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Abstract: This paper proposes a probabilistic robust parity relation based approach to fault
detection of stochastic linear systems. Instead of assuming exact knowledge of disturbance
distribution, the uncertainty of distribution information is taken into account by considering
an ambiguity set of disturbance distributions. The biased minimax probability machine scheme
is exploited to formulate an integrated design of the parity vector/matrix and the detection
threshold. It maximizes the worst-case fault detection rate (FDR) with respect to selected
reference faults, while ensuring a predefined worst-case false alarm rate. Firstly, a scalar residual
design is derived in an analytical form. The analysis of its FDR in the presence of an arbitrary
fault shows its limitation due to using a single reference fault. This issue is further addressed by
proposing a vector residual design with a systematic method to select multiple reference faults.
The efficacy of the proposed approach is illustrated by a simulation example.
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1. INTRODUCTION

The importance of safety-critical applications has moti-
vated enormous research interests in model-based fault
detection (FD). A typical FD system consists of a residual
generator and a residual evaluator (Ding, 2013). The gen-
erated residual captures the deviation from the observed
system behavior to the nominal system model. Then the
size of the residual is evaluated and compared against a
chosen threshold to detect latent faults. The FD system
design aims at maximizing the fault detection rate (FDR),
while ensuring an acceptable false alarm rate (FAR) in the
presence of disturbances or model uncertainties.

As one common approach to residual generation, the
parity relation method derives an input-output model over
a sliding window by decoupling the unknown initial state
with a so-called parity vector or matrix (Patton and Chen,
1991; Ding, 2013). According to the assumption about
disturbances, the parity relation based FD algorithms
can be classified into two categories. The first category
assumes disturbances to be unknown but bounded. The
design of a parity vector or matrix is to minimize a
ratio between robustness to disturbances and sensitivity
to faults. Then, the norm-based residual evaluation is

? This work is supported by the National Natural Science Founda-
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adopted to determine a threshold that ensures zero FAR in
the worst-case (Ding, 2013). However, the resulting FDR
could be low, because a conservative threshold is used to
account for the worst-case disturbance that rarely occurs.

The second category of the parity relation based FD al-
gorithms copes with stochastic systems. For linear sys-
tems with additive Gaussian disturbances, a generalized
likelihood ratio test is proposed in the parity relation
scheme (Basseville and Nikiforov, 1993; Gustafsson, 2007).
In the observer-based FD scheme, randomized algorithms
are proposed to exploit the probability distributions of
parametric uncertainties and disturbances in the threshold
computation (Rostampour et al., 2017; Zhou et al., 2018),
or FAR-constrained optimal design (Ding et al., 2019;
Esfahani and Lygeros, 2016). Recently, the probabilistic
paradigm is combined with the set-membership approach
in Combastel (2016); Wan et al. (2020) by admitting a risk
level in the set-based consistency test. All these aforemen-
tioned methods requires accurate distribution information,
thus cannot address inaccuracy/ambiguity of these dis-
tributions. To this end, Zhong et al. (2019) utilizes the
minimum error minimax probability machine (MEMPM)
in the parity relation scheme to minimize a weighted sum
of FAR and miss detection rate in the worst case over a
set of possible disturbance distributions.

This paper focuses on the probabilistic robust design of
the parity relation based FD subject to an ambiguity set
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of disturbance distributions. Different from the MEMPM
scheme in Zhong et al. (2019), the proposed approach
exploits a biased minimax probability machine (BMPM)
scheme which maximizes the worst-case FDR with respect
to selected reference faults while ensuring a predefined
worst-case FAR. Firstly, this BMPM-based approach de-
rives a scalar residual design in a simple analytical form.
In contrast, the MEMPM scheme in Zhong et al. (2019)
leads to a nonlinear optimization problem whose solution
requires a numerical iterative algorithm. Then, the an-
alytically derived FDR in the presence of an arbitrary
fault reveals its poor FDR when the actual fault does
not match with the reference fault. This issue is further
addressed by proposing a vector residual design with a
systematic method to select multiple reference faults. Al-
though the idea of using reference faults is inspired by
Zhong et al. (2019), no systematic discussion was included
therein about how to choose reference faults.

This paper is organized as follows. Section 2 reviews the
conventional parity relation method and states the mo-
tivation of the probabilistic robust design. The proposed
BMPM approach of a scalar residual design and a vector
residual design are presented in Sections 3 and 4, respec-
tively. The simulation results and some conclusions are
presented in Sections 5 and 6.

2. PROBLEM STATEMENT

2.1 System description

Consider the following linear time-invariant system{
x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bff(k)

y(k) = Cx(k) +Du(k) +Ddd(k) +Dff(k)
(1)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , d ∈ Rnd , and f ∈ Rnf
are the state, the control input, the measured output, the
stochastic disturbance, and the latent fault, respectively.
The system matrices A, B, Bd, Bf , C, D, Dd, and Df are
known and time-invariant, with appropriate dimensions.

From the system model (1), the stacked output equation
over a time window [k − h+ 1, k] is derived as

yk = Hox(k − h+ 1) + Huuk + Hddk + Hf fk, (2)

where

yk =


y(k − h+ 1)
y(k − h+ 2)

...
y(k)

 , Ho =


C
CA

...
CAh−1

 ,

Hu=


D 0 · · · 0

CB D
. . .

...
...

...
. . . 0

CAh−2B CAh−3B · · · D

 ,
(3)

uk, dk, and fk are constructed similarly to yk. With the
same structure as in Hu, Hd and Hf are defined by
replacing (B,D) with (Bd, Dd) and (Bf , Df ), respectively.

2.2 Brief review of conventional parity relation based FD

To decouple the unknow initial state, a parity relation
based residual generator is constructed by

rk = V (yk −Huuk)

= V (Hox(k − h+ 1) + Hddk + Hf fk)

= V (Hddk + Hf fk),

(4)

where the parity matrix V is designed to satisfy

VHo = 0. (5)

Let No ∈ Rno×nyh denote the basis matrix of the left null
space of Ho. Without loss of generality, the parity matrix
V can be expressed as

V = WNo, (6)

where W is a nonsingular matrix to be designed. With

H̄d = NoHd, H̄f = NoHf , (7)

the generated residual rk can be rewritten as

rk = W (H̄ddk + H̄f fk). (8)

The conventional parity relation approach assumes the
disturbance dk to be unknown-but-bounded. Then, the
design matrix W is chosen such that the ratio between
sensitivity to faults and robustness to disturbances is
maximized, i.e., (Ding, 2013)

max
W

‖W H̄f‖
‖W H̄d‖

, (9)

where ‖·‖ denotes some induced norm of a matrix, such as
2-norm or ∞-norm. See details in Section 7.4 of (Ding,
2013). After generating the residual with (8) and the
optimal solution W ∗, the next step is residual evaluation
which usually adopts the root mean square value of rk over
a sliding window [k −N + 1, k]:

Jk =

(
1

N

k∑
i=k−N+1

r>i ri

) 1
2

.

Finally, the detection decision generally follows{
Jk > Jth ⇒ fault alarm,
Jk ≤ Jth ⇒ no fault alarm,

where Jth is determined by Jth = supf(k)=0 Jk to ensure

zero FAR, see details in Chapters 9 in Ding (2013).

2.3 Motivation of this study

The above conventional parity relation approach assumes
unknown-but-bounded disturbances. The solution to its
formulated sensitivity/robustness optimization problem
(9) does not ensure optimal tradeoff between FDR and
FAR. Moreover, the parity matrix V , or equivalently W ,
and the detection threshold Jth are separately designed,
hence the overall FD performance is not fully optimized.

In this paper, the integrated design of the parity matrix
and the detection threshold is investigated in the statis-
tical setting to directly optimize the FD performance in
terms of FDR and FAR. Instead of assuming Gaussian
disturbances, the uncertainty of the probability distribu-
tion of disturbances is taken into account. Specifically, the
distribution of dk belongs to an ambiguity set P(0, Q̄) that
consists of all probability distributions with zero mean and
covariance Q̄. Considering all allowable disturbance distri-
butions in the ambiguity set P(0, Q̄), the objective is to
maximize the worst-case FDR while ensuring a predefined
worst-case FAR.
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3. FD OF A SCALAR RESIDUAL USING BMPM

In this section, a probabilistic robust parity relation based
FD of a scalar residual is proposed by exploiting the
BMPM scheme.

3.1 Probabilistic robust design using BMPM

With w being a column vector of appropriate dimension,
a parity vector

v = w>No (10)

is used to generate a scalar residual

rk = v(yk −Huuk) = w>zk, (11)

where zk represents the primary residual

zk = No(yk −Huuk) = H̄ddk + H̄f fk, (12)

according to (7) and (10). From zk in (12), denote the
primary residuals in the fault-free and faulty cases by

z0,k = zk|f=0 = H̄ddk,

zf,k = zk|f 6=0 = H̄ddk + H̄f fk,
(13)

respectively. Since the fault fk is assumed to be unknown
but deterministic, and the distribution of the stochastic
disturbance dk belongs to the ambiguity set P(0, Q̄), which
is denoted by dk ∼ P(0, Q̄), the distributions of z0,k and
zf,k can be respectively expressed as z0,k ∼ P(0,Σ0) and
zf,k ∼ P(H̄f fk,Σ0), where the covariance matrix Σ0 is

Σ0 = H̄dQ̄H̄>d . (14)

A predefined reference fault δfref ∈ Rnfh is introduced
such that the mean of zf is fixed at H̄fδfref, where fref is
a unit vector, and the scalar δ > 0 is the fault magnitude.
For such a reference fault, two cases are considered:

(i) The mean of the faulty residual rk = w>1 zk is positive,
i.e., w>1 H̄f fref > 0. Accordingly, a one-sided detection
test is constructed as{

w>1 zk > b1 ⇒ fault alarm,
w>1 zk ≤ b1 ⇒ no fault alarm,

(15)

where b1 > 0 is the detection threshold.
(ii) The mean of the faulty residual rk = w>2 zk is

negative, i.e., w>2 H̄f fref < 0. Accordingly, a one-sided
detection test is constructed as{

w>2 zk < b2 ⇒ fault alarm,
w>2 zk ≥ b2 ⇒ no fault alarm,

(16)

where b2 < 0 is the detection threshold.

Next, the above two one-sided tests are first designed
separately, and then combined into a two-sided test.

The design of w1 and b1 in the one-sided test (15) is
formulated in the BMPM scheme:

max
w1 6=0,β1,b1

β1 (17a)

s.t. inf
z0∼P(0,Σ0)

Pr
{
w>1 z0 ≤ b1

}
≥ α, (17b)

inf
zf∼P(H̄f δfref,Σ0)

Pr
{
w>1 zf ≥ b1

}
≥ β1, (17c)

w>1 H̄fδfref > 0, b1 > 0. (17d)

For the one-sided test (15) in the case w>1 H̄f fref > 0, the
chance constraints (17b) and (17c) ensure that the worst-
case FAR is 1 − α, and the worst-case FDR is β1 for the
reference fault δfref.

Lemma 1. (Calafiore and El Ghaoui, 2006) Assume that
the distribution of a random vector ξ belongs to an
ambiguity set P(ξ̄,Ξ) that has mean ξ̄ and covariance
Ξ > 0. For q 6= 0, ε ∈ [0, 1), and a given scalar c satisfying
q>ξ̄ ≤ c, the chance constraint

inf
ξ∼P(ξ̄,Ξ)

Pr{q>ξ ≤ c} ≥ ε

is equivalent to

c− q>ξ̄ ≥ κε
√
q>Ξq, κε =

√
ε

1− ε
. (18)

For the case q>ξ̄ > c, infξ∼P(ξ̄,Ξ) Pr{q>ξ ≤ c} = 0 holds.

By applying Lemma 1, the BMPM (17) can be equivalently
transformed into the following optimization problem with
deterministic constraints:

max
w1 6=0,β1,b1

β1 (19a)

s.t. b1 ≥ κα
√
w>1 Σ0w1, (19b)

− b1 + w>1 H̄fδfref ≥ κβ1

√
w>1 Σ0w1, (19c)

w>1 H̄fδfref > b1, b1 > 0, (19d)

with κα =
√

α
1−α and κβ1 =

√
β1

1−β1
. The constraint

w>1 H̄fδfref > b1 in (19d) is imposed to ensure a positive
β1, according to Lemma 1. Then, it can be derived from
(19b) and (19c) that

κα

√
w>1 Σ0w1 ≤ b1 ≤ w>1 H̄fδfref − κβ1

√
w>1 Σ0w1,

which is further simplified as

(κα + κβ1
)
√
w>1 Σ0w1 ≤ w>1 H̄fδfref (20)

by eliminating b1. Since κβ1
=
√

β1

1−β1
increases monoton-

ically with β1, maximizing β1 is equivalent to maximizing
κβ1

. Therefore, according to (20), the optimal solution is
achieved when

κβ1 =
w>1 H̄fδfref√
w>1 Σ0w1

− κα

holds. Since κα is fixed, maximizing β1 is equivalent to
solving

max
w1 6=0

δ2
w>1 H̄f freff

>
refH̄

>
f w1

w>1 Σ0w1
.

It can be further transformed into

max
w̃1 6=0

w̃>1 Σ
− 1

2
0 H̄f freff

>
refH̄

>
f Σ
− 1

2
0 w̃1

w̃>1 w̃1

with w̃1 = Σ
1
2
0 w1 and the symmetric matrix Σ

1
2
0 being the

square root of Σ0. Then, it is straightforward to derive the
optimal solution

w̃∗1 =
Σ
− 1

2
0 H̄f fref√

f>refH̄
>
f Σ−1

0 H̄f fref

, w∗1 =
Σ−1

0 H̄f fref√
f>refH̄

>
f Σ−1

0 H̄f fref

,

(21a)

b∗1 = κα =

√
α

1− α
, (21b)

κβ∗
1

= δ
√

f>refH̄
>
f Σ−1

0 H̄f fref − κα, β∗1 =
κ2
β∗
1

1 + κ2
β∗
1

. (21c)
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Required by (19c) and (21c), the above solution has to
satisfy (w∗1)>H̄fδfref ≥ b1 and κβ∗

1
≥ 0. This results in the

condition
δ2f>refH̄

>
f Σ−1

0 H̄f fref ≥ κ2
α, (22)

which can be ensured by increasing the fault magnitude
δ. Note that the optimal solution w∗1 is related to fref,
without depending on the fault magnitude δ, while b∗1 is
determined solely by the predefined α.

Similarly to the above derivations, the design of w2 and b2
for the one-sided test (16) is formulated as

max
w2 6=0,β2,b2

β2

s.t. inf
z0∼P(0,Σ0)

Pr
{
w>2 z0 ≥ b2

}
≥ α,

inf
zf∼P(H̄f δfref,Σ0)

Pr
{
w>2 zf ≤ b2

}
≥ β2,

w>2 H̄fδfref < 0, b2 < 0,

and its optimal solution is

w∗2 = −w∗1 , b∗2 = −κα, β∗2 = β∗1 (23)

with w∗1 and β∗1 given in (21). The two one-sided tests
(21) and (23) are symmetric, thus can be combined into
the following two-sided test for the residual rk = (w∗1)>zk:{

|rk| > κα ⇒ fault alarm,
|rk| ≤ κα ⇒ no fault alarm.

(24)

3.2 Statistical FD performance analysis

For the two-sided test (24), the residual rk = (w∗1)>zk
in the fault-free case has a zero mean and variance
(w∗1)>Σ0w

∗
1 = 1, i.e., rk ∼ P(0, 1). Then, the obtained

FAR is upper bounded by

sup
rk∼P(0,1)

Pr{|rk| > b∗} =
1− α
α

(25)

which follows the univariate Chebyshev inequality (Navarro,
2016).

The two-sided test (24) is derived with respect to a
specified reference fault δfref in Section 3.1. How its worst-
case FDR varies with an arbitrary fault fk 6= δfref is
analyzed in the following theorem.

Theorem 2. For the two-sided test (24), its worst-case
FDR for any fault fk different from δfref is (|µk| − κα)

2

1 + (|µk| − κα)
2 if |µk| ≥ κα,

0 if |µk| < κα,

(26)

with
µk = (w∗1)>H̄f fk. (27)

Proof. In the faulty case, the residual rk = (w∗1)>zk has
a distribution that belongs to the ambiguity set P(µk, 1).
Using Theorem 6.1 in Bertsimas and Popescu (2005), the
worst-case FDR is expressed as

inf
rk∼P(µk,1)

Pr {|rk| > κα}

= 1− sup
rk∼P(µk,1)

Pr {|rk| ≤ κα} =
η

1 + η

(28)

with

η = inf
|r|≤κα

(r − µk)2 =

{
(|µk| − κα)2 if |µk| > κα,
0 if |µk| ≤ κα.

2

As α increases, κα monotonically increases. Consequently,
the worst-case FAR of the two-sided test (24) decreases
according to (25), while the worst-case FDR for any given
fault is non-increasing according to (26).

4. EXTENSION TO FD OF A VECTOR RESIDUAL

According to Theorem 2, the worst-case FDR of the
two-sided test (24) could be zero when the actual fault
fk 6= δfref satisfies |(w∗1)>H̄f fk| < κα, even though the
magnitude of fk is large. Motivated by this observation,
the test of a scalar residual in Section 3 is extended to a
vector residual to enhance FD performance.

Let
rk = [rk,1 rk,2 · · · rk,ns ]

>
(29)

represent a vector residual whose dimension ns is to be de-
termined later. Each residual component rk,i corresponds
to solving a BMPM in the form of (17) by assigning a
reference fault δifref,i, where fref,i is a unit vector and the
scalar δi > 0 is the fault magnitude. As a result, each
residual component rk,i is expressed as

rk,i = φ>i z̃k, z̃k = Σ
− 1

2
0 zk,

φi =
Σ
− 1

2
0 H̄f fref,i√

f>ref,iH̄
>
f Σ−1

0 H̄f fref,i

,
(30)

according to (11) and (21a), by replacing w̃∗1 with φi. Then,
the associated two-sided test of each residual component
rk,i is in the same form of (24), i.e.,{

|rk,i| > κα ⇒ fault alarm,
|rk,i| ≤ κα ⇒ no fault alarm.

(31)

Next, how to select the reference faults {fref,i} is discussed.

Proposition 3. Let the singular value decomposition (SVD)

of Σ
− 1

2
0 H̄f be denoted by

Σ
− 1

2
0 H̄f = [U1 U2]

[
S 0
0 0

] [
V >1
V >2

]
. (32)

If the reference faults {fref,i} are selected as

[fref,1 fref,2 · · · fref,ns ] = V1 (33)

with ns = rank(Σ
− 1

2
0 H̄f ), then

φ>i φj =

{
0 i 6= j,
1 i = j,

(34)

is guaranteed.

Proof. By substituting (33) into (30) and exploiting (32),

[φ1 φ2 · · · φns ] = U1 (35)

can be derived to prove (34).

Proposition 3 has a clear geometric interpretation. In
(30), φi is a unit vector, and z̃k is a normalized primary
residual with its covariance being an identity matrix.
Then, residual components {rk,i} can be regarded as
projecting z̃k onto multiple orthogonal directions {φi}, and
each projected variance is 1. Each residual component rk,i
is independently monitored by the two-sided test (31), and
all the ns tests in (31) can be combined into{

‖rk‖∞ > κα ⇒ fault alarm,
‖rk‖∞ ≤ κα ⇒ no fault alarm,

(36)
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for the vector residual

rk = U>1 Σ
− 1

2
0 zk, (37)

where ‖·‖∞ represents the infinity norm of a vector, i.e.,
‖rk‖∞ = max1≤i≤ns |rk,i|.

5. SIMULATION STUDY

In this section, a satellite attitude control system is consid-
ered as a simulation example. Define the system state x =

[ϕ θ ψ ωx ωy ωz]
>

, the system input u = [Tx Ty Tz]
>

,

the measured output y = [ϕ θ ψ ωx ωy ωz]
>

, where
ϕ, θ, ψ denote the roll, pitch and yaw angles, ωx, ωy, ωz
represent the roll, pitch and yaw angle rates, and Tx, Ty, Tz
are the roll, pitch and yaw control moments, respectively.
The system model is then described by (Zhong et al., 2019){

x(k + 1) = Ax(k) +Bu(k) + d1(k) +Bff(k)
y(k) = x(k) + d2(k)

(38)

A =

[
A1 0.001I3

03×3 A2

]
, A1 =

 1 0 1× 10−5

0 1 0
−1× 10−5 0 1

 ,
A2 =

 1 −7.568× 10−8 −3.344× 10−8

1.067× 10−7 1 −9.183× 10−8

−1.434× 10−8 −2.793× 10−8 1

 ,
B =

[
8.70× 10−5I3

B1

]
, B1 = 10−4 ×

[
8 0 0
0 7.299 0
0 0 6.289

]
,

Bf = 10−4 × [0.87 0 0 8 0 0]
>
,

where 0m×n represents a zero matrix of dimension m×n,
and In is an identity matrix of dimension n. In (38),
d1 ∈ R6 denotes a vector of process noises, with each
element uniformly distributed over the interval [−2.598×
10−5, 2.598×10−5]; and d2 ∈ R6 is a vector of measurement
noises, which follows a normal distribution with zero mean
and covariance diag{4× 10−7I3, 7× 10−8I3}.
For performance comparisons, the following three parity
relation based FD methods are implemented with the same
parity order h = 6:

• the conventional approach: its parity matrix is deter-
mined by solving (9) as in Section 7.4 of Ding (2013),
and its detection threshold is set to ensures a prede-
fined FAR in 1000 fault-free Monte Carlo simulations.
• the BMPM approach of a scalar residual (referred to

as ”BMPM-scalar”): the parity vector v∗ is computed
according to (10) and (21a), with the chosen reference

fault direction fref = [1 1 1 1 1 1]
>
/
√

6. Its detection
threshold Jth = b∗ only depends on the predefined
α according to (21b) and it increases monotonically
with α.
• the BMPM approach of a vector residual (referred to

as ”BMPM-vector”): with the reference faults in (33),
the parity matrix is computed according to (32) and
(37). Its detection threshold has the same dependence
on α as in the BMPM-scalar approach.

The following two scenarios of roll momentum wheel fault
f are considered:

• a constant fault: the constant amplitude is set to a
value bewteen -1.6 and 1.6;

• a time-varying fault:

f(k) =


sin(k) + sin(2k), 1000 ≤ k ≤ 2000

sin(
2πk

7
), 3000 ≤ k ≤ 4000

sin(
2πk

7
) + 0.1, 5000 ≤ k ≤ 6000

0, otherwise.

(39)

In the constant fault scenario, the FDRs of the conven-
tional approach and the BMPM-scalar approach are com-
pared. For each simulated constant fault f , 3000 Monte-
Carlo simulations are performed. For the conventional
approach, the threshold is set to 2.8 × 10−3 to ensure a
predefined FAR 5%. For the BMPM-scalar approach, α is
predefined as 0.8, and the resulting detection threshold
is Jth = κα = 2. How the achieved FDRs vary with
the fault amplitude is depicted in Fig. 1. When the fault
amplitude equals zero, both two approaches achieve almost
the same FAR. For the fault amplitude less than 1.3, the
conventional approach results in much lower FDRs than
the BMPM-scalar approach. Moreover, for each fault am-
plitude, the theoretical worst-case FDR provides a lower
bound of the actual FDR achieved by the BMPM-scalar
approach.
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n 

R
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e

 

theoretical worst−case FDR of BMPM−scalar approach 
MC simulation results of BMPM−scalar approach
conventional approach

Fig. 1. FDR for the amplitude of constant fault varying
from -1.6 to 1.6.

In the time-varying fault scenario, all three parity rela-
tion approaches mentioned above are implemented. The
detection threshold in conventional approach is the same
as in the previous constant fault scenario. For the BMPM-
scalar and BMPM-vector approaches, α is set to 0.88, and
the corresponding detection thresholds are both Jth =
κα = 2.703. The detection results are shown in Fig. 2
and Table 1. The poor FDR of the conventional approach
is due to its limitations mentioned in Section 2.3. The
BMPM-scalar approach also results in a low FDR, because
of the mismatch between its selected reference fault and
the actual fault. In contrast, the BMPM-vector approach
achieves the highest FDR with an acceptable FAR.

Table 1. detection results of three approaches

Conventional BMPM-scalar BMPM-vector
approach

FAR(%) 4.85 1.15 4.20
FDR(%) 14.65 55.04 99.50

To further evaluate the tradeoff between FDR and FAR,
the ROC (Receiver Operating Characteristic) curves of
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Fig. 2. Residual evaluations and thresholds of three ap-
proaches to detect the time-varying fault (39)
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Fig. 3. ROC curves for detecting the fault f =
[0.78 0.97 0.43 − 0.43 − 0.97 − 0.78 0] over a fixed
time window.

these implemented FD methods are calculated over a
fixed time window. For each FD method, 50 dots on its
ROC curve are plotted, each of which corresponds to the
FDR and FAR achieved in 2000 fault-free and faulty MC
simulations. These 50 dots are determined by 50 values
of the predefined FAR or α equally spaced within the
interval (0, 1). As depicted in Fig. 3, for the fault signal
f = [0.78 0.97 0.43 − 0.43 − 0.97 − 0.78 0] within
the considered time window, the proposed scalar design
performs poorly, since the actual fault is orthogonal to its
selected reference fault. In contrast, the proposed BMPM-
vector approach performs best thanks to using multiple
orthogonal reference faults.

6. CONCLUSIONS

This paper presents a BMPM approach to the probabilistic
robust design of the parity relation based FD for stochastic
linear systems. Over an ambiguity set of disturbance
distributions with given mean and covariance, the worst-
case FDR is maximized with respect to reference faults
while ensuring a predefined worst-case FAR. The derived
scalar residual design could result in a poor FDR if
the actual fault is different from the single reference
fault. Further performance enhancement is achieved by

providing a systematic way to select multiple reference
faults and construct a vector residual design. Detailed
simulation study illustrates the efficacy of the proposed
approach over the conventional parity relation approach.
Future work will be devoted to analyzing the FDR of the
vector residual design for arbitrary faults different from
the selected reference faults.
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