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Abstract: The finite-time tracking control problem is studied for non-strict feedback ball and plate 
systems considering friction, coupling term and external disturbance comprehensively. An adaptive 
finite-time tracking control strategy based on command filtering is proposed, and the adaptive neural 
finite-time tracking controller is given for the ball and plate system with unknown input saturation. The 
designed controller can guarantee that the tracking error of the system can converge to a small 
neighborhood of the origin within finite time, and all signals in the closed loop system are bounded in the 
finite time. Finally, a simulation for the designed controller is given, and the simulation results verify the 
effectiveness and superiority of the proposed control scheme. 
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1. INTRODUCTION 

A ball and plate system is a typically underactuated, 
multivariable and strongly coupled nonlinear dynamic system. 
Not only is it utilized to check the effectiveness of control 
algorithm, but also the research results for it possesses 
important reference valuable in vessel, aerospace and other 
engineering fields.  
Up to now, there have been many achievements for ball and 
plate systems. However, these results in (Bang et al.  2018 
and Kassem et al. 2015) ignored the coupling, friction and 
other factors in the system so that the control accuracy of the 
system is difficult to be guaranteed. (Wang et al., 2010a and 
Wang et al., 2010b) considered the effect of friction, but the 
coupling term was treated as a known term, the system was 
divided into two unique second-order systems when the 
controller was designed, the underactuated characteristic of 
ball and plate system is not embodied. In (Ali et al., 2019, 
and Han et al., 2014), the friction and coupling of system 
were considered as the bounded disturbance, and the system 
was divided into two single-input single-output subsystems to 
design the controller respectively. 
In the existing research method for ball and plate systems, 
backstepping technique was utilized in some papers, such as 
in (Ker et al., 2007 and Kazim et al., 2017). However, for the 
non-strict feedback ball and plate system, there are still some 
difficulties in controller design using backstepping technique. 
Hence, when the system is studied, the model of the system is 
simplified or some assumptions are adopted so that the 
precise control for the system was difficult to be guaranteed. 
In recent years, there have been papers in which the variable 
separation technique, fuzzy and neural network approxima-
tion method are adopted to deal with the non-strict feedback 

terms in order to carry on backstepping control design (Chen 
et al., 2015, Sun et al., 2016 and Tong et al., 2016). 
Meanwhile, the command filtered technique is utilized to 
solve the problem of “explosion of complexity” (Dong et al., 
2012 and Wang et al., 2016). However, the disposing result 
like this paper is not seen in the current literature for the ball 
and plate system. 
In recent years, the finite-time control method has received 
widespread attentions by many scholars with the advantages 
of fast convergence and strong robustness. At present, there 
are two main design ideas for finite-time control method. One 
is that the designed controller is required to make Lyapunov 
function of the closed-loop system to satisfy a finite-time 
stability condition, such as (Wang et al., 2016 and Sun et al., 
2017). The other is that the controller is designed by 
transforming the system with a time-vary function (Song et 
al., 2017) or by constraining the state with a finite-time 
prescribed performance function (Liu et al., 2019). Up to now, 
in the researches on ball and plate systems, the relevant 
research results for finite-time control have not been found. 
Because there is controller saturation phenomenon in the 
actual system, it is necessary to dispose the phenomenon in 
controller design (Zhou et al., 2014). 
Hence, in this paper, the tracking controller of the ball and 
plate system with external disturbance, friction, coupling and 
saturation input is designed by combining command filtering 
technique, practically finite-time control theory with the 
backstepping design method. Different from (Wang et al., 
2016), a finite-time controller is designed for non-strict 
feedback system in this paper, and a different filter is chosen 
as well as a different method is taken to handle input 
saturation. The designed controller can guarantee that the 
tracking error converges to a small neighborhood of the 
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origin within a finite time. Meanwhile, all the signals of the 
closed-loop system are practically finite-time stable. 
The main contribution of this paper can be summarized as 
follows: 1) In the controller design process, the complete ball 
and plate system model is considered. Namely, the effects of 
disturbance, friction and coupling are considered at the same 
time, and the system is regarded as an interconnected system 
rather than two divided unique systems. 2) The adaptive 
neural network finite-time tracking control problem is firstly 
studied for the above-mentioned ball and plate system with 
unknown input saturation, and the finite- time tracking 
controller design method is given. 3) By means of command 
filtering technique, the complexity of finite-time control 
design of the ball and plate system is reduced so that the 
design process becomes more concise. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

2.1  Problem formulation 

The mathematical model of the ball and plate system can be 
established in the following form (Wang et al., 2010b). It is 
regarded as the coupling of the two subsystems. 
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where 1,1x  and 2,1x  denote the displacement of ball in X- 

direction and Y-direction, respectively. 1,3x  represents the 

angle between X-direction of plate and horizon, 2,3x  is the 

angle between Y-direction of plate and horizon. 
2/ ( / )bA m m I r  , , ,bI m r  mean the rotary inertia, the 

quality and the radius of the ball, respectively. g indicates 

the gravitational acceleration, 3cos( ) andx x yf mg x f    

7cos( )ymg x  are the frictions in X-direction and Y-

direction, the rolling friction coefficients ,x y  are 

considered to be unknown (Han et al., 2014). 1,4 2,1 2,4x x x  and 

1,4 2,1 2,4x x x  are the coupled terms between the subsystem XS  

in X-direction and the subsystem YS  in Y-direction. 

1,1 1,2 2,1 2,2, , ,d d d d  are bounded external disturbances, and 

, , 1,2, 1,2i jd d i j   . d is an unknown positive constant. 

,x yy y  denote the outputs of the system in two directions, 

,x yu u  mean the control inputs. The saturation nonlinearities 

are described by 
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where ,xm ymu u  denote the boundaries of unknown saturations 

,x yu u . Because ,x yu u
 
are not smooth functions, according to 

(Zhou et al., 2014), the state space description of the ball and 
plate system can be transformed as 
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 (2) 

where 0 1
xxm vg g


   , 0 1
yym vg g


    with xmg  and 

ymg  are unknown constant, ( ) , ( )x x y yv D v D    with  

xD  and yD  are bounded constant. The control objective of 

this paper is as follows: Design the controllers ,x yv v  for the 

ball and plate system so that the outputs ,x yy y  of the system  

can track precisely the given reference signals ,xd ydy y  within 

a finite time, and the controllers can guarantee all the signals 
in the closed-loop system being practically finite-time stable. 

2.2  Preliminaries 

In order to acquire our main result, the following Assumption 
and Lemmas will be introduced. 
Assumption 1 The reference signals ,xd ydy y and their first 

derivatives are continuous and bounded functions. 
Definition 1 (Sun et al., 2017) Let 0   be the equilibrium 

point of a nonlinear system ( )f  . It is called to be 

semiglobal practical finite-time stable if for all initial 
condition 0 0( )t  , there exist a constant 0   and a 

settling time 0( , )T      such that 

0( ) , .t t t T      
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In this paper, the radial basis function neural network 
(RBFNN) will be used to approximate a continuous function 

( )f Z defined in a compact set  ( Li et al., 2017). 
T( ) ( ) ( ).f Z W S Z Z   

where q
zZ R   is the input vector of the RBFNN, q 

means the input dimension of the RBFNN.  1 2= , , ,W w w   

Tnw is an ideal constant weight vector, 1n  denotes the 

node number of the RBFNN, ( )Z  is the approximate error 

of the RBFNN and it satisfies ( )Z  , where   is an 

arbitrary positive constant. 1( ) [ ( ),S Z s Z  T
2 ( ), , ( )]ns Z s Z  

represents the basis function vector, ( )is Z  is chosen as 

Gaussian-like function, that is 
T
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where  T1 2, , ,i i i in      is the center of the basis 

function, ir  is called the width of the basis function. 

Lemma 1 (Sun et al., 2016) If there are any given positive 
integers l  and n , then  

2 2
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where l n , ( )S Z  and ( )lS Z  are the basis function vectors 

of the RBFNN, T
1[ , , ]nZ z z   and T

1[ , , ]l lZ z z   are the 

input vectors. 
Lemma 2 (Li et al., 2017) For any given 0  , the 

following inequality holds. 
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Lemma 5 (Sun et al., 2017) Consider the nonlinear system 

( )f  , there are the positive function ( )V  , the constant 

0c  , 0 1   and 0b  , such that 

( ) ( ) , 0.V cV b t      

Then the system ( )f   is semi-globally practically finite-

time stable. 

3. COMMAND-FILTERING-BASED ADAPTIVE FINITE-
TIME TRACKING CONTROLLER DESIGN 

In this section, the adaptive finite-time tracking controller 
will be designed for the system (2). In order to avoid 
repeating derivation of virtual control in the process of 

controller design, the following first-order low-pass filter is 
introduced in this paper. 

, , , , , ,, (0) (0).i j i j i j i j i j i js s s      

where , 1,2, 1, 2,3i j i j  ( )  is a filtering time constant, 

,i j denotes the virtual control laws in the process of design, 

,i js  means the outputs of the low-pass filter. In this paper, the 

following coordinate transformation is utilized. 

, , , 1, 1,2, 1, , 4,i j i j i jz x s i j           (3) 
where 1,0 2,0,xd yds y s y  . 

Next, the controller design is performed for the subsystem in 
X-direction. 
Step 1 Based on (2) and (3), it produces that 

1,1 1,1 1,2 1,1 1,1 1,1( ) .xd xdz x y z s y               (4) 

In order to deal with the effect of the filter error 1,1 1,1s  , a 

compensating signal 1,1e  needs to be designed. Therefore, the 

compensating tracking error signal is defined in the following 
form. 

1,1 1,1 1,1 1,2 1,2 1,2, ,v z e v z e                         (5) 

where 1,2e  will be given later.  

Consider a Lyapunov candidate function as follows. 

2
1,1 1,1

1
.

2
V v                                    (6) 

Combining (5) and (6), one has 

1,1 1,1 1,1 1,1 1,2 1,1 1,1 1,1 1,1( ( ) ).xdV v v v z s y e               (7) 

The virtual control 1,1  and the compensating signal 1,1e
 
are 

designed in the following form, respectively. 
2 1

1,1 1,1 1,1 1,1 ,xdc v e y                             (8) 

1,1 1,1 1,1 1,1 1,2( ) ,e e s e                          (9) 

where 1,1(0) 0e  , 1,1 0c   and 1/ 2 1   are design 

parameters. Substituting (8) and (9) into (7) results in 
2

1,1 1,1 1,1 1,1 1,2 .V c v v v                            (10) 

Step 2 According to (2) and (3), one has  
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     
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2

1 1 1,1 1,4 1,3 1,4 2,1 2,4 1,3( ) sin( ) / gxf Z A x x g x x x x f m x    ( ), 

where T
1 1,1 1,3 1,4 2,1 2,4[ , , , , ]Z x x x x x . Obviously, the nonlinear 

function 1 1( )f Z  involves friction and coupling. A RBFNN 
T

1 1 1( )W S Z is used to approximate the unknown function 

1 1( )f Z , such that  
T

1 1 1 1 1 1 1 1 1 1( ) ( ) ( ), ( ) .f Z W S Z Z Z              (12) 

Substituting (12) into (11), (13) can be achieved.  
T

1,2 1 1 1 1 1 1,3 1,2
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( ) ( )

( ) .
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Ag s d s

 
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   

   




           (13) 

In order to deal with the filter error 1,2 1,2s  , the compen-

sating signal 1,2e  needs to be designed, and the following 

compensating tracking error signal is defined.  

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6245



 
 

     

 

1,3 1,3 1,3 ,v z e                                    (14) 

where 1,3e  will be given later. Based on (5) and (13), one has 
T
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 



   
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 
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By using Lemma 2 and 1,1d d , the following result can be 

obtained.  
2 2
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2 2
1 1
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
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      



 
,

 

where 1a  is an arbitrarily positive constant. Defining 
2

1 1W  , 1 1 1̂    , 1̂  is the estimation of the unknown 

constant 1 . According to Lemma 1, it produces that 
2*

1,2 12 1,2 1,2 1 1 1 1 1,2 1,3

2 2
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1,2 1,2 1,2 1,1 1 2

( ( ) / 2
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2 2 2
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a d
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


 
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      



 
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     (15) 

where *
1 1,1[ ]Z x . Choose a Lyapunov function candidate as 

2 2
1,2 1,2 1

1 1
.

2 2
V v                                     (16) 

The virtual control 1,2 , compensating signal 1,2e  and 

adaptive law can be designed as: 

2 1
1,2 1,2 1,2 1,2 1,1 1,1

2*
1,2 1 1 1 1

1
(

ˆ( ( ) / 2 1),

c v e z s
Ag

v S Z a





   

 


                   (17) 

1 2 1,1 1,2 1 3 1,2 1,2( ),e e e Age Ag s      
, ,            (18) 

22 *
1 1,2 1 1 1 1
ˆ ˆ( ) / 2 ,v S Z a  

                      (19) 

where 1,2 (0) 0e  , 1,2 0c   and 0   are design parameters. 

Combining (16) ~ (19), it produces that 
2

1,2 1,2 1,2 1,1 1,2 1,2 1,3 1 1

2 2
1 1

ˆ

.
2 2 2

V c v v v Agv v

a d

  



    

  


      (20) 

Step 3 According to the calculation of (2) and (3), the 
following result is attained.  

1,3 1,3 1,2 1,4 1,3 1,3 1,3 1,2( ) .z x s z s s                    (21) 

In order to handle the filter error 1,3 1,3s  , the compensating 

signal 1,3e  needs to be designed. The compensating tracking 

error signal is defined as follows. 

1,4 1,4 1,4 ,v z e                                   (22) 

where 1,4e  will be given later.  

Select the following Lyapunov function candidate 

2
1,3 1,3

1
.

2
V v                                   (23) 

Then 

1,3 1,3 1,3 1,3 1,4 1,3 1,3 1,3 1,2 1,3( ( ) )V v v v z s s e             (24) 

The virtual control 1,3  and the compensating signal 1,3e  can 

be designed as follows. 

2 1
1,3 1,3 1,3 1,3 1,2 1,2 ,c v e Agz s                 (25) 

1,3 1,2 1,3 1,4 1,3 1,3( ),e Age e e s                        (26) 

where 1,3 (0) 0e  , 1,3 0c   is a design parameter. Substituting 

(25) and (26) into (24) results in 
2

1,3 1,3 1,3 1,2 1,3 1,3 1,4 .V c v Agv v v v                    (27) 

Step 4 Based on (2) and (3), the following relationship can be 
obtained.  

1,4 1,4 1,3 1,2 1,3( ) .
xv x xz x s g v v d s


                  (28) 

Construct a Lyapunov function candidate as follows 

2
1,4 1,4

1
.

2
V v  

Then, the following result can be obtained. 

1,4 1,4 1,4 1,4 1,2 1,3 1,4( ( ) ).
xv x xV v v v g v v d s e


          

The actual control xv  and compensating signal 1,4e  are 

designed in the following form 
2 1

1,4 1,4 1,4 2 1,4 1,3 1,3 ,xv c v e a v z s                     (29) 

1,4 1,3 1,4 ,e e e                                (30) 

where 1,4 (0) 0e  , 2 1,40, 0a c   are two design parameters. 

With the help of Lemma 2, one has 
2 2 2

1,4 1,4 1,4 1,3 1,4 2( ) / 2 .xm x xmV c g v v v d D a g           (31) 

Because the subsystem in Y-direction has the similar 

structure to the subsystem in X-direction, its four design steps 

are similar to the above process. Therefore, the virtual control 

laws, actual control law and adaptive laws of the subsystem 

YS  are similarly designed as follows. 
2 1

2,1 2,1 2,1 2,1 ,ydc v e y                               (32) 

2 1
2,2 2,2 2,2 2,2 2,1 2,1

2*
2,2 2 2 2 1

1
(

ˆ( ( ) / 2 1),

c v e z s
Ag

v S Z a





    




               (33) 

2 1
2,3 2,3 2,3 2,3 2,2 2,2 ,c v e Agz s                (34) 

2 1
2,4 2,4 2,4 2 2,4 2,3 2,3 ,yv c v e a v z s                      (35) 

22 *
2 2,2 2 2 1 2

ˆ ˆ( ) / 2 ,v S Z a  
                     (36) 

where 2, ( 1, , 4)jc j    are all positive design parameters. 

 *
2 21Z x ,

2

2 2W  . The compensating signals can be 

designed as follows 

2,1 2,1 2,1 2,1 2,2( ) ,e e s e                          (37) 

2 2 2,1 2,2 2 3 2,2 2,2( ),e e e Age Ag s      
, ,            (38) 

2,3 2,2 2,3 2,4 2,3 2,3( ),e Age e e s                   (39) 

2,4 2,3 2,4 ,e e e                                (40) 

where 2,1(0) 0e  , 2,2 (0) 0e  , 2,3 (0) 0e  , 2,4 (0) 0e  . And 

2,1V , 2,2V , 2,3V , 2,4V can be obtained similarly. 

Hence, the main results of this paper can be stated as follows. 
Theorem 1 Consider the ball and plate system (2) satisfying 
Assumption 1. If the compensating signals are designed 
according to (9), (18), (26), (30), (37)~(40), the virtual 
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control laws are designed according to (8), (17), (25), (32)
~(34), the actual control laws and adaptive laws are designed 
as (29), (35), (19), (36), then the tracking error of the closed-
loop system can converge to the neighborhood of the origin 
within finite-time. Meanwhile, all the signals of the closed-
loop system are practically finite-time stable. 
Proof: Construct the Lyapunov function candidate of the 
whole system as 

2 4 2
2 2
,

1 1 1

1 1
= .

2 2i j i
i j i

V v 
  

    

According to Lemma 2, it follows that  
2 2

1 1
1 1̂ ,

2 2

 
   

                                   (41) 

2 2
2 2

2 2̂ .
2 2

 
   

                                   (42) 

By the above design results, it produces that 
2 2 2 22 4 2
1,

1 1 1

2 2 2 2 2 2
1 2 1 22

1

2 2 2 2

2 2

( ) (( ) ( ) )
2 2 2 2

2
2

,
2 2

j i i i

i j i

x y

x x

xm ym

v
V c c

D D
d a

d D d D

a g a g

    

   
  

    

    
  

 
 

 
  

    (43) 

where  , ,4min 2 ,2 , , 1, 2, 1, 2,3i j i xmc c c g i j     . Based 

on Lemma 4, let 2
1( / 2)   , 1  , 1   ,   , 

/ (1 )    , then  
2 2

1 1( ) (1 ) .
2 2

 
   

 
                           (44) 

Similarly, we have 
2 2
2 2( ) (1 ) .
2 2

 
   

 
                           (45) 

Substituting (44) and (45) into (43) results in 
2 22 4 2
1,

1 1 1

( ) ( ) ,
2 2

j i

i j i

v
V c c b 

  

    
         (46) 

where b is a bounded constant, and 
2 2 2 2

2
1

2 2

2 2 2 2 2 2
1 2 1 2

2(1 ) 2
2 2

.
2

x x

xm ym

x y

d D d D
b d a

a g a g

D D

 

   

 
     

    


 

With the help of Lemma 3, (46) can be transformed as 
2 22 4 2
1,

1 1 1

( ) .
2 2

j i

i j i

v
V c b cV b 

  

       
  

According to Lemma 5, the closed-loop system is semi-
globally practically finite-time stable, namely, 

, , , 1,2, 1, , 4i j iv i j     are all practically finite-time stable.  

From (Sun et al., 2017), we can know the bound of tracking 

error is 1/2
,1 ,1 2( / (1 ) )i iz e b c     for the settling time 

1 [(1 ) / ](1/ (1 ) )[ (0) (( / (1 ) )) ]rT a V b a         with any 

0 1  . Obviously, the bigger the c is, the smaller the 
bound is. From Lemma 3 in (Dong et al., 2012), we can know 

that ,i je  are bounded, then ,i jz  are also bounded, namely, all 

the signals in the closed-loop system are bounded. 
Meanwhile, these signals are practically finite-time stable. 

4. SYSTEM SIMULATION STUDY 

In this section, a circular trajectory tracking simulation 
experiment is performed for a ball and plate system by 
MATLAB. The physical parameters of the ball and plate 
system are given as follows (Han et al., 2014): 0.263m kg , 

0.02r m , 5 24.2 10bI kg m   , 29.81 /g m s , x y   

0.004 . In the trajectory tracking experiment, the tracking 
signals of X-direction and Y-direction are all chosen as 

0.5sin(0.1 )xdy t , 0.5cos(0.1 )ydy t . The disturbances 

are selected as 1,1 2,1 0.5d d  , 2,1 2,2 0.3d d  . The initial 

states of the system are chosen as 1,1 1,2 1,3 1,4 2,1 2,2[ , , , , , ,x x x x x x  
T T

2,3 2,4, ] [0.14,0, 0.05,0,0.35,0,0.05,0]x x   .The controller 

design parameters are selected as 1,1 1,2 1,3 1,4 2,1 2,2[ , , , , , ,c c c c c c  
T T

2,3 2,4 1 2, ] [5,1, 2, 2,2,1,1,1] , 97 /101, 1, 0.1,c c a a   

=0.5 , 15xm ymu u  . And the filter time constants are all 

chosen as 0.001, the initial value of adaptive laws 1 2,   are 

all selected as 0. Two RBF neural networks are chosen as 
follows. They all contain 7 nodes, the centers are evenly 
distributed in interval [ 3,3] , and the width are all selected 

as 2. The basis function is chosen as Gaussian-like function. 
The compensating signals, virtual control laws, actual control 
law and adaptive laws can be calculated according to 
Theorem 1. The adaptive finite-time tracking controller is 
obtained. By means of the experiment for the ball and plate 
systems in MATLAB, the simulation results can be shown in 
Figs.1-3. Fig.1 shows tracking effect in an actual circular 
orbit. In order to compare with existing research results, the 
simulation result of the controller in (Ker et al., 2007) is also 
given simultaneously in Fig.1. In the simulation results of 
(Ker et al., 2007), the parameters of the ball and plate system 
are the same as this paper. The controller design parameters 
are the same as the original article, namely, 1 2 3 4[ , , , ,c c c c  

T T
5 6 7 8, , , ] [3.5,9.5,35,20, 2.5,6.5, 25,11]c c c c  . The change 

rule of adaptive parameters are indicated in Fig.2. Fig.3 
depicts the trajectories of the control inputs of the ball and 
plate system in X-direction and Y-direction. 

 
Fig. 1 Tracking curves of the ball on the plate 
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Fig. 2 Adaptive parameters 1̂ and 2̂  

 
Fig. 3 Control inputs 

From Figs.1-3, it can be seen that the ball on the plate tracks 
the desired trajectory accurately under the condition of 
controller saturation by using the proposed method in this 
paper. However, the control method in (Ker et al., 2007) is 
difficult to achieve the ideal control effect when the system 
exists friction, coupling and external disturbance. Therefore, 
the control method in this paper is more superior. 

5.  CONCLUSION 

In this paper, the adaptive finite-time trajectory tracking 
control problem is studied for the ball and plate system with 
external disturbance, frictional force and coupling influence. 
Meanwhile, the controller saturation phenomenon of system 
is considered in the control design. By means of backstepping 
technique, command filtering method, Adaptive neural 
network technique and practically finite-time control theory, 
the tracking controller of the ball and plate system is given. 
The designed controller can guarantee that the tracking error 
of the system converges to a small neighborhood of the origin. 
And all the signals in the closed-loop system are practically 
finite-time stable. The simulation results demonstrate the 
effectiveness and superiority of the proposed method. 
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