .

Thus, the gain matrix is calculated by using the available

post-array blocks P̄xz,k and R
1/2
e,k as follows:

Kk = Pxz,kR
−1
e,k = P̄xz,kR

−1/2
e,k .

Finally, we get

AkJA⊤
k =

[
0,Xk|k−1|W|

1/2
cUKF

][
diag{Im, ScUKF }

]
×
[
0,Xk|k−1|W|

1/2
cUKF

]⊤
= Xk|k−1WX⊤

k|k−1 = Pk|k−1

=RkJR⊤
k =

[
P̄xz,k, P

1/2
k|k ,0n×(n+1)

][
diag{Im, ScUKF }

]
×
[
P̄xz,k, P

1/2
k|k ,0n×(n+1)

]⊤
= P̄xz,kP̄

⊤
xz,k

+ P
1/2
k|k [ScUKF]n×nP

⊤/2
k|k = KkRe,kK⊤

k + P
1/2
k|k InP

⊤/2
k|k .

This completes the proof of algebraic equivalence between
Algorithms 1 and 1a. The numerical properties of these

methods no longer agree. For instance, the inverse of R
1/2
e,k

is required in the square-root method instead of Re,k.

Finally, one more square-root method can be derived
by using a symmetric UKF equation that is similar to
a symmetric Joseph stabilized equation existing for the
classical KF; see Simon (2006); Grewal and Andrews
(2015). To derive it, we consider the equation

Pk|k = Pk|k−1 −KkRe,kK⊤
k = Pk|k−1 − Pxz,kK⊤

k (10)

and get

Pk|k = Pk|k−1 − Pxz,kK⊤
k +KkRe,kK⊤

k −KkP
⊤
xz,k

= Xk|k−1WX⊤
k|k−1 − Xk|k−1WZ⊤

k|k−1K
⊤
k

−KkZk|k−1WX⊤
k|k−1 +Kk(Zk|k−1WZ⊤

k|k−1 +Rk)K⊤
k

=
[
Xk|k−1 −KkZk|k−1

]
W

[
Xk|k−1 −KkZk|k−1

]⊤
+KkRkK⊤

k

The resulted symmetric formula allows for the hyperbolic
QR factorization and, hence, we summarize an alternative
square-root UKF implementation method as follows.

Algorithm 1b. SPDE-based SR CD-UKF (Cholesky)

Initialization: Repeat from Algorithm 1a;
Time Update: (at interval [tk−1, tk]) � Priori est.

1 Repeat from Algorithm 1a;
Measurement Update: (at tk) � Posteriori est.

2 Propagate Zi,k|k−1 = h
(
k,Xk|k−1

)
, (i = 0, 2n);

3 Collect Zk|k−1 =
[
Z0,k|k−1, . . . ,Z2n,k|k−1

]
;

4 Compute the predicted ẑk|k−1 = Zk|k−1w
(m);

5 Build pre-array Ak and triangularize it[
R

1/2
k Zk|k−1|W|

1/2
cUKF

]
︸ ︷︷ ︸

Pre−array Ak

Q=
[
R

1/2
e,k 0m×(2n+1)

]
︸ ︷︷ ︸

Post−array Rk

;

with Q is any J = diag{Im, ScUKF }-orthogonal
transformation that block lower triangulates;

6 Pxz,k = Xk|k−1|W|
1/2
cUKFScUKF |W|⊤/2

cUKFZ⊤
k|k−1;

7 Calculate the filter gain Kk = Pxz,kR
−⊤/2
e,k R

−1/2
e,k ;

8 Update x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1);
9 Build pre-array Ak and lower triangularize it

[
KkR

1/2
k ,

[
Xk|k−1 −KkZk|k−1

]
|W|1/2cUKF

]
︸ ︷︷ ︸

Pre−array Ak

Q

=
[
P

1/2
k|k 0

]
︸ ︷︷ ︸

Post−array Rk

where J = diag{Im, ScUKF }.

4. NUMERICAL EXPERIMENTS

Example 1. Following Arasaratnam et al. (2010), consider
the aircraft’s dynamics when performing a coordinated
turn in the horizontal plane with the following drift func-
tion and diffusion matrix

f(·) =
[
ϵ̇,−ωη̇, η̇, ωϵ̇, ζ̇, 0, 0

]
, G = diag [0, σ1, 0, σ1, 0, σ1, σ2]

where σ1 =
√
0.2, σ2 = 0.007 and β(t) is the standard

Brownian motion, i.e. Q = I7. The state vector consists
of seven entries, i.e. x(t) = [ϵ, ϵ̇, η, η̇, ζ, ζ̇, ω]⊤, where ϵ,

η, ζ and ϵ̇, η̇, ζ̇ stand for positions and corresponding
velocities in the Cartesian coordinates at time t, and ω(t) is
the (nearly) constant turn rate. The initial conditions are
x̄0 = [1000m, 0m/s, 2650m, 150m/s, 200m, 0m/s, ω◦/s]⊤

and Π0 = diag(0.01 I7). We fix the turn rate to ω = 3◦/s.

Following Examples 7.1 and 7.2 in Dyer and McReynolds
(1969), simulate the ill-conditioned measurement scheme
in a similar manner as follows:

zk =

[
1 1 1 1 1 1 1
1 1 1 1 1 1 1 + δ

]
xk +

[
v1k
v2k

]
, Rk = δ2I2

where parameter δ is used for simulating roundoff effect,
i.e. it is assumed to tend δ → ϵroundoff where ϵroundoff
stands for the unit roundoff error.

When the ill-conditioning parameter δ in Example 1 tends
to machine precision limit, δ → ϵroundoff , one observes
a degradation of any KF-like nonlinear Bayesian filtering
methods due to roundoff errors that make the residual
covariance matrix Re,k to be ill-conditioned although the
matrix Hk is always of a full rank (Grewal and Andrews,
2015, p. 288). In this paper, we perform the following set
of numerical experiments. First, we fix the ill-conditioning
parameter to δ = 10−1. Next, we solve the state estimation
problem on interval [0s, 150s] with various sampling peri-
ods ∆ = 1, 2, . . . , 10(s) by the SPDE-based continuous-
discrete UKF methods in Algorithms 1, 1a and 1b un-
der examination. For their implementation, we utilize the
built-in MATLAB ODEs solver ode113 with the given
tolerance ϵa = ϵr = 10−8. We stress that all filtering meth-
ods are tested at the same conditions, i.e. with the same
simulated “true” state trajectory, the same measurement
data and the same initial filter conditions.

To simulate the “true” stochastic aircraft’s dynamics, we
solve the given SDEs by the Euler-Maruyama method with
the small step size 0.0005(s). Next, for each fixed value of
∆, we get xtrue

k , k = 1, . . . ,K and simulate the related
measurements. Finally, given the available measurements,
the inverse (filtering) problem is solved, i.e. we estimate
the unknown dynamic state x̂k|k, k = 1, . . . ,K by all
filtering methods to be examined. To justify the estima-
tion quality of the UKF estimators, the square errors are
calculated at all sampling points by taking the norm of
the difference between the “true” solution xtrue

k and the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5045

1 2 3 4 5 6 7 8 9 10
10

0

10
5

(a) Estimation Accuracy in Position (m)

δ

A
R

M
S

E
p

1 2 3 4 5 6 7 8 9 10
10

0

10
5

(b) Estimation Accuracy in Velocity (m/s)

δ

A
R

M
S

E
v

1 2 3 4 5 6 7 8 9 10
0

50

100
(c) Number of Divergences (out of 100)

δ

N
um

be
r

Fig. 1. Accuracy degradation in Example 1: Algorithm 1
(solid line with �), Algorithm 1a (dotted line with ◦),
Algorithm 1b (dotted line with �)

estimated one x̂k|k for all k = 1, . . . ,K. We repeat the
experiment for 100 Monte Carlo simulations and compute
the accumulated root mean square error (ARMSE) by
averaging over 100 Monte Carlo runs. Following Arasarat-
nam et al. (2010), we compute the ARMSE in position
ARMSEp, the ARMSE in velocity ARMSEv and the num-
ber of divergences when ARMSEp > 500(m) (out of 100
runs), respectively, by the formulas given in the cited
paper. The obtained results are illustrated by Fig. 1.

Having analyzed Fig. 1, we conclude that the conventional
implementation summarized in Algorithm 1 rapidly fails
to solve this moderate ill-conditioned test problem for
large sampling intervals. Indeed, it is easily seen that all
filtering algorithms under examination work with the same
precision while sampling intervals are small enough, i.e.
for ∆ ≤ 4(s). This justifies our theoretical derivations
of the novel square-root methods presented in this pa-
per and illustrates in practice the proved mathematical
equivalence of all three UKF implementation methods
examined. However, in contrast to the conventional im-
plementation in Algorithm 1, which fails for ∆ > 5(s),
the novel Cholesky-based square-root methods treat in a
robust way the long sampling interval scenario. Indeed,
the roundoff errors destroy the theoretical properties of
the error covariance matrix and, hence, the conventional
Algorithm 1 fails because of the unavailable Cholesky
factorization for the computed covariance. Meanwhile, the
novel square-root Algorithms 1a and 1b are robust with re-
spect to roundoff errors. In particular, they do not require
the Cholesky factorization at each iteration filtering step
since the square-root matrices are propagated and updated
while estimation procedure. Thus, the obtained results
justify that the newly-suggested Cholesky factorization-
based continuous-discrete UKF methods outperform their
conventional counterpart for the numerical robustness.

5. CONCLUSION

The problem of designing square-root methods for the
UKF estimator with possibly negative sigma points’

weights is solved. The solution is based on the hyper-
bolic QR factorization for updating the required Cholesky
factors. The new methods are derived for the classical
UKF variant. Numerical experiments indicate a superior
performance of the novel square-root UKF algorithms.

REFERENCES

Arasaratnam, I. and Haykin, S. (2009). Cubature Kalman
filters. IEEE Transactions on Automatic Control, 54(6),
1254–1269.

Arasaratnam, I., Haykin, S., and Hurd, T.R. (2010). Cu-
bature Kalman filtering for continuous-discrete systems:
Theory and simulations. IEEE Transactions on Signal
Processing, 58(10), 4977–4993.

Bojanczyk, A., Higham, N.J., and Patel, H. (2003). Solv-
ing the indefinite least squares problem by hyperbolic
QR factorization. SIAM Journal on Matrix Analysis
and Applications, 24(4), 914–931.

Dyer, P. and McReynolds, S. (1969). Extensions of square
root filtering to include process noise. Journal of
Optimization Theory and Applications, 3(6), 444–459.

Golub, G.H. and Van Loan, C.F. (1983). Matrix Com-
putations. Johns Hopkins University Press, Baltimore,
Maryland.

Grewal, M.S. and Andrews, A.P. (2015). Kalman Filtering:
Theory and Practice using MATLAB. John Wiley &
Sons, New Jersey, 4-th edition edition.

Higham, D.J. and Higham, N.J. (2005). MatLab Guide.
SIAM, Philadelphia.

Higham, N.J. (2003). J-orthogonal matrices: properties
and generalization. SIAM Review, 45(3), 504–519.

Kailath, T., Sayed, A.H., and Hassibi, B. (2000). Linear
Estimation. Prentice Hall, New Jersey.

Kaminski, P.G., Bryson, A.E., and Schmidt, S.F. (1971).
Discrete square-root filtering: a survey of current tech-
niques. IEEE Transactions on Automatic Control, AC-
16(6), 727–735.

Kulikov, G.Yu. and Kulikova, M.V. (2017). Accurate
continuous-discrete unscented Kalman filtering for esti-
mation of nonlinear continuous-time stochastic models
in radar tracking. Signal Process., 139, 25–35.

Kulikov, G.Yu. and Kulikova, M.V. (2018). Stability
analysis of Extended, Cubature and Unscented Kalman
filters for estimating stiff continuous-discrete stochastic
systems. Automatica, 90, 91–97.

Menegaz, H.M., Ishihara, J.Y., Borges, G.A., and Var-
gas, A.N. (2015). A systematization of the unscented
Kalman filter theory. IEEE Transactions on Automatic
Control, 60(10), 2583–2598.

Särkkä, S. (2007). On unscented Kalman filter for state
estimation of continuous-time nonlinear systems. IEEE
Transactions on Automatic Control, 52(9), 1631–1641.

Simon, D. (2006). Optimal State Estimation: Kalman, H-
infinity, and Nonlinear Approaches. John Wiley & Sons.

Van der Merwe, R. and Wan, E.A. (2001). The square-
root unscented Kalman filter for state and parameter-
estimation. In 2001 IEEE International Conference on
Acoustics, Speech, and Signal Processing Proceedings,
volume 6, 3461–3464.

Wan, E.A. and Van der Merwe, R. (2001). The unscented
Kalman filter. In S. Haykin ed. Kalman Filtering and
Neural Networks, 221–280. John Wiley & Sons, Inc.,
New York.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5046

