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Abstract: This paper proposes a topology identification and impedance estimation (TIIE) method for the 
distribution network with distributed generation (DG) units. When the DG unit is connected to the 
distribution grid, the power injections between the different buses in the distribution grid are no longer 
independent of each other. This paper demonstrates that the topology identification result has to be 
corrected when the existing voltage measured based methods are applied to the distribution network 
involving DG units. To solve the problem, we develop the TIIE method to correct the topology 
identification error by using the estimation of line impedance. The proposed method does not require any 
prior knowledge of the network. The case results show a high accuracy on the connectivity identification 
as well as the estimation of line parameter. 
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1. INTRODUCTION 

The topology of the distribution network is a key parameter for 
modeling the distribution network. With the development of 
smart grids, distributed power generation has gradually 
increased, and the operating state of the system has become 
more and more complicated. In order to achieve complete 
control of the state of the distribution network, the topology 
information of the distribution network must be required. 

The proposed topological identification methods are mainly 
divided into the following types: regression methods (Liao et 
al., 2016), maximum likelihood classification methods (Alam 
et al., 2014; Erseghe et al., 2013), correlation analysis methods 
(Luan et al., 2015; Weng et al., 2017) , mixed integer quadratic 
programming methods (Tian et al., 2016), and matrix 
decomposition methods (Pappu et al., 2018). In these methods, 
matrix decomposition and mixed integer quadratic planning 
methods (Pappu et al., 2018; Tian et al., 2016) not only require 
a large amount of historical measurement data (voltage, active 
power, and reactive power) , but also require a lot of known 
topological information, which makes it difficult to apply in 
practice.  

The method based on regression and correlation analysis (Liao 
et al., 2016; Luan et al., 2015; Weng et al., 2017) does not 
require any a priori knowledge of topology and solves the 
problem that a priori information is too difficult to obtain. This 
type of method uses only voltage measurement data, and the 
data is relatively easy to obtain. However, such methods often 
have a premise: the power injection in the distribution grid 
should be independent so that the voltage is topology related. 

With the penetration of distributed generation (DG), DG units 
with voltage control has been applied for the voltage support 
of the distribution network (Kraiczy et al., 2017). Through 

exploits the reactive power capability of DG units (Kryonidis 
et al., 2019) or electric vehicles (Sousa et al., 2019), voltage 
control of the distribution network can be achieved. But 
meanwhile, support for voltage means that the injection of 
power is controlled by the voltage, which undermines the 
power injection independence assumption of the distribution 
network, which in turn leads to failure of algorithms that rely 
on this assumption. 

To solve this problem, we note that the topology identification 
problem can be considered in conjunction with the parameter 
estimation problem, and the sensitivity matrix can serve as a 
suitable link between the two. The values in the sensitivity 
matrix are related not only to the parameters of the line but also 
to the topology in the network. Therefore, we use a sensitivity 
matrix to correct for the effect of DG's voltage control on 
topology identification. 

In this regard, we propose a topology identification and 
impedance estimation (TIIE) method. With the impedance and 
topology are mutually verified, the effects of voltage control 
caused by DG units can be eliminated. Besides, the proposed 
method has a higher accuracy of impedance estimation by 
modifying the traditional sensitivity formula. 

2. BASIC PROBLEM FORMULATION 

This section describes some of the concepts in the method 
before the formal introduction of the method used. This section 
has three main parts, the concept of sensitivity matrix, the 
concept of mutual information, and the extent to which both 
are affected by voltage-containing DG. 

2.1 Sensitivity Matrix 
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The typical power flow equations are as follows: 

𝑃𝑃𝑖𝑖 = �|𝑉𝑉𝑖𝑖||𝑉𝑉𝑘𝑘|(𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑁𝑁

𝑘𝑘=1

(1) 

𝑄𝑄𝑖𝑖 = �|𝑉𝑉𝑖𝑖||𝑉𝑉𝑘𝑘|(𝐺𝐺𝑖𝑖𝑖𝑖 sin𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖 cos 𝜃𝜃𝑖𝑖𝑖𝑖)
𝑁𝑁

𝑘𝑘=1

(2) 

where i = 1,…,N, 𝑃𝑃𝑖𝑖  is the active power injected at bus i, 𝑄𝑄𝑖𝑖  is 
the reactive power injected at bus i, G and B are the real and 
imaginary parts of the admittance matrix, 𝑉𝑉𝑖𝑖  and 𝑉𝑉𝑘𝑘  are the 
voltage magnitude at bus i and k, 𝜃𝜃𝑖𝑖𝑖𝑖  is the phase angle 
difference between bus i and k. 

Based on the power flow equations (1), (2) and Jacobian 
Matrix, the relationships between the voltages and power 
injections are represented by the following matrix expression: 

�𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥� = �

𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�

−1

�1 0
0 1� �

𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥� (3) 

where 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥 are the voltage magnitudes (rms) and phase 
variations corresponding to the active or reactive power 
injections 𝛥𝛥𝛥𝛥 and 𝛥𝛥𝛥𝛥. 

Brenna et al. based on the (3) proposed a more easier theory 
than classical theory and it is suitable for radial middle voltage 
distribution networks (Brenna et al., 2010). Without 
considering phase angle, the proposed new theory can be 
expressed simply as follow: 

𝛥𝛥𝛥𝛥 = 𝑆𝑆𝑃𝑃𝛥𝛥𝛥𝛥 + 𝑆𝑆𝑄𝑄𝛥𝛥𝛥𝛥 (4) 

where 𝑆𝑆𝑝𝑝 and 𝑆𝑆𝑄𝑄 are the active and reactive sensitivity matrix. 
Further, taking 𝑆𝑆𝑄𝑄 as an example, the sensitivity matrix can be 
expressed as: 

𝑆𝑆𝑄𝑄 = −
1
𝐸𝐸𝑁𝑁

𝑋𝑋𝑄𝑄 (5) 

where 𝐸𝐸𝑁𝑁 is the rated voltage of network, 𝑋𝑋𝑄𝑄 is a coefficient 
matrix and the value of its elements can be uniquely 
determined by the following rules:  

1. Define the reachable path between the two nodes as 𝑇𝑇𝑖𝑖𝑖𝑖 . 

2. Determine the shortest path L between the reference node 
and 𝑇𝑇𝑖𝑖𝑖𝑖 . 

3. The value of 𝑋𝑋𝑄𝑄[𝑖𝑖, 𝑗𝑗]  is obtained by arithmetically 
summing the reactance on the path L. 

 

Fig. 1. A schematic diagram of the calculation. (a) Calculation 
of 𝑋𝑋𝑄𝑄[2,8]. (b) Calculation of 𝑋𝑋𝑄𝑄[6,8]. 

As shown in Fig.1 (a), to calculate 𝑋𝑋𝑄𝑄[2,8], first you need to 
find the T28 shown by the orange line, and then sum the 
reactance on the shortest path L1. That is 𝑋𝑋𝑄𝑄[2,8] = 𝑋𝑋1 . 
Similarly, in Fig.2(b), 𝑋𝑋𝑄𝑄[6,8] = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3. This rule is 
equally valid for solving 𝑆𝑆𝑃𝑃 , just replace the reactance with 
resistor. 

It can be found that the sensitivity matrix is a matrix related to 
line impedance and network topology. In other words, if the 
sensitivity matrix can be obtained in another way, it is possible 
to recover the impedance of the line and the network topology 
therefrom. Our method achieves this and will introduce in the 
Section 3. 

2.2 Mutual information 

The mutual information of two random variables is a measure 
of how independent the two random variables are. In the 
topology identification problem, the mutual information can 
be used to measure the correlation between the voltages of the 
two nodes, and further, the topology can be reconstructed 
according to the mutual information(Weng et al., 2017) . 

For two continuous random variables X and Y are whose joint 
probability distribution is 𝑃𝑃𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) , and the mutual 
information between them denoted 𝐼𝐼(𝑋𝑋;𝑌𝑌) , the calculation 
formula of 𝐼𝐼(𝑋𝑋;𝑌𝑌) is as follow: 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = � � 𝑃𝑃𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦) log
𝑃𝑃𝑋𝑋𝑋𝑋(𝑥𝑥, 𝑦𝑦)
𝑃𝑃𝑋𝑋(𝑥𝑥)𝑃𝑃𝑌𝑌(𝑦𝑦)𝑥𝑥𝑦𝑦

(6) 

where 𝑃𝑃𝑋𝑋𝑋𝑋 is the joint probability density function of X and Y, 
and 𝑃𝑃𝑋𝑋 and 𝑃𝑃𝑌𝑌 are the marginal probability density functions 
of X and Y respectively. 

However, in practice, the estimation of continuous probability 
mutual information is still a difficult problem. It is difficult to 
get the probability density distribution of the variables. And 
the specific estimation method of mutual information is not the 
focus of this paper, so in this paper, we use the mutual 
information estimation method proposed by Kraskov et al 
(Kraskov et al., 2004). 

2.3 The effect of voltage-controlled DG 

In this section, we will discuss the impact of DG on sensitivity 
matrix estimation and mutual information estimation. Since 
the voltage control of the DG destroys the power injection 
independence condition of the DG access node, it can be 
expected that the mutual information at the DG access node 
will increasing, and this increased trend will propagate with 
the line. 

As shown in Fig.2, The effect of DG on data-driven methods 
for mutual information and sensitivity matrix estimation is 
demonstrated where two DGs with voltage control function are 
deployed at the positions corresponding to 16,31 in the matrix. 
The mutual information is estimated using the Kraskov 
method, and the data-driven method for estimating the 
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sensitivity matrix will be described in the next section. The red 
box indicates the part that was negatively affected.  

It can be seen that the mutual information matrix M has 
strongly interfered, leading to the degradation of the ability 
that the mutual information evaluates the topology. In the 
absence of DG with voltage control, the connection between 
mutual information and topology has a strong correlation. 
However, when DG is introduced, the influence caused by 
voltage control is also increased, and the value of the mutual 
information matrix is generally increased. When using such 
metrics for topology identification, there is an inevitable error. 
But, there is almost no effect to 𝑋𝑋𝑄𝑄  calculated from the 
sensitivity matrix which shows that the estimation of the 
sensitivity matrix is more robust. According to the above 
analysis, we propose a method to correct the influence to 𝑀𝑀 by 
cross-validating the topology and its corresponding impedance. 

3. METHOD 

Based on the previous analysis, we propose a TIIE method that 
combines the advantages of sensitivity analysis and mutual 
information analysis. The idea of the algorithm is to first use 
the measurement information (including voltage, active and 
reactive power) to estimate the sensitivity matrix and mutual 
information matrix of the system. Mutual information is then 
used to estimate an initial topology. Then using the initial 
topology, the line impedance parameters corresponding to the 
topology can be estimated from the sensitivity matrix. By 
checking the rationality of the impedance parameters, the bad 
values in the mutual information estimation can be eliminated, 
and then a new topology is re-estimated based on the modified 
mutual information matrix. By repeating this process, you can 
eliminate the effects of voltage-controlled DG and get the right 
topology. 

 

Fig. 3. Flowchart of the proposed TIIE method. 

The flowchart of the proposed TIIE method is shown in Fig. 3. 
Table 1 shows the notations used in the proposed method.  In 
step 1, the sensitivity matrices 𝑆𝑆𝑄𝑄 and 𝑆𝑆𝑃𝑃 are obtained by the 
least-squares solution of the following overdetermined 
equation: 

�
𝛥𝛥𝐸𝐸11 ⋯ 𝛥𝛥𝐸𝐸𝑛𝑛1
⋮ ⋱ ⋮

𝛥𝛥𝐸𝐸1𝑚𝑚 ⋯ 𝛥𝛥𝐸𝐸𝑛𝑛𝑚𝑚
� = �

∆𝑄𝑄11 ⋯ ∆𝑄𝑄𝑛𝑛1 ∆𝑃𝑃11 … ∆𝑃𝑃𝑛𝑛1
⋮

∆𝑄𝑄1𝑚𝑚
⋱
…

⋮
∆𝑄𝑄𝑛𝑛𝑚𝑚

⋮
∆𝑃𝑃1𝑚𝑚

⋱
…

⋮
∆𝑃𝑃𝑛𝑛𝑚𝑚

� �
𝑆𝑆𝑄𝑄

𝑆𝑆𝑃𝑃
� (7) 

In step 2, generate a network topology by using the maximum 
spanning tree (MST) algorithm. Here, we choose the mixed 
matrix (which equals to the sum of 𝑀𝑀 and 𝑋𝑋𝑄𝑄) as its weight 
matrix. 

Lines impedance calculation in step 3 are shown in (8) and (9). 
The bus 𝑖𝑖 and 𝑗𝑗 are a pair of adjacent buses, and 𝑖𝑖 is closer to 
𝑁𝑁𝑠𝑠 . Note that the formulas have been optimized and are 
different from (5). Particularly, when 𝑆𝑆𝑄𝑄  and 𝑆𝑆𝑃𝑃  have been 
obtained by solving (7), 𝐸𝐸𝚥𝚥�  is used to replace 𝐸𝐸𝑁𝑁 . 
Experimentally, we show that this method can reduce the error 
in impedance estimation. 

𝑋𝑋𝑖𝑖𝑖𝑖 = −�𝑆𝑆𝑄𝑄(𝑗𝑗, 𝑗𝑗) − 𝑆𝑆𝑄𝑄(𝑖𝑖, 𝑖𝑖)� 𝐸𝐸𝚥𝚥� (8) 

  

  

Fig. 2. Heat map of 𝑋𝑋𝑄𝑄 and 𝑀𝑀 with and without DG. 

Table 1. Nomenclature 
Variables and Parameters 

𝐸𝐸𝑛𝑛��� Average RMS voltage of bus n 
𝐸𝐸𝑁𝑁 Rated voltage of network 

𝛥𝛥𝐸𝐸𝑛𝑛𝑚𝑚 Difference between the 𝑚𝑚𝑡𝑡ℎ  and (𝑚𝑚 − 1)𝑡𝑡ℎ 
voltage measurements at bus 𝑛𝑛 

∆𝑃𝑃𝑛𝑛𝑚𝑚 ,∆𝑄𝑄𝑛𝑛𝑚𝑚 Difference between the 𝑚𝑚𝑡𝑡ℎ  and (𝑚𝑚 − 1)𝑡𝑡ℎ 
real/reactive power measurements at bus 𝑛𝑛 

𝑅𝑅𝑖𝑖𝑖𝑖 ,𝑋𝑋𝑖𝑖𝑖𝑖 
Resistance/reactance of the line between bus 𝑖𝑖 
and 𝑗𝑗 

𝑃𝑃𝑛𝑛𝑜𝑜 ,𝑄𝑄𝑛𝑛𝑜𝑜 Origin real/reactive power at bus 𝑛𝑛. 
𝑃𝑃𝑛𝑛𝑡𝑡 ,𝑄𝑄𝑛𝑛𝑡𝑡  Real/reactive power at bus 𝑛𝑛 at time 𝑡𝑡 

Matrix 
𝑆𝑆𝑃𝑃 , 𝑆𝑆𝑄𝑄 Matrix of real/reactive sensitivity 
𝑋𝑋𝑄𝑄 Matrix of reactance, 𝑋𝑋𝑄𝑄 = −𝐸𝐸𝑁𝑁𝑆𝑆𝑄𝑄 
𝑀𝑀 Matrix of voltage mutual information 

Indices 
𝑁𝑁𝑠𝑠 Index of substation outlet bus 

𝑁𝑁𝑛𝑛 Index of bus which has minimum electrical 
distance to 𝑁𝑁𝑠𝑠 in Ω𝑛𝑛 

𝑖𝑖, 𝑗𝑗,𝑛𝑛 Indices of buses 
Set 

Ω𝑛𝑛 Set for lines with negative impedance 
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𝑅𝑅𝑖𝑖𝑖𝑖 = −�𝑆𝑆𝑃𝑃(𝑗𝑗, 𝑗𝑗) − 𝑆𝑆𝑃𝑃(𝑖𝑖, 𝑖𝑖)�𝐸𝐸𝚥𝚥� (9) 

Step 4 is to check whether to exist negative values in the solved 
impedance. The negative value indicates that there is an error 
existing in the identified topology. Meanwhile, we get the set 
Ω𝑛𝑛. In step 5 we get 𝑁𝑁𝑛𝑛. 

In step 6, the terms corresponding to 𝑁𝑁𝑠𝑠 and the neighbor bus 
of 𝑁𝑁𝑠𝑠  in Ω𝑛𝑛  are reset to 0 in 𝑀𝑀. It is the key to correct the 
misidentification caused by similar voltage changes. Line 
impedance cannot be negative, so the connection 
corresponding to lines with negative impedance must be 
wrong. By this method, topology recognition errors due to 
voltage control of the DG can be partially corrected. 

Finally, by repeating steps 2-6, the erroneous connection is 
gradually eliminated until there is no negative impedance. At 
last, we get the topological relationship and the line 
impedances. 

4. CASE RESULT 

The IEEE 33-bus system is used to validate the proposed TIIE 
method. The system data is given in the pandapower software 
(Thurner et al., 2018). To obtain the effect of DG units voltage 
control by simulation, two buses in the network are modeled 
as voltage-controlled DG unit buses. We set the target for 
busbar voltage control to float within 1% of the voltage rating 
and assume that the controller will always complete the control 
task. So, we get two buses with similar voltage profiles. For all 
PQ buses, we vary the power according to a random uniform 
distribution according to the following equations:  

𝑃𝑃𝑛𝑛𝑡𝑡~Unif(0.5𝑃𝑃𝑛𝑛𝑜𝑜 , 1.5𝑃𝑃𝑛𝑛𝑜𝑜), 𝑡𝑡 = 1, … ,𝑇𝑇 (4) 

𝑄𝑄𝑛𝑛𝑡𝑡  ~Unif(0.5𝑄𝑄𝑛𝑛𝑜𝑜 , 1.5𝑄𝑄𝑛𝑛𝑜𝑜), 𝑡𝑡 = 1, … ,𝑇𝑇 (5) 

where the letters’ meanings in equations are shown in table 1. 

By verifying our method on the simulated data, we can obtain 
the accuracy of topology identification and the accuracy is 
defined as the number of correctly identified lines divided by 
the total number of lines (since the voltage of the bus 0 is fixed, 
so the total number of lines is 31 not 32). We test the 
performance of the method when DG units are connected to 
different buses, and two DG units are set up in each case, i.e. 
Case 2: 16, 29. Case 2: 17, 21. Case 3: 21, 32. Case 4: 21,24. 
Fig. 4 shows a schematic diagram of DG deployment on the 
IEEE33 bus system. The proposed method uses the voltage, 
active power and reactive power measurements on each bus 
bar. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

25 26 27 28 29 32

22 23 24

18 19 20 21

3130

DG

DG

DG

DG

DG

DG

Case 1: DG

Case 2: DG

Case 3: DG

Case 4: DG

DG

DG

 

Fig. 4. Schematic diagram of DG deployment. 

We conducted 100 independent replicate trials at different 
sample sizes and the results obtained are presented in Fig. 5 
and 6. To avoid the effect of extreme values on the results, we 
show the mean values with their 95% confidence intervals. As 
can be seen from Fig. 5, our method performs poorly with a 
small sample size. This is because the sensitivity matrix 
estimated at this time is not accurate. With the increased 
sample size, the accuracy and stability of the proposed method 
are better than those based on mutual information. Fig. 6 
shows the mean square error of impedance estimation 
compared with traditional sensitivity theory. This proves that 
we use the average value of the voltage on the local node 
instead of the rated voltage value in equation (8)(9), which 
plays a positive role in the accuracy of impedance estimation. 

 
Fig. 5. Topology identification accuracy. 
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Fig. 6. Mean square error of the impedance estimation. 

5.  CONCLUSION 

In this paper, a TIIE method without considering the prior 
information is proposed to solve the problem of topology 
identification errors caused by the DG units. In this method, 
we estimate the sensitivity matrix by solving the least-squares 
problem. Further, the proposed method consists of iteratively 
impedance estimation and topology recognition and corrects 
the topological errors by judging the rationality of impedance 
estimation results. Case results indicate that, compared with 
the traditional method, the proposed TIIE method exhibits a 
better performance in identifying topology and estimating the 
impedance of the distribution network with DG units. 
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