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Abstract: This paper presents a novel hexarotor unmanned aerial vehicle (UAV) with
robustness against an arbitrary rotor-failure, called full robustness, and a design method to
maximize its manipulability while ensuring the full robustness. First, the dynamical model of
a hexarotor UAV and the novel structure with 2Y shape and twisted angles are presented.
A hexarotor with this structure is named as 2Y hexarotor. The 2Y hexarotor has higher
flight efficiency than other existing hexarotor structures with full robustness. Second, the full
robustness of the 2Y hexarotor is proved, and a quantitative measure to evaluate the full
robustness is introduced. Then, the quantitative measure for the full robustness is used to
calculate the optimal twisted angles. Finally, the dynamic manipulability measure (DMM) is
introduced to evaluate the maneuverability. A design method is defined as the maximization of
the DMM under constraints regarding the quantitative measure for the full robustness and the
condition to avoid overlapping rotors. The design method is applied to the 2Y hexarotor with
the optimal twisted angles.

Keywords: Aerospace control, Autonomous mobile robots, Design optimization, Stability
robustness, System failure and recovery, Unmanned aerial vehicles

1. INTRODUCTION

Task automation with a multirotor unmanned aerial ve-
hicle (UAV) is one of the hot topics in robotics. It has
been studied actively to automate tasks such as building
inspection (Vazquez-Nicolas et al. (2018)), load trans-
portation (Liang et al. (2017)), and work with a robotic
arm (Kim et al. (2013)). A multirotor UAV can move to
an arbitrary position in the air with at least four rotors,
and thus a quadrotor UAV is one of the typical struc-
tures (Bouabdallah et al. (2004); Tayebi and McGilvray
(2006)). Furthermore, a hexarotor UAV is also a common
structure with redundancy (Kirsch et al. (2016)). The
standard quadrotor and hexarotor are shown in Fig. 1.
In the standard structure, each rotor is upward oriented
and placed on a vertex of the regular polygon so that its
rotational direction is opposite to that of adjacent rotors.

A multirotor UAV is required to have the ability to
achieve static hovering, called hoverability in this paper,
to perform its task. Moreover, we focus on the property
that maintains the hoverability even after an arbitrary
rotor is failed. This property is called full robustness and
required for safe work in a field. A hexarotor UAV is
expected to be robust against a rotor failure because of
its redundancy. However, it is revealed that the standard
hexarotor loses the hoverability after any one rotor is

⋆ This work has been supported by JSPS KAKENHI Grant Number
16H04383.

(a) Standard quadrotor (b) Standard hexarotor

Fig. 1. Standard structure of multirotor UAVs: All the
rotors are placed on the same plane and in the same
direction. Their rotational directions are alternative.

failed in some studies (Giribet et al. (2016); Michieletto
et al. (2018); Schneider et al. (2012); Vey and Lunze
(2015)). The standard hexarotor with one failed rotor is
uncontrollable because it cannot output the roll, pitch, and
yaw moments independently. Kamel et al. (2015) proposed
fault tolerant control for the standard hexarotor. It is a
control scheme that makes the standard hexarotor stay in
the air by sacrificing the control of the yaw angle. Then,
the vehicle flies while rotating around the yaw axis. This
motion might be inappropriate for some tasks because it
might damage equipment on the vehicle or surroundings.

Some researchers proposed the hexarotor structures with
robustness against a rotor-failure. Schneider et al. (2012)
and Vey and Lunze (2015) showed that the hexarotor UAV
with rotational directions of some rotors inverted from the
standard hexarotor is robust against a failure of certain
rotors. It is a simple structure and achieves the static
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hovering even after the certain rotor is failed. However,
it is not fully robust, and thus it becomes uncontrollable
after another rotor is failed. Giribet et al. (2016) and
Michieletto et al. (2018) presented that a hexarotor UAV
with all rotors tilted to outside or inside of the vehicle is
fully robust. Michieletto et al. (2018) also proposed a fully
robust structure that is developed by rotating the position
of some rotors around the yaw axis from the standard
hexarotor, e.g., Y-shaped hexarotor with three pairs of
overlapped two rotors. However, a hexarotor UAV with
tilted rotors causes lower flight efficiency than that with all
the rotor oriented in the same direction because each rotor
generates the thrust force in different directions. On the
other hand, in Y-shaped hexarotor, the overlapped rotors
degrade the thrust force of the lower rotor (Otsuka and
Nagatani (2016)).

This paper presents a novel hexarotor UAV with full
robustness. Furthermore, it keeps the flight efficiency by
placing each rotor in the same direction and without any
overlap. This hexarotor UAV is named as 2Y hexarotor.
The full robustness of the 2Y hexarotor is presented from
hoverability analysis with the Equilibrium existence region
(EER) proposed in our previous work (Matsuda et al.
(2018)). Furthermore, we propose a design scheme of its
physical parameters. Two quantitative measures are in-
troduced to design the parameters. One is the dynamic
manipulability measure (DMM) to evaluate the manipu-
lability (Yoshikawa (1985)), and the other is the distance
between the center of mass (CoM) and the boundary
of the EER, called hoverability margin, to evaluate the
robustness of the hoverablity. The DMM was introduced
for evaluation of manipulator performance in Yoshikawa
(1985) at first. In recent studies, Tadokoro et al. (2017)
and Anzai et al. (2018) applied the DMM to structure
optimization for a fully actuated multirotor UAV. In this
paper, we apply it to structure optimization for an under-
actuated hexarotor UAV. We optimize the parameters to
maximize the DMM under the constraint that the hover-
ability margin is larger than a specific value even after a
rotor-failure. This optimization finds the UAV structure
with both high manipulability and sufficient robustness
against a rotor-failure to perform the task safely.

2. 2Y HEXAROTOR MODEL

In this paper, we ignore the aerodynamic disturbance
and dynamics of each rotor. The main symbols used in
this paper are listed in Table 1, and Ok×l ∈ Rk×l and
Ik ∈ Rk×k indicate the k× l zero matrix and k×k identity
matrix, respectively.

2.1 Dynamical Model

We first consider a hexarotor UAV model with a planar
structure. Figure 2 shows the dynamical model in the case
of the 2Y hexarotor.

Each rotor is oriented in the positive z-axis in Σc. Then,
the i-th rotor, located at pcri = [xi, yi, 0]

T in Σc, generates
the rotor thrust force fi ≥ 0 in the rotational axis direction
and the counter torque κifi around its rotational axis. The
sign of κi depends on the rotational direction of the i-
th rotor. The rotational direction of each rotor plays an

Table 1. Nomenclature

Symbol Definition
Coordinate frames

Σo Inertial frame
Σc Body frame (origin at center of mass)

Vehicle
poc ∈ R3 Position of center of mass (in Σo)
Roc ∈ SO(3) Attitude (in Σo)
Fc ∈ R6 Applied wrench (in Σc)
m ∈ R Mass
J ∈ R3×3 Inertia tensor (in Σc)
ω ∈ R3 Body angular velocity (in Σc)
v ∈ R3 Body translational velocity (in Σc)

Rotor
i ∈ {1, . . . , 6} Index
pcri ∈ R3 Position (in Σc)
fi ∈ R Thrust force
κi ∈ R Counter torque constant

1

2
3

4 5
6

Fig. 2. Dynamical model of 2Y hexarotor: The rotors
colored red indicate P rotors, and those colored blue
indicate N rotors.

important role in our hoverability analysis. Therefore, we
call a rotor which rotates in the clockwise direction P rotor,
and that which rotates in the counterclockwise direction
N rotor in this paper. The counter torque constant of the
P rotor is positive (κi > 0), and the counter torque of the
P rotor is generated in the counterclockwise direction. On
the other hand, the counter torque constant of the N rotor
is negative (κi < 0), and the counter torque is generated
in the clockwise direction.

The total wrench of the six rotors applied at the CoM is

Fc =


O2×6

1 · · · 1
y1 · · · y6
−x1 · · · −x6
κ1 · · · κ6


f1...
f6

 =:

[
O2×6

1 · · · 1
Cτ

]
u,

where u = [f1 · · · f6]T ∈ R6 and Cτ ∈ R3×6 is a matrix
which maps the rotor thrust forces to the moments of the
vehicle. Therefore, the Newton-Euler equation of motion
in Σc is described by[
mI3 O3×3

O3×3 J

] [
v̇
ω̇

]
+

[
ω ×mv
ω × Jω

]
= Fc +

[
−mgR⊤

oce3
O3×1

]
, (1)

where g > 0 is the gravity acceleration and e3 := [0 0 1]T ∈
R3. Note that a structure of a hexarotor UAV affects only
Cτ in (1).

2.2 State Equation

First, we represent Roc by the ZYX Euler angles with the
roll, pitch, and yaw angles roc := [ϕ θ ψ]T ∈ R3 as follows:

Roc = Rz(ψ)Ry(θ)Rx(ϕ). (2)
Here Rx(·), Ry(·), Rz(·) ∈ SO(3) indicate the rotation
matrices around x, y, z-axes, respectively.
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From (1) and (2), the nonlinear state equation of the
hexarotor UAV in Σo is described by

ξ̇ = f(ξ, u), (3)
where ξ := [pToc ṗ

T
oc r

T
oc ṙ

T
oc]

T ∈ R12 is the state vector. The
system (3) has a steady-state input uss that can maintain
equilibrium at a state ξss. In our hoverability analysis, we
consider the linearized system of (3) around (ξss, uss). We
can rewrite (3) as ξ̇δ = fδ(ξδ, uδ) with ξδ := ξ − ξss ∈ R12

and uδ := u − uss ∈ R6. Then, the linearized system is
described by

ξ̇δ = Aξδ +Buδ (4)
with

A :=
∂fδ
∂ξδ

(0, 0), B :=
∂fδ
∂uδ

(0, 0).

All the rotors of a hexarotor UAV with a planar structure
are oriented in the upward direction. Therefore, the vehicle
orientation at the equilibrium point ξss is only the positive
direction of the z-axis in Σo.

2.3 Structure of 2Y Hexarotor

A structure of a hexarotor UAV is represented by specify-
ing elements of Cτ . We first introduce the structure of the
Yaw-Twisted hexarotor based on Michieletto et al. (2018).
Definition 1. Yaw-Twisted hexarotor is a hexarotor UAV
whose structure is described by

xi = r cos
(
i−1
3 π + α

)
yi = r sin

(
i−1
3 π + α

)
κi = κ

i ∈ {1, 3, 5},


xi = r cos

(
i−1
3 π + β

)
yi = r sin

(
i−1
3 π + β

)
κi = −κ

i ∈ {2, 4, 6},

where r > 0 is the length of each rotor arm and α, β ∈
(−π/3, π/3] are the twisted angles.

Figure 3(a) shows the Yaw-Twisted hexarotor. The Yaw-
Twisted hexarotor is obtained by rotating all the P rotors
by α and all the N rotors by β around the yaw axis from
the standard hexarotor. The Yaw-Twisted hexarotor with
|α− β| = π/3 is called Y-shaped hexarotor.

The structure of 2Y Hexarotor is newly presented as
follows:
Definition 2. 2Y hexarotor is a hexarotor UAV whose
structure is described by

xi = l + r cos
(
i−1
3 π + α

)
yi = r sin

(
i−1
3 π + α

)
κi = κ

i ∈ {1, 3, 5}, (5)


xi = −l + r cos

(
i−1
3 π + β

)
yi = r sin

(
i−1
3 π + β

)
κi = −κ

i ∈ {2, 4, 6},

where l > 0 is the length between the center of P (N)
rotors and the CoM.

Figure 3(b) illustrates the 2Y hexarotor. This structure is
developed by respectively translating all the P rotors and
all the N rotors by l and −l along the x-axis of Σc from
the Yaw-Twisted hexarotor. The Yaw-Twisted hexarotor,

1
 3
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2
 

4
 

6

(a) Yaw-Twisted hexarotor

1
 

2
 

4

3
 
 

56
(b) 2Y hexarotor

Fig. 3. Structures with twisted angles: (a) The Yaw-
Twisted hexarotor is a structure with the twisted
angles α, β. (b) The 2Y hexarotor is obtained by
adding the translation of rotors to the Yaw-Twisted
hexarotor.

especially Y-shaped hexarotor, is prone to have an overlap
of two rotors. Thus, adding the translation, we obtain the
structure without any overlap.

3. ROTOR-FAILURE ROBUSTNESS ANALYSIS

This section shows that the 2Y hexarotor is fully robust
against a rotor-failure, and gives optimal twisted angles in
the sense of the full robustness.

3.1 Geometric Hoverability Analysis Method

We briefly review the hoverability analysis with the EER
proposed in our previous work (Matsuda et al. (2018)).
First, we consider the condition for a hexarotor UAV to
achieve static hovering. We need to analyze the control-
lability of the UAV system with input constraint fi ≥ 0.
Matsuda et al. (2018) introduced the matrix Bp by remov-
ing the columns which correspond to zero elements in uss
from B, and defined (A,Bp) controllability as follows:
Definition 3. ((A,Bp) controllability). The linearized sys-
tem (4) is said to be (A,Bp) controllable if the following
equation holds for A ∈ R12×12, Bp ∈ R12×(n−q). (q is the
number of zeros in uss)

rank[Bp ABp A
2Bp · · · A11Bp] = 12. (6)

If the linearized system (3) is (A,Bp) controllable, the
original system (3) can be locally stabilized by linear
state feedback. We now provide the definition of the
hoverability.
Definition 4. (Hoverability (Matsuda et al. (2018))). A
hexarotor UAV is said to be hoverable if the following two
conditions are satisfied:

(i) The original system (3) has at least one equilibrium
such that each element of uss is greater than or equal
to zero.

(ii) The linearized system (4) around the equilibrium is
(A,Bp) controllable.

Hoverable multirotor UAVs can control their attitude and
position without killing the yaw control. The condition (i)
can be analyzed using the geometric method as follows:
Fact 5. (Matsuda et al. (2018)). A hexarotor UAV with
|κi| = κ > 0 for all i ∈ {1, . . . , 6} has equilibria if and
only if the CoM exists in the convex hull composed of the
midpoints between an arbitrary P rotor and N rotor on
(x, y)-plane in Σc.
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Fig. 4. EER of hexarotor UAV: The green dots indicate
the midpoints between each P rotor and N rotor, and
the cyan regions indicate the EERs.

Fact 5 enables us to analyze the existence of equilibria
with the simple geometric way. The convex hull in Fact 5 is
called Equilibrium existence region (EER). The cyan area
of Figure 4(a) shows the EER of the standard hexarotor.
Note that uss such that each element is greater than zero
exists if the CoM is included in the interior of the EER
by properties of linear transformation between two convex
sets (Schneider et al. (2012)). From Fact 5, we find the
following property about the EER:
Lemma 6. The EER of a hexarotor UAV is invariant under
the pair of the translation of all the P rotors by [x y 0]T

and that of all the N rotors by [−x − y 0]T in Σc.

Proof. It is trivial because EER is composed of the
midpoints between an arbitrary P rotor and N rotor.

Figure 4(b) indicates the EER of the 2Y hexarotor which
is obtained by adding the translation of all the P rotors
by [l, 0, 0]T and that of all the N rotors by [−l, 0, 0]T from
the standard hexarotor in Figure 4(a). The EER of the 2Y
hexarotor is the same as that of the standard hexarotor.
Lemma 6 is used to prove the full robustness of the 2Y
hexarotor in the next section.

A multirotor UAV is required to be able to keep the
static hovering even after any one rotor is failed. We next
introduce the definitions to investigate the full robustness,
which are initially defined in Michieletto et al. (2018).
Definition 7. (Rotor-failure (Michieletto et al. (2018))).
The i-th rotor is failed if it cannot generate any force,
i.e., fi ≡ 0.
Definition 8. (Full robustness (Michieletto et al. (2018))).
A hexarotor UAV is said to be fully robust if it is still
hoverable after the i-th rotor is failed for all i ∈ {1, . . . , 6}.

The full robustness of a hexarotor UAV can be examined
by analyzing the hoverability of each structure obtained
by removing an arbitrary rotor from the hexarotor UAV.

Finally, we provide a quantitative measure for the hover-
ability. This quantitative measure can be used to design an
optimal structure for the hoverablity or the full robustness.
Definition 9. For a hoverable hexarotor UAV, the shortest
distance between the CoM and the boundary of the EER
is called hoverability margin.

A hoverable hexarotor UAV is still hoverable if the per-
turbation of the CoM position is within the hoverability
margin. This implies that a hexarotor UAV with a larger
hoverability margin can perform its task more safely. The
minimum hoverability margin among all the hoverability
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Fig. 5. Full robustness of 2Y hexarotor: The structure with
(r, l, α, β) = (0.09 m, 0.15 m, π/6, 0) is still hoverable
even after any one rotor is failed.

margin of a hexarotor UAV with an arbitrary rotor-failure
can be used to evaluate the full robustness.

For analysis examples of the geometric hoverability method,
refer to Matsuda et al. (2018).

3.2 Rotor-Failure Robustness of 2Y Hexarotor

We introduce the following fact about the Yaw-Twisted
hexarotor proved in Michieletto et al. (2018).
Fact 10. The Yaw-Twisted hexarotor with |α − β| ∈
(0, π/3] is fully robust.

Fact 10 is also confirmed by checking whether the Yaw-
Twisted hexarotor with the i-th rotor-failure for all i ∈
{1, . . . , 6} satisfies conditions (i), (ii) in Definition 4. We
now show the full robustness of the 2Y hexarotor.
Theorem 11. The 2Y hexarotor with |α − β| ∈ (0, π/3] is
fully robust.

Proof. Fact 10 implies that all the EERs composed of any
five rotors of the Yaw-Twisted hexarotor with |α − β| ∈
(0, π/3] include the CoM. The 2Y hexarotor is obtained
by translating all the P rotors and the N rotors by l and
−l along the x-axis of Σc from the Yaw-Twisted hexarotor,
respectively. Applying Lemma 6, we find that all the EERs
composed of any five rotors of the 2Y hexarotor also
include the CoM since each EER shape is the same as
that of the Yaw-Twisted hexarotor. From Fact 5, the 2Y
hexarotor with |α − β| ∈ (0, π/3] has an equilibrium such
that each element of uss is greater than zero. We obtain
that the 2Y hexarotor with one rotor-failure is (A,Bp)
controllable by confirming (6). Therefore, the 2Y hexarotor
with |α− β| ∈ (0, π/3] is fully robust.

From the geometric hoverability analysis, we find that the
Yaw-Twisted hexarotor and the 2Y hexarotor with the
same α, β have the same EER. Figure 5 shows the EER of
the 2Y hexarotor with (r, l, α, β) = (0.09 m, 0.15 m, π/6, 0)
in the case of the i-th rotor-failure for all i ∈ {1, . . . , 6}.
In all the cases, the CoM is included in the EER.

3.3 Optimization of Twisted Angles

The 2Y hexarotor has four design parameters: r > 0;
l > 0; and α, β ∈ (−π/3, π/3]. The hoverability margin
is in proportion to r, and independent of l. In this section,
we show the relationship between the twisted angles and
the hoverability margin, and provide the optimal twisted
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Fig. 6. Relationship between hoverability margin and
α: The calculation is conducted under (r, l, β) =
(0.09 m, 0.15 m, 0). (b) shows the EER of the 2Y
hexarotor with the 1st rotor-failure at α = π/3.

angles for the hoverability margin in one rotor-failure case.
Here, we fix (r, l, β) = (0.09 m, 0.15 m, 0) and calculate
the hoverability margin w.r.t. α ∈ (−π/3, π/3] for simple
discussion. In the case of a structure with β ̸= 0, we
can obtain a structure with the same hoverable region
to the structure so that β = 0 by taking the value of α
appropriately. Therefore, the assumption β = 0 does not
lose the generality to investigate the optimal angles.

The hoverability margin of the 2Y hexarotor with one
rotor-failure is shown in Fig. 6(a). We find that the hover-
ablity margin is the largest at α = π/3. The hoverability
margin is zero at α = 0 since the CoM is located on the
boundary of the EER. In this case, the thrust force of 4th
rotor is always zero at an equilibrium, and the system is
not (A,Bp) controllable. Thus, the 2Y hexarotor with the
1st rotor-failure is not hoverable at α = 0. Fig. 6(b) shows
the EER of the 2Y hexarotor with the 1st rotor-failure at
α = π/3. The CoM is included in the interior of the EER.
In the case of another rotor-failure, the EER is obtained
as the congruent shape, i.e., the same shape or the rotated
shape. Therefore, the hoverability margin is always greater
than zero even if an arbitrary rotor is failed. Consequently,
we obtain that (α, β) = (π/3, 0) is the optimal solution in
the sense of the margin for the full robustness.

Generally, twisted angles such that |α − β| = π/3 are the
optimal angles for the 2Y hexarotor. The same statement
holds in the case of the Yaw-Twisted hexarotor, which
means the Y-shaped hexarotor is the optimal structure.
However, the Y-shaped hexarotor has the overlap of two
rotors, which causes the degradation of the rotor thrust
force. The proposed 2Y hexarotor avoids the degradation
by adjusting the value of l while keeping the EER.

4. DESIGN OPTIMIZATION FOR
MANEUVERABILITY AND HOVERABILITY

In this section, we provide a design scheme for a hexarotor
UAV to maximize its manipulability while ensuring the full
robustness for both task performance and safety. Then, the
application example for the 2Y hexarotor is presented.

4.1 Optimization Method

We assume that the translational and angular velocity are
zeros at the initial state of the vehicle. The translational
and angular acceleration of the vehicle is described by[

v̇
ω̇

]
=

[
mI3 O3×3

O3×3 J

]−1
[

O2×6

1 · · · 1
Cτ

]
u+

[
O2×1

g
O3×1

]
. (7)

Note that the translational acceleration is independent
of the structure. Then, we only consider the rotational

dynamics of the vehicle. From (7), the DMM of a hexarotor
UAV is obtained as follows based on Yoshikawa (1985):

wd =
√
det(J−1CτCT

τ (J
−1)T ) ≥ 0.

The DMM wd evaluates the input-output relationship
between the rotor thrust forces and angular acceleration.
A hexarotor UAV with large wd can generate the large
angular acceleration with small rotor thrust forces. The
maximization of wd implies the maximization of the ma-
nipulability of a hexarotor UAV.

We add the following two constraints for safety and ef-
ficiency of thrust forces to the maximization problem of
wd.

Full robustness margin: We require the hoverability
margin with one rotor-failure H ∈ R to be larger than
a constant S > 0:

H ≥ S. (8)
The constant S is decided based on a safety requirement
of a task which the hexarotor conducts. It is difficult to
calculate the hoverablity margin analytically for a general
structure. However, we can obtain the analytical form for
the 2Y hexarotor with |α− β| = π/3 as H = r/4.

Non-overlap between two rotors: Each rotor should be
placed without any overlap to reduce the degradation of
rotor thrust forces. This constraint is written by√

(xi − xj)2 + (yi − yj)2 ≥ Dp + ε, (9)

i < j, i, j ∈ {1, . . . , 6},
where Dp > 0 is the diameter of each rotor, and ε > 0
is the small constant as a margin. The diameter of rotors
does not directly affect the hoverability analysis. However,
we need to make the diameter large enough for the rotor to
be able to generate larger thrust force than each element of
uss. This makes it difficult for the Yaw-Twsited hexarotor
to avoid having an overlap of two rotors, and thus we need
to add the translation of P rotors and N rotors.

Then, the optimization problem is described as follows:
maximize wd subject to (8), (9). (10)

4.2 Optimization Example

We now show the optimization (10) in the case of the 2Y
hexarotor. Let (α, β) = (γ, γ−π/3) with γ ∈ (0, π/3]. Since
(α, β) satisfies |α − β| = π/3, the structure is optimal in
the sense of the margin for the full robustness as shown
in Section 3.3. For the 2Y hexarotor, Cτ is specified from
(5) and J is calculated by assuming that the 2Y hexarotor
is composed of some parts as follows: the base body; the
six rotors; the six rotor arms with length r; and the two
frames with length l between the base body and the center
of the rotor arms. Then, we design the three parameters:
r > 0, l > 0, γ ∈ (0, π/3].

We solve two optimization problems. One is the optimiza-
tion (10) without (8), and the other is that with (8).
Here, we set the parameters as follows: S = 0.05 [m],
Dp = 0.152 [m], and ε = 0.01 [m]. Note that the DMM
wd tends to be larger as r and l become smaller in the
feasible solution set under these parameters. The optimiza-
tion problems are solved by the “fmincon” function from
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Fig. 7. Optimization results (a) without the constraint on
the full robustness, and (b) with the constraint on the
full robustness. The diameter of each red (blue) circle
indicates the diameter of each rotor.

the Matlab Optimization Toolbox (MathWorks (2019a))
and the “GlobalSearch” function from the Matlab Global
Optimization Toolbox (MathWorks (2019b)).

The result of the optimization without (8) is (r, l, γ) =
(0.1624 m, 0.0812 m, 1.0472 rad). The structure is illus-
trated in Fig. 7(a). Each parameter is chosen by making
r, l smaller to maximize wd under the constraints for non-
overlap. We can find that γ = π/3 is suitable to maximize
wd without the full robustness margin constraint. On the
other hand, the result of the optimization with (8) is
(r, l, γ) = (0.200 m, 0.0812 m, 0.2175 rad). The structure is
shown in Fig. 7(b). Each parameter is chosen to maximize
wd while satisfying the constraint on the margin for the full
robustness. Under the full robustness margin constraint,
r should be greater than or equal to 4S. However, the
optimization cannot make r larger than 4S with small l
at γ = π/3 due to the non-overlap constraint. As a result,
the optimization makes r larger and not to change l by
varying γ, which does not affect wd.

The design scheme provides the optimal solution in the
sense of the manipulability of the vehicle while ensuring
the requirement of safety performance.

5. CONCLUSION

In this paper, we proposed the novel structure of hexarotor
UAVs, called 2Y hexarotor. The structure is fully robust
against a rotor-failure and reduces the degradation of the
thrust force. For this structure, our contributions are as
follows: (i) the full robustness is proved using the geometric
hoverability analysis; (ii) the optimal twisted angles in the
sense of the full robustness are presented by evaluating
the hoverability margin; and (iii) the design scheme for
the physical parameters of the UAV is proposed based on
the DMM and the hoverability margin. Finally, we showed
the example of design optimization.

For future work, we will perform the experimental val-
idation of the 2Y hexarotor and consider fault tolerant
control in a task such as transportation. The experimental
investigations will clarify differences between the standard
hexarotor and the 2Y hexarotor in practical applications.
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