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Abstract: This paper studies input-to-state stability of networked and quantized control systems with
external disturbances. Since the external disturbance is considered, the state may escape from the
quantization regions, which thus leads to the introduction of the quantization mechanism with zooming-
out and zooming-in stages. We first propose a novel hybrid system to incorporate both the open-loop and
closed-loop systems. Based on the developed hybrid model, we establish the boundedness of the state in
the zooming-out stage, and the convergence of the state in the zooming-in stage. Furthermore, sufficient
conditions are established for input-to-state stability in the case of switching between the zooming-in
and zooming-out stages. Finally, a numerical example is presented to illustrate the obtained results.
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1. INTRODUCTION

With the increasing control applications emerging in many
fields like vehicle industry and teleoperation, control of systems
via communication channels has been given great attentions in
the last few decades; see Zhang et al. (2013); Lunze (2014). In
these control applications, system components, such as sensors,
actuators, controllers and quantizers, are connected through a
communication network. The presence of the network provides
many benefits in terms of installation, maintenance, flexible
architecture, high reliability and wireless. However, because of
the limited capacity of the network, some unavoidable issues
are induced, such as time-varying transmission intervals, packet
dropouts, quantization effects and communication constraints.
See survey papers Zhang et al. (2013); Baillieul and Antsaklis
(2007) for a general introduction.

In the literature, there exist two modelling strategies to deal
with control systems with the band-limited network (Nešić
and Liberzon (2009)). The first one is to transform the sam-
pled information into the digital information by the cod-
ing/quantization techniques to match the network constraints.
The transmitted digital information is decoded to be the avail-
able information for controllers. Control systems based on
this modelling strategy are called quantized control systems
(QCSs); see Brockett and Liberzon (2000); Liberzon (2003a).
The second one is to choose part of the sampled information
with finite words to be transmitted via the network, and thus
the network constraints are avoided. In this direction, time-
scheduling protocols are needed to decide which part to be
transmitted. Control systems based on this strategy are called
networked control systems (NCSs); see Walsh et al. (2002,
2001). Observing from these two modelling strategies, we can
find their similarities in many aspects (Nešić and Liberzon
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(2009)). For instance, both QCSs and NCSs can be modelled
as hybrid systems (Heemels et al. (2010); Liberzon (2003a))
or discrete-time systems (Donkers et al. (2011); Liberzon and
Nešić (2007)); the quantizer and network can be seen as in-
formation processing devices and only provide part of infor-
mation (Liberzon (2003b); Nešić and Teel (2004)). Based on
these similarities, both QCSs and NCSs can be combined and
such control systems are called networked and quantized con-
trol systems (NQCSs); see van Loon et al. (2013); Ren and
Xiong (2018b); Tian et al. (2007); Nešić and Liberzon (2009).
However, the differences between QCSs and NCSs lead to
additional assumptions. For instance, the encoding part is open-
loop in QCSs (Liberzon (2003a); Liberzon and Nešić (2007)),
whereas the system is always closed-loop in NCSs (Nešić and
Liberzon (2009); Heemels et al. (2009)). Hence, the absence
of the external disturbance (Ren and Xiong (2018b); van Loon
et al. (2013)) or the assumption to constrain the system in the
quantization regions (Heemels et al. (2009); Nešić and Liber-
zon (2009)) are required, which lead to conservatism of the
obtained results. In this paper, we follows this direction and
study this topic further.

In this paper, we focus on input-to-state stability (ISS) of net-
worked and quantized control systems with external distur-
bance. Since the external disturbance is addressed here, which
may result in escaping of the state from the quantization re-
gions, it is necessary to address the quantization mechanism
with two stages: zooming-out and zooming-in stages, which
thus leads to reconsideration of the system model. As a re-
sult, our first contribution is to propose a novel hybrid model
for NQCSs with external disturbance based on the formalism
of Goebel et al. (2012). Since the general assumption, which
requires the system state to be always in the quantization re-
gions (Nešić and Liberzon (2009)), is not needed here, the
main challenge is to model the data transmissions on the one
hand and the switches between zooming-out and the zooming-
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in stages on the other hand. To this end, we describe in detail
the quantization mechanism with two stages, and then introduce
two clock variables to represent respectively the time elapsed
since the last data transmission and the time elapsed since the
last stage switch. Both the open-loop and closed-loop cases are
included, and thus a high fidelity model is developed to be
amenable to controller design and stability analysis. With the
developed hybrid model, our second contribution is to derive
sufficient conditions to guarantee ISS of the whole system. To
this end, we derive the boundedness of the state in the zooming-
out stage, the convergence of the state in zooming-in stage, and
further study ISS of the whole system in terms of average dwell-
time. Finally, a numerical example is presented to illustrate the
obtained results.

2. PRELIMINARIES

Basic definitions and notations are introduced in this section.
R := (−∞,+∞); R+

t := [t,+∞) with t ∈ R; R+ := (0,+∞);
N := {0,1,2, . . .}; N+ := {1,2, . . .}. | · | stands for the Euclidean
norm. Given two vectors x,y ∈ Rn, (x,y) := (x>,y>)> for sim-
plicity of notation, and 〈x,y〉 denotes the usual inner product. I
represents the identity matrix with the appropriate dimension;
diag{·} to denote the block diagonal matrix. The symbols ∧
and ∨ denote separately ‘and’ and ‘or’ in logic. Id denotes the
identity function. Given a piecewise continuous function f :
R+ → R, f (t+) := lims↘t f (s); ‖ f‖[a,b] := ess. supt∈[a,b] | f (t)|
with given interval [a,b] ⊆ R; and ‖ f‖ := ‖ f‖[a,∞) if b→ ∞.
A function α : R+

0 → R+
0 is of class K if it is continuous,

α(0)= 0, and strictly increasing; it is of class K∞ if it is of class
K and unbounded. A function β : R+

0 ×R+
0 → R+

0 is of class
K L if β (s, t) is of class K for each fixed t ≥ 0 and β (s, t)
decreases to zero as t → 0 for each fixed s ≥ 0. A function
β : R+

0 ×R+
0 ×R+

0 → R+
0 is of class K L L if β (r,s, t) is of

class K L for each fixed s≥ 0 and of class K L for each fixed
t ≥ 0.

Consider the nonlinear hybrid system (Cai and Teel (2009)):{
ẋ = F(x,w), (x,w) ∈C,

x+ = G(x,w), (x,w) ∈ D,
(1)

where x ∈ Rn is the system state, w ∈ Rm is the external input,
y∈Rp is the system output, F : Rn×Rm→Rn is the flow map,
G : Rn×Rm → Rn is the jump map, C ⊂ Rn×Rm is the flow
set, and D ⊂ Rn×Rm is the jump set. For the hybrid system
(1), the following basic assumptions are given in Goebel et al.
(2012): the sets C,D⊂ Rn×Rm are closed; F is continuous on
C; G is continuous on D.
Definition 1. (Cai and Teel (2009)). The system (1) is input-to-
state stable (ISS), if there exist β ∈K L L and γ ∈K such
that |x(t, j)| ≤ β (|x(0,0)|, t, j) + γ(‖w‖) for all (t, j) ∈ domx
and all the solution to (1).

3. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the plant of the following form
ẋp = Apxp +Bpu+Epw, y =Cpxp, (2)

where xp ∈ Rnp is the plant state, u ∈ Rnu is the control output,
w ∈ Rnw is the unknown disturbance, and y ∈ Rny is the plant
output. The controller designed for the plant (3) is given by

ẋc = Acxc +Bcy+Ecw, u =Ccxc +Dcy, (3)
where xc ∈ Rnc is the controller state. In (3)-(4), w ∈ Rnw is
assumed to be Lebesgue measurable and locally bounded. Our

objective is to implement the controller (3) over the quantizer
and network, and to show that under reasonable assumptions,
the assumed stability property of the system (2)-(3) will be
preserved for NQCSs.

At the transmission times, denoted by ti ∈R+
0 , i∈N, the outputs

of the plant (2) and the controller (3) are sampled, quantized
and transmitted via the network. According to the band-limited
network and the spatial locations of the sensors and actuators,
the sensors and actuators are partitioned into ` ∈ N+ nodes
connecting the network. Correspondingly, the transmitted in-
formation is also divided into ` parts. At ti ∈ R+

0 , one and only
one node is allowed to access to the network to transmit its
data packet, and which node is granted is determined by the
time-scheduling protocols; see Donkers et al. (2011); Nešić and
Liberzon (2009); Nešić and Teel (2004). The transmission time
sequence {ti ∈ R+

0 : i ∈ N} is strictly increasing, and thus the
transmission intervals are defined as hi := ti+1− ti, i ∈ N. The
following assumption is made for the transmission intervals;
see also Nešić and Liberzon (2009); Nešić and Teel (2004).
Assumption 1. There exist hmati > ε > 0 such that ε ≤ hi≤ hmati
holds for all i ∈ N.

3.1 Quantization

After sampling via the sensors, the sampled measurements
y(ti) and u(ti) are quantized to match the bandwidth limitation
of the network. A quantizer is a piecewise constant function
q : Rn → Q, where Q is a finite subset of Rn; see Liberzon
(2003a). That is, the quantizer q divides Rn into a finite number
of the quantization regions of the form {z∈Rn : q(z)=℘∈Q}.
To well define the quantizer, the following assumption is made;
see also Ren and Xiong (2018b,a); Liberzon (2003a); Liberzon
and Nešić (2007).
Assumption 2. Each node has a quantizer q j with j ∈ L :=
{1, . . . , `}. For each j ∈ L, there exist M j > ∆ j > 0 and ∆0 j > 0
such that for all z j ∈ Rn j ,

|z j| ≤M j⇒ |q j(z j)− z j| ≤ ∆ j, (4)
|z j|> M j⇒ |q j(z j)|> M j−∆ j, (5)
|z j| ≤ ∆0 j⇒ q j(z j)≡ 0. (6)

The dynamic quantizer applied in this paper is given by
q(µ,z) := µq(z/µ), µ > 0, (7)

where µ ∈ R+ is called the quantization parameter. All the
quantization parameters are combined as µ := (µ1, . . . ,µ`) ∈
R`, and the overall quantizer is given by

q(µ,z) := (q1(µ1,z1), . . . ,q`(µ`,z`)).

The quantization parameter µ ∈ R` evolves according to a
hybrid dynamics, which will be discussed later. The quantized
measurements are defined as ȳ := q(µ,y) ∈ Rny and ū :=
q(µ,u) ∈ Rnu ; the quantization errors are defined as εy := ȳ−
y ∈ Rny and εu := ū−u ∈ Rnu .

Since the external disturbance are studied and the dynamic
quantizer (7) is applied, the quantization mechanism is intro-
duced with two stages: zooming-out and zooming-in stages.
Since the initial state is unknown a priori and the state may
escape from the quantization regions due to the effects of the
external disturbance, the system is in the zooming-out stage,
and µ increases such that the quantization regions are expanded
to cover the state. Meanwhile, the quantization error is getting
large with the increase of µ . Once the state is captured by the
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quantization regions, the system switches into the zooming-in
stage, and µ decreases such that the quantization regions are
contracted to drive the state to be bounded and even convergent.
Because of these two stages in the quantization mechanism, the
applied control strategy also has two stages: the controller is not
activated in the zooming-out stage until the state is captured in
the quantization regions, whereas activated in the zooming-in
stage such that the control input is transmitted via the network.

In the following, we introduce a logical variable c ∈ {0,1} to
distinguish the zooming-out and zooming-in stages, and a timer
τ2 ∈ R+ to keep track of these two stages. In particular, c = 0
means that the system is in the zooming-out stage, whereas
c = 1 means that the system is in the zooming-in stage. The
dynamics of the variable (τ2,c) is given by

(τ̇2, ċ) = (1,0), (τ2,c) ∈Cstg,

(τ+2 ,c+) = (0,1− c), (τ2,c) ∈ Dstg,
(8)

with
Cstg := ([0,T1(x)]×{0})∪ ([0,T2(x)]×{1}),
Dstg := ({T1(x)}×{0})∪ ({T2(x)}×{1}),

(9)

where x := (xp,xc) ∈Rnx is the augmented state with nx = np +
nc. In (9), T1(x) := inf{t ∈ R+ : (∀ j ∈ L,(|y j(t)| ∧ |u j(t)|) ≤
M jµ j(t))∧ (∃ j ∈ L,(|y j(0)|∨ |u j(0)|)> M jµ j(0))} is the time
instant from which the quantizer switches into the zooming-
out stage from the zooming-in stage, and T2(x) := inf{t ∈
R+ : (∃ j ∈L,(|y j(t)|∨|u j(t)|)≤M jµ j(t))∧(∀ j ∈L,(|y j(0)|∨
|u j(0)|) ≤M jµ j(0))} is the time instant from which the quan-
tizer switches into the zooming-in stage from the zooming-
out stage. Both T1(x) and T2(x) are time-varying and state-
dependent. Hence, the dynamics (8) with (9) is state-dependent
and event-triggered, and the switching between the zooming-
out and zooming-in stages is event-triggered. The event-
triggered conditions are presented in T1(x) and T2(x) to verify
whether the outputs of the plant and controller are in the quan-
tization regions. Because of the strictly increasing transmission
time sequence and Assumption 1, the Zeno phenomena are
ruled out, which implies the positiveness of T1(x) and T2(x).

3.2 Zooming-out Stage

In the zooming-out stage, the system is open-loop, the quanti-
zation parameter increases and the controller is not activated.
The following assumption is made first for the increase of the
quantization parameter.
Assumption 3. In the zooming-out stage, the quantization pa-
rameter µ increases periodically, and the period is δ ∈ R+

satisfying δ ∈ (0,hmati].

Since the system is open-loop in the zooming-out stage, the
transmission times do not affect the increase of the quantization
parameter µ , which thus implies that Assumption 3 is reason-
able. It has to be noted that the increase of µ is also periodic in
the previous works; see Liberzon (2014, 2003a); Liberzon and
Hespanha (2005). The period δ ∈ (0,hmati] can be set arbitrarily,
and the smaller δ is, the larger the increase frequency of µ is.
We can set δ as the inter-sampling period as in Liberzon and
Hespanha (2005) for the sake of convenience.

Next, we introduce a timer τ1 ∈ R to keep track of the trans-
mission interval (which refers to the update interval of µ in
the zooming-out stage). Hence, the open-loop system in the
zooming-out stage is denoted by S1 and modelled below.

ẋ = A1x+E1w
µ̇ = 0
τ̇1 = 0

 (τ1,τ2,c) ∈C1, (10a)

x+ = x
µ
+ = Ωoutµ

τ
+
1 = 0

 (τ1,τ2,c) ∈ Djump
1 , (10b)

with

A1 :=
[

Ap 0
0 Ac

]
, E1 :=

[
Ep
Ec

]
,

C1 := [0,δ ]× [0,T1(x)]×{0},
Djump

1 := {δ}× [0,T1(x)]×{0},

(11)

where Ωout = diag{Ωout,1, . . . ,Ωout,`} ∈ R` with the constants
Ωout, j > 1 given for all j ∈ L.

The dynamics in (10a)-(10b) implies that the timer τ1 is reset
to 0 when it reaches δ during the zooming-out stage, i.e., when
c = 0 and τ2 ∈ [0,T1(x)]. It is obvious that the switching times
for the solutions of the hybrid system (10) are consistent with
Assumption 3. In Subsection 5.1, we will establish the existence
of the time instants switching from the zooming-out stage to the
zooming-in stage, which shows the boundedness of T1(x). After
the zooming-out stage, the state is captured by the quantization
regions and thus the system switches into the zooming-in stage.

3.3 Zooming-in Stage

In the zooming-in stage, the controller is activated and the
system is closed-loop such that the quantized measurements ȳ
and ū are transmitted via the network. Here, the quantization
measurements are assumed to be time-invariant in the trans-
mission intervals and updated at the transmission times. The
received measurements, denoted by ŷ and û, are assumed to be
time-invariant in the transmission intervals [ti, ti+1], i ∈ N; see
for instance van Loon et al. (2013); Heemels et al. (2010). At
the transmission times ti, i ∈N, the updates of ŷ and û are given
as follows.

ŷ(t+i ) = ȳ(ti)+hy(i,ey(ti),εy(ti)),
û(t+i ) = ū(ti)+hu(i,eu(ti),εu(ti)),

(12)

where hy and hu are the update functions, and depend on
the time-scheduling protocols. As a result, the update of the
network-induced errors are given by

ey(t+i ) = ŷ(t+i )− y(t+i ) = εy(ti)+hy(i,ey(ti),εy(ti))
=: hy(i,xp(ti),ey(ti),µ(ti)), (13)

where the second “=” holds due to (12). Similarly,
eu(t+i ) =: hu(i,xc(ti),eu(ti),µ(ti)). (14)

Since the functions hy and hu model the time-scheduling mech-
anism, which determines the transmissions between the con-
troller and the plant. Following the terminology of Nešić and
Teel (2004), the following is referred to as the transmission
protocol

e+ = h(i,x,e,µ), (15)
where e := (ey,eu) ∈Rne with ne := ny +nu, and h(i,x,e,µ) :=
(hy(i,xp,ey,µ),hu(i,xc,eu,µ)). According to the number of the
nodes, e is partitioned as e = (e1, . . . ,e`). The transmission
protocol (15) is to determine the node to transmit its data
packet at the transmission times. That is, at each transmission
instant ti, if the node j ∈ L gets access to the network, then
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the corresponding component of e j is updated whereas other
components of e is kept.

The dynamics of µ in the zooming-in stage is given by

µ̇ = 0, t ∈ [ti, ti+1],

µ(t+i ) = ΨΩinµ(ti)+(I−Ψ)µ(ti),
(16)

where Ωin = diag{Ωin,1, . . . ,Ωin,`} ∈ R` with the constants
Ωin, j ∈ (0,1) given for all j ∈ L. Note that the dynamic of µ

in the zooming-in stage is similar to those in Heemels et al.
(2009); Nešić and Liberzon (2009).

Combining all the variables and their relationships in (2)-(3),
(12)-(16), the closed-loop system in the zooming-in stage is
denoted by S2 and modelled as follows.

ẋ = A2x+B2e+E2w
ė = A3x+B3e+E3w
µ̇ = 0, τ̇1 = 0

 (τ1,τ2,c) ∈C2, (17a)

x+ = x
e+ = h(i,x,e,µ)
µ
+ = ΨΩinµ +(I−Ψ)µ

τ
+
1 = 0

 (τ1,τ2,c) ∈ Djump
2 , (17b)

with
C2 := [0,hmati]× [0,T2(x)]×{1},

Djump
2 := [ε,hmati]× [0,T2(x)]×{1},

(18)

where

A2 :=
[

Ap +BpDcCp BpCc
BcCp Ac

]
, B2 :=

[
BpDc Bp

Bc 0

]
,

E2 := E1, A3 :=−C A2, B3 :=−C B2, E3 :=−C E2.

Different from the periodic increase of the quantization pa-
rameter in the zooming-out stage in Subsection 3.2, the trans-
missions do not occur periodically a priori in the zooming-
in stage. Hence, both the flow and jump are allowed to occur
when τ1 ∈ [ε,hmati]. If there is a solution to (17a)-(17b) such
that τ1 ∈ [0,ε) and τ2 = T2(x), then it stops to exist, which is
not an issue since this case does not occur in practice and the
stability in Section 5 still holds.

4. HYBRID MODEL

We combine the system models in both the zooming-out and
zooming-in stages, and construct a unified hybrid model as the
formalism in Goebel et al. (2012). To begin with, we introduce a
counter κ1 ∈N to keep track of the number of the transmissions
needed to implement some time-scheduling protocols like the
RR protocol, a counter κ2 ∈ N to keep track of the number
of the switching between the zooming-in and the zooming-out
stage, and a timer τ ∈ R to keep track of the length of all the
zooming-out stages. Denote X := (x,e,µ,κ1,κ2,τ,τ1,τ2,c) ∈
R := Rnx ×Rne ×R` ×N2 ×R3 × {0,1}, and the NQCS is
modelled as

H :

{
Ẋ= F(X,w), (X,w) ∈C×Rnw ,

X+ = G(X), (X,w) ∈ D×Rnw ,
(19)

where
C := Rnx ×Rne ×R`×N2×R× (C1∪C2),

D := Rnx ×Rne ×R`×N2×R× (D1∪D2),
(20)

with C1 and C2 defined respectively from (11) and (18), D1 :=
Din

1 ∪Djump
1 , D2 := Dout

2 ∪Djump
2 with Djump

1 and Djump
2 defined

in (11) and (18) respectively, and
Dout

1 := {0}×{T1(x)}×{0},
Din

2 := {0}×{T2(x)}×{1}.
(21)

The mapping F in (19) is defined as

F(X,w) :=
{

F1(X,w), (τ1,τ2,c) ∈C1,

F2(X,w), (τ1,τ2,c) ∈C2,
(22)

where F1(X,w) := (A1x + E1w,−C A1x − C E1w,0,0,0,1,1,
1,0) corresponds to the flow (10a) for the zooming-out stage,
and F2(X,w) := (A2x+B2e+E2w,A3x+B3e+E3w,0,0,0,0,
1,1,0) corresponds to the flow (17a) for the zooming-in stage.
The mapping G in (19) is defined as

G(X) :=


G1(X), (τ1,τ2,c) ∈ Djump

1 ,

G2(X), (τ1,τ2,c) ∈ Djump
2 ,

G3(X), (τ1,τ2,c) ∈ Din
1 ∪Dout

2 ,

(23)

where G1(X) := (x,e,Ωoutµ,κ1,κ2,τ,0,τ2,c) corresponds to a
transmission jump (10b) in the zooming-out stage, G2(X) :=
(x,he(κ1,x,e,µ),hµ(κ1,µ),κ1 + 1,κ2,τ,0,τ2,c) corresponds
to the transmission jump (17b) in the zooming-in stage, and
G3(X) := (x,e,cΩ

−1
in µ +(1− c)µ,κ1,κ2 +1,τ,0,0,1− c) cor-

responds to the jump caused by the switching between the
zooming-out and zooming-in stages.

5. MAIN RESULTS

In this section, we first study the evolution of the system state in
the zooming-out stage, and then the convergence of the system
state in the zooming-in stage.

5.1 Boundedness in Zooming-out Stage

The boundedness of the system state in the zooming-out stage
is investigated in this subsection.
Theorem 1. Consider the system H in the zooming-out stage,
and let δ ∈ (0, lnΩmin

out /‖A1‖). There exists a finite hybrid time
instant (t1, j1) � (t0, j0) such that for all (t0, j0) � (t, j) �
(t1, j1),

|x(t, j)| ≤ βx(|x(t0, j0)|, t− t0, j− j0)+ γx(‖w‖), (24)
|µ(t, j)| ≤ βµ(|x(t0, j0)|, t− t0, j− j0)+ γµ(‖w‖), (25)

where βx,βµ ∈K L L and γx,γµ ∈K . In addition, x(t1, j1) is
in the quantization regions.

Theorem 1 ensures that the state and the quantization parameter
are bounded in each zooming-out stage, and the existence of
(t1, j1) ensures the finite length of each zooming-out stage,
which further implies that T1(x) is bounded. In addition, the
state is in the quantization regions at the end of the zooming-
out stages. As a result, there always exists a hybrid time instant
such that the system switches from the zooming-out stage into
the zooming-in stage.

In quantized control systems (Ren and Xiong (2018a); Liberzon
and Nešić (2007)), the existence of the time instant (t1, j1) im-
plies that the state will be in the quantization regions from such
a time instant despite the effects of the external disturbance. If
this is also the case for the NQCS studied in this paper, then
we obtain that T1(x) is finite, c(t)≡ 1 for all t ∈ [T1(x),∞), and
the input-to-state stability of the hybrid system H depends on
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the convergence of the state in the zooming-in stage, which will
be studied in Subsection 5.2. However, due to the effects of the
external disturbance and the network-induced errors, the state
may escape from the quantization regions such that the system
H switches back to the zooming-out stage.

5.2 Convergence in Zooming-in Stage

We next study the input-to-state stability of the system H in the
zooming-in stage. In order to ensure ISS, some assumptions are
provided for the x and (e,µ) subsystems.

Assumption 4. There exist a function W : N×Rne ×R`→ R+
0

which is locally Lipschitz in (e,µ) for all κ ∈ N, α1W ,α2W ∈
K∞ and λ ∈ [0,1) such that for all (κ,e,µ) ∈ N×Rne ×R`,

α1W (|(e,µ)|)≤W (κ,e,µ)≤ α2W (|(e,µ)|),
W (κ +1,h(κ,x,e,µ),Ωinµ)≤ λW (κ,e,µ);

for all x ∈ Rnx and almost all e ∈ Rne ,µ ∈ R`,〈
∂W (κ,e,µ)

∂e
,A3x+B3e+E3w

〉
≤ LW (κ,e,µ)+ |ỹ|, (26)

where ỹ : Rnx ×Rne ×Rnw → R is continuous on (x,e,w).

In Assumption 4, the function W is used to analyze the stability
of (e,µ)-subsystem. Assumption 4 is to estimate the jumps of
W at the discrete-time instants and the derivative of W in the
continuous-time intervals.
Assumption 5. There exist a locally Lipschitz function V :
Rnx →R+

0 , α1V ,α2V ∈K∞, and constants ρ,θ ,γ > 0, such that
such that α1V (|x|)≤V (x)≤ α2V (|x|) holds for all x ∈ Rnx ; and
〈∇V (x),A2x +B2e + E2w〉 ≤ (γ2 − θ)W (κ,e,µ) + ϕ(|w|)−
|ỹ|2 − ρV (x) holds for all (e,µ) ∈ Rne ×R` and almost all
x ∈ Rnx , where ỹ is given in Assumption 4.

The last assumption is on the transmission intervals, and is
to bound the MATI in Assumption 1. Consider the following
differential equation

φ̇ =−2Lφ − γ(φ 2 +1), φ(0) = λ
−1, (27)

where L≥ 0 and γ > 0 are given respectively in Assumptions 4-
5. It is noted from Heemels et al. (2010) that the solution to (27)
is strictly decreasing as long as φ(τ1) ≥ 0. With the equation
(27), the upper bound hmati satisfies φ(hmati) = λ ; see Jentzen
et al. (2010).
Theorem 2. Consider the system H in the zooming-in stage,
and let Assumptions 4-5 hold. If the MATI hmati satisfies
φ(hmati) = λ , then the state of the system H is convergent.

6. SWITCHING BETWEEN TWO STAGES

According to Section 5, we can construct the following Lya-
punov function for the system H in (19):

Ū(X) := (1− c)U1(X)+ cU2(X),

where U1(X) is the Lyapunov function for the zooming-out
stage and U2(X) is the same as the Lyapunov function applied
in the zooming-in stage. For the sake of simplicity, we can take
the Lyapunov function below

Ū(X) :=V (x)+ cγφ(τ1)W 2(κ,e,µ), (28)
where V (x) and W (κ,e,µ) are given in the assumptions in
Subsection 5.1. Hence, U1(X) = V (x) and U1(X) = V (x) +
γφ(τ1)W 2(κ,e,µ).

For the zooming-out stage, we have from (10) and Theorem 1
that there exist r1 ∈ R+ related to the function f and r2 ∈K
such that

〈∇U(X),F1(X,w)〉 ≤ r1U(X)+ r2|w|2, (29)

where r1 := λ
−1
min(P)λmax(A >

1 P +PA1 +E >1 E1) and r2 :=
PP . For the zooming-in stage, we have from Subsection 5.2
that there exist ϖ > 0 and r3 ∈K such that that

〈∇U2(X),F2(X,w)〉 ≤ −ϖU2(X)+ r3(|w|). (30)
Proposition 3. Consider the system (19), and let Assumptions
1-5 hold. If there exists ξ > 1 such that

γφ(0)W 2(κ,e,µ)≤ (ξ −1)V (x), (31)

τ ≤ (r1 +ϖ)−1
ωt, ω ∈ (ϖ/2,ϖ), (32)

κ2 ≤ N0 +
2(ω−ω1)t

lnξ
, ω1 ∈ (2ω−ϖ ,ω), (33)

then the system (19) is ISS.

In Proposition 3, Condition (31) is to ensure that U2(X) ≤
ξU1(X) at the stage switches, which holds by choosing an
appropriate constant ξ > 1. Condition (32) is to constrain the
time length of the zooming-out stage, and Condition (33) is
to constrain the number of the switching from the zooming-
in stage to the zooming-out stage. In addition, Conditions (32)-
(33) can be treated as the average dwell-time (ADT) conditions,
and 0.5(ω −ω1)

−1 lnξ is the ADT. Conditions (32)-(33) can
be satisfied via increasing the quantization parameter as fast as
possible to ensure the time length of the zooming-out stage as
small as possible. The smaller the constant δ > 0 in H is, the
more frequent the increase of µ is, and thus the shorter of the
time length of the zooming-out stage is.

7. NUMERICAL EXAMPLE

In this section, we apply our results to stabilize the origin of a
batch reactor in Heemels et al. (2010). Consider the plant below

ẋp = Apxp +Bpu+Cpw, y = Dpxp, (34)
and the designed controller given by

ẋc = Acxc +Bcy, u =Ccxc +Dcy, (35)
where xp ∈ R4,xc ∈ R2,y ∈ R2 and u ∈ R2; the matrices in
(34)-(35) can be found in Nešić and Teel (2004); Heemels et al.
(2010).

As a result, we have that the open-loop model is
ẋp = Apxp +Cpw, (36)

which means that the system is in the zooming-out stage. Let µ

be initialized at E, and Ωout := exp(2δ‖Ap‖)I, where δ > 0 is
given in Subsection 3.2. Thus, there exists a time instance such
that |x| ≤M|µ|, and such time instance can be set as the initial
time for the zooming-in stage.

In the zooming-in stage, the closed-loop model is
ẋ = A11x+A12e+A13w,
ė = A21x+A22e+A23w,

(37)

where the matrices in (37) can be found in Heemels et al.
(2010). Here, we choose max j ∆ j = 0.8 and maxΩin, j = 0.6,
j = {1,2}, which implies that

√
(`−1)/` ≥ max j Ωin, j +

ε max j ∆ j/
√
` holds for the TOD protocol case and

√
(`−1)/`≥

max j Ωin, j + ε
√
`max j ∆ j holds for the RR protocol case. As a

result, Assumption 4-5 hold with λ =
√

2/2,ρ = M + 1,L =

15.730,γ = 21.5275, and ỹ =
√

2A21x for the RR protocol case,
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Fig. 1. The state response in the TOD protocol case.

Table 1. Bounds on MATI in Section 5

MATI
RR TOD

Theorem 1 0.0010 0.0029
Simulations 0.0663 0.0961

and with λ =
√

2/2,ρ = M + 1,L = 15.730,γ = 15.9222, and
ỹ=A21x for the TOD protocol case. The MATI bounds are sum-
marized and compared to the bounds estimated via simulations
in Table 1.

Given a switching time instant Tk ∈R+, the next switching time
from the zooming-out stage to the zooming-in stage is obtained
by T1(x) = T2k+1 = inf{t ≥ T2k : (|yl(t)|∧ |ul(t)|)≤Mµ(t), l =
1,2}, and the next switching time from the zooming-in stage to
the zooming-out stage is obtained by T2(x) = T2k+2 = inf{t ≥
T2k+1 : (|yl(t)| ∨ |ul(t)|) > Mµ(t), l = 1,2}. Hence, we verify
whether the state is in the quantization regions, and then de-
termine the switching time instants and further which stage
that the system is in. Under the external disturbance w(t) =
(10sin(50t),5cos(20t)) and M = 5, the state response is shown
in Fig. 1, which implies that the system state converges to a
region around the origin, which is caused due to the external
disturbance, and implies input-to-state stability of the whole
system.

8. CONCLUSIONS

In this paper, system modelling and input-to-state stability were
studied for networked and quantized control systems with ex-
ternal disturbances. A unified hybrid system framework was
developed for networked and quantized control systems. In par-
ticular, the quantization mechanism was considered. According
to the developed system model, a Lyapunov ISS protocol was
proposed and sufficient conditions for input-to-state stability
were established. A numerical example was used to illustrate
the developed theory.
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